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Acute ruminal acidosis (ARA) occurs after an excessive intake of rapidly fermentable

carbohydrates and is characterized by the overproduction of D-lactate in the rumen that

reaches the bloodstream. Lameness presentation, one of the primary consequences of

ARA in cattle, is associated with the occurrence of laminitis and aseptic polysynovitis.

Fibroblast-like synoviocytes (FLS) are predominant cells of synovia and play a key

role in the pathophysiology of joint diseases, thus increasing the chances of the

release of pro-inflammatory cytokines. Increased D-lactate levels and disturbances in the

metabolism of carbohydrates, pyruvates, and amino acids are observed in the synovial

fluid of heifers with ARA-related polysynovitis prior to neutrophil infiltration, suggesting

an early involvement of metabolic disturbances in joint inflammation. We hypothesized

that D-lactate induces metabolic reprogramming, along with an inflammatory response,

in bovine exposed FLS. Gas chromatography-mass spectrometry (GC-MS)-based

metabolomics revealed that D-lactate disrupts the metabolism of bovine FLS, mainly

enhancing glycolysis and gluconeogenesis, pyruvate metabolism, and galactose

metabolism. The reverse-transcription quantitative PCR (RT-qPCR) analysis revealed an

increased expression of metabolic-related genes, including hypoxia-inducible factor 1

(HIF-1)α, glucose transporter 1 (Glut-1), L-lactate dehydrogenase subunit A (L-LDHA),

and pyruvate dehydrogenase kinase 1 (PDK-1). Along with metabolic disturbances,

D-lactate also induced an overexpression and the secretion of IL-6. Furthermore,

the inhibition of HIF-1, PI3K/Akt, and NF-κB reduced the expression of IL-6 and

metabolic-related genes. The results of this study reveal a potential role for D-lactate in

bFLS metabolic reprogramming and support a close relationship between inflammation

and metabolism in cattle.
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INTRODUCTION

Acute ruminal acidosis (ARA) is a well-known metabolic
syndrome in cattle caused by excessive intake of rapidly
fermentable carbohydrates, which alters ruminal microbiota
composition (1, 2). As such, the proliferation of lactate-
producing bacteria, primarily Streptococcus bovis and
Lactobacillus spp., leads to excessive production of D-lactate
and L-lactate and a consequent drop in ruminal pH (1, 3).
During ARA episodes, sufficient L-lactate is absorbed into the
forestomach and from more distal portions of the digestive
tract into the bloodstream (4, 5). L-Lactate is rapidly oxidized
to pyruvate by L-lactate dehydrogenase, primarily in cardiac
tissues and hepatic tissues (3). Nevertheless, D-lactate can
be metabolized, albeit less efficiently, by a mitochondria-
derived enzyme, D-2-hydroxy acid dehydrogenase (D-LDH
dehydrogenase) (6, 7), in such a way that it accumulates in the
blood system at a concentration greater than 5mM, thereby
causing D-lactic acidosis (4, 5). D-lactic acidosis impairs animal
welfare and the economic performance of cattle, as it affects
feed intake and ruminal digestion, causing rumen mucosa
damage (ruminitis), liver abscesses, diarrhea, inflammation,
and lameness (2, 3, 8). Distension of the tarsocrural joints
in dairy heifers with ARA has been observed (9–12) and is
characterized by generalized sterile neutrophilic polysynovitis
(9). This acute joint reaction is considered to be a part of the
clinical complex interpreted as acute laminitis, and although the
clinical consequence is still unclear, it most likely contributes to
claw pain and lameness (9–11).

Fibroblast-like synoviocytes (FLS) are the predominant

cell types of synovial intima and assure the structural and
physiological dynamic integrity of diarthrodial joints, controlling
the composition of synovial fluids and the extracellular matrix

of the joint lining (13). Moreover, FLS play a central role

in defining and maintaining an inflammatory environment
during joint diseases (13, 14). Furthermore, activated FLS exhibit
metabolic disturbances and produce mediators that can induce
angiogenesis, cell growth, leukocyte recruitment, and immune
cell activation (14–16).

High levels of D-lactate and significant changes in the
metabolism of carbohydrates, pyruvates, and amino acids have
been detected in the synovial fluid of heifers with polysynovitis
associated with ARA prior to subsequent neutrophil infiltration,
suggesting an extremely early involvement of metabolic
disturbances in bovine joint inflammation (17). Similarly,
increased levels of lactate and high rates of glucose consumption
have been detected in human joints with aseptic inflammation,
which is primarily attributed to the activation of hypoxia-
inducible factor 1 (HIF-1) (14, 18). Lactate has also been
identified as a pro-inflammatory agent in FLS and macrophages,
inducing prostaglandin E2 (PGE2) release into the medium (19).
Furthermore, lactate induces the secretion of interleukin (IL)-6,
tumoral necrosis factor-α (TNF-α), and IL-1β in stimulated
chondrocytes (20) and increased the production of PGE2 and
the activity of gluconeogenic in lactate-exposed monocytes (21)
through a HIF-1-dependent mechanism, suggesting that the
lactate-induced inflammatory response is dependent on these

co-induced metabolic adaptations. Additionally, lactate has been
identified to be responsible for TNF-α-induced IL-6 production
in human rheumatoid FLS through the activation of nuclear
factor kappa B (NF-κB) (22).

Based on the abovementioned findings, we hypothesized
that D-lactate might be able to induce metabolic disturbances
and inflammatory responses in bovine FLS (bFLS). The
present study demonstrates that D-lactate caused significant
metabolic changes, which primarily involved the metabolism
of carbohydrates and amino acids. In association with this
metabolic reprogramming, we observed that D-lactate induced
the mRNA expression of relevant pro-inflammatory genes
and metabolic genes in a phosphatidylinositol 3-kinase
(PI3K)/protein kinase B (Akt)-dependent manner, as well as in a
HIF-1/NF-κB-dependent manner.

MATERIALS AND METHODS

bFLS Cell Culture
Bovine FLS (#CDD-B-2910, Articular Engineering, Northbrook,
IL, USA) were cultured in sterile 25 cm2 plastic tissue
culture flasks (#70025, SPL Life Sciences, Pocheon-si, Korea)
with Dulbecco’s Modified Eagle/Ham’s F-12 (DMEM/F-12;
#12400016, Gibco, Thermo Fischer Scientific, Waltham, MA,
USA) supplemented with 10% fetal bovine serum (FBS; #S1810,
Biowest, Nuaillé, France) at 37◦C under an atmosphere with 5%
CO2. Cell linage was confirmed by the presence of Vimentin
and the absence of CD14, according to Manosalva et al. (23).
During passages 3–6, bFLS were cultured in DMEM/F-12
supplemented with 10% FBS in sterile 21.5 cm2 plastic tissue
culture plates (#20060, SPL Life Sciences, Pocheon-si, Korea) for
metabolomics and lactate and immunoblot analyses, while sterile
6-well plates (#31006, SPL Life Sciences, Pocheon-si, Korea) were
used for reverse transcription-quantitative PCR (RT-qPCR) and
ELISA analysis.

Experimental Design
Inhibitory assays were performed at 37◦C and under 5% CO2

for 30min using the following pharmacological inhibitors: (a)
40µMYC-1 (#sc-202856, Santa Cruz Biotechnology, Santa Cruz,
CA, USA) to inhibit the HIF-1 activity; (b) 10µM BAY 11-
7082 (#10010266, Cayman Chemicals, Ann Arbor, MI, USA) to
inhibit the NF-κB activity; and (c) 10µM LY294002 (#V1201,
Promega, Madison, WI, USA) to inhibit the PI3K/Akt signaling
pathway. DMSO (0.1%) was used as vehicle control. bFLS
were stimulated with 5mM D-lactate (#L0625, Sigma-Aldrich,
St. Louis, MO, USA) or 100 ng/ml bovine TNF-α (bTNF-α;
#RBOTNFAI, Thermo Fisher Scientific, Waltham, MA, USA)
at 37◦C and under 5% CO2 for 1 h for metabolomics and
lactate analysis and 6 h for immunoblot analysis and RT-qPCR
and ELISA experiments. Water was used as vehicle control.
Furthermore, for immunoblot analysis, hypoxic conditions (1%
O2, 94% N2, 5% CO2) were achieved using a hypoxia incubator
chamber (#27310, Stemcell Technologies, Vancouver, Canada).
For HIF-1α stabilization control, 300µMcobalt chloride (CoCl2)
was added to bFLS under normoxic conditions.
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Sample Preparation for Gas
Chromatography-Mass Spectrometry
(GC-MS) Metabolomics
Metabolites from bFLS were extracted with 1 ml/sample of
extraction buffer (37.5% vol/vol HPLC-grade acetonitrile; 37.5%
vol/vol HPLC-grade isopropanol; 25% vol/vol HPLC-grade
water) containing 1mM ribitol (#A5502, Sigma-Aldrich, St.
Louis, MO, USA) as an internal standard. Samples were vortexed
for 2min and then centrifuged at 14,000 × g at 4◦C for 2min.
Later, 450 µl-supernatant from each sample was dried in a
SpeedVac concentrator (Savant R© SPD131DDA, Thermo Fisher
Scientific, Waltham, MA, USA) at 45◦C for 90min under 1.5
atm of pressure. Once dried, 450 µl/sample of wash buffer (50%
vol/vol HPLC-grade acetonitrile; 50% vol/vol HPLC-grade water)
was added, which were then vortexed and centrifuged at 14,000
× g at 4 ◦C for 2min; then, the supernatants were evaporated to
dryness in a SpeedVac concentrator at 45◦C for 90min under 1.5
atm of pressure. As retention index markers, 2 µl of a fatty acid
methyl ester (FAME) standard mixture C8-C30 (#400505, Fiehn
GC/MS Metabolomics Standards Kit, Agilent Technologies,
Santa Clara, CA, USA) was utilized. Additionally, 10 µl
methoxyamine hydrochloride/pyridine (20 mg/ml; #226904,
Sigma-Aldrich, #107463, Merck KGaA, Darmstadt, Germany)
was added to each of the samples and incubated at 30◦C
for 90min under shaking conditions. Subsequently, 90 µl N-
methyl-N-(trimethylsilyl)-trifluoroacetamide (MSTFA) with 1%
trimethylchlorosilane (TMCS) derivatization agent (#TS-48915,
Thermo Fisher Scientific, Pierce Biotechnology, Rockford, IL)
was added, and samples were incubated at 37◦C for 30min under
shaking conditions. Finally, samples were transferred to 250-
µl glass vial inserts (#5181-8872, Agilent Technologies) in 2-ml
glass vials with screw caps (#8010-0543, Agilent Technologies)
for analysis.

Metabolomics by GC-MS
Samples were injected in an Agilent 7890B GC system coupled
to an electron impact ionization mode 5977A Mass Selective
Detector system (Agilent Technologies, Palo Alto, CA, USA),
using an Agilent 7693 Series Autosampler (Agilent Technologies,
Palo Alto, CA, USA). Derivatized samples (2 µl) were injected
in the splitless injector mode on a 30m × 0.25mm × 0.25µm
DB-5 column (Agilent Technologies, Palo Alto, CA, USA).
Temperature of the injector port was maintained at 250◦C, and
the flow rate of helium carrier gas was set up at 1 ml/min with
an initial oven temperature of 60◦C. Then, the oven temperature
was increased at 10◦C/min until it reached 325◦C, with a final
running time of 37.5min. After a 5.9min solvent delay, full
spectra (50–600 m/z; 1.7 scans/s) with a digital scan rate of
20Hz, with MS ion source temperature of 250◦C and quadrupole
temperature of 150◦C, was acquired. All samples were analyzed
within 24 h after derivatization. To calculate the Fiehn retention
index of metabolites, retention times were obtained by injecting
a FAME standard mixture C8-C30 (#400505, Fiehn GC/MS
Metabolomics Standards Kit, Agilent Technologies, Santa Clara,
CA, USA).

Before carrying out data analysis, raw MS data (.D files)
were transformed into the Analysis Base File (.ABF) format

using the Reifycs ABF Converter (Reifycs Inc., Tokyo, Japan).
Metabolite identification was performed following the methods
described by Fiehn (24). Briefly, peak detection, deconvolution,
and peak alignment were performed using MSDIAL 2.83
(RIKEN Center for Sustainable Resource Science: Metabolome
Informatics Research Team. Yokohama, Japan) to process the
total ion chromatogram and the electron ionization-MS (EI-
MS) spectra of each GC peak. The resulting mass spectrum
of the trimethylsilyated metabolites was identified, and the
deconvoluted peaks were matched against mass spectral libraries
imported by the National Institute of Standards and Technology
(NIST) MSP format. Library matches were ranked against
experimental data based on the total retention index and mass
spectral similarity across all batch samples. The Fiehn retention
index based on FAME was used. Identification of metabolites
was performed by matching the EI-MS spectra with those of
the reference compounds from the NIST or Fiehn libraries. For
analysis, the retention index tolerance of 2,000, a EI similarity
cutoff of 65%, an identification score cutoff of 70%, a mass scale
tolerance of 0.5 Da, and the retention time tolerance of 0.5min
were used.

Quantification of Intracellular D-Lactate
and L-Lactate by High-Performance Liquid
Chromatography (HPLC)
Lactate stereoisomers from bFLS were extracted with 1
ml/sample of extraction buffer (37.5% vol/vol HPLC-grade
acetonitrile; 37.5% vol/vol HPLC-grade isopropanol; 25% vol/vol
HPLC-grade water) by vortexing for 2min and performing
centrifugation at 14,000 × g at 4◦C for 2min. Next, 450
µl-supernatant from each sample was dried in a SpeedVac
concentrator (Savant R© SPD131DDA, Thermo Fisher Scientific,
Waltham, MA, USA) at 45◦C for 90min under 1.5 atm of
pressure. Once dried, the samples were resuspended in 250 µl
mobile phase (1mMCuSO4) and centrifuged at 21,000× g at 4◦C
for 10min. Finally, 200 µl-aliquots of the supernatants were used
for D- and L-lactate quantification. For the calibration curves,
2–400µM of D- and L-lactate standards were used. Twenty-
microliter aliquots of samples were analyzed by HPLC using
an Astec CLC-D cationic exchange column (15 cm × 4.6mm;
Sigma-Aldrich, St. Louis, MO, USA) at a flow rate of 1 ml/min
at 30◦C. The detection wavelength was set at 254 nm (25) using
LaChrom Elite HPLC Diode Array Detector (VWR Hitachi,
Radnor, PA, USA).

Western Blot Analysis
Total proteins were extracted with 2× Laemmli sample buffer
(0.125M Tris-HCl, pH 6.8; 4% SDS; 20% glycerol; 10% β-
mercaptoethanol; 0.004% bromphenol blue). Total proteins were
separated by electrophoresis using 7.5% SDS-PAGE gels and
transferred electrophoretically into nitrocellulose membranes.
After blocking with 5% skim milk in TBS-T (20mM Tris-HCl,
pH 7.5; 137mM NaCl; 0.1% Tween 20), the membranes were
incubated overnight with an anti-HIF-1α monoclonal antibody
(H1alpha67) (#MA1-16504; Invitrogen, Thermo Fischer
Scientific) and an anti-β-actin [horseradish peroxidase (HRP)]
antibody (#sc-47778; Santa Cruz Biotechnology) at 4◦C. Finally,
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the membranes were incubated with a HRP-conjugated anti-
mouse IgG antibody (#115-035-003; Jackson Immunoresearch,
West Grove, PA, USA). Specific bands were visualized using the
Odyssey Fc Dual-Mode Imaging System (LI-COR Biosciences,
Lincoln, NE, USA), and its intensity was quantified using the
Image Studio Lite v5.2 software (LI-COR Biosciences).

RT-qPCR Analysis of Inflammatory and
Metabolic Genes
Total RNA of bFLS was extracted with an E.Z.N.A. Total RNA
Kit I (#R6834-01, Omega Bio-Tek, Norcross, GA, USA) following
the instructions of the manufacturer. To remove genomic
DNA, the extracted RNA was treated using a Turbo DNase-
Free R© kit (#AM1907, AmbionTM, Thermo Fischer Scientific,
Waltham, MA, USA). For cDNA synthesis, 300 ng of total
RNA was reverse transcribed using M-MLV reverse transcriptase
(#M5313, Promega, Madison, WI, USA) according to the
protocol of the manufacturer. RT-qPCR assays were performed
using TakyonTM Rox SYBR R© MasterMix (#UF-RSMT-B0701,
Eurogentec, Seraing, Belgium), and the primers are indicated
in Table 1. RT-qPCR was performed in a StepOne Plus Real-
Time PCR System (Applied BiosystemsTM, Thermo Fisher
Scientific, Waltham, MA, USA) using the following cycling
conditions: 1 cycle at 95◦C for 10min, followed by 40 cycles
at 95◦C for 30 s, 60◦C for 30 s (annealing), and 72◦C for 30 s
(extension). The changes in expression were calculated using
the 2−(11Ct) method, according to Livak and Schmittgen (26),
using StepOneTM v2.3 (Applied BiosystemsTM, Thermo Fisher
Scientific). For normalization, the 40S ribosomal protein S9
(RPS9) as a housekeeping gene and as unstimulated cells as a
reference sample were used.

IL-6 and IL-8 Quantification by ELISA
After D-lactate stimulation for qPCR assay, conditioned media
were centrifugated at 500 ×g for 5min and thereafter used to
estimate the concentration of cytokines by using bovine IL-
6 (#ESS0029, Thermo Fisher Scientific) and IL-8 (#3114-1A-6,
Mabtech, Nacka, Sweden) ELISA kits, according to instructions
of the manufacturer. Briefly, the capture antibody was incubated
overnight, and wells were then blocked for 1 h (4% BSA, 5%
sucrose in PBS). Subsequently, 100 µl of the sample was added
and incubated for 1–2 h. After two washes, the detection antibody

was incubated for 1 h. Plates were washed twice and streptavidin
was added and incubated again for another 0.5–1 h. Finally, the
tetramethylbenzidine (TMB) substrate solution or p-nitrophenyl
phosphate (pNPP) was added and incubated for 20–30min in the
dark. For IL-6 ELISA kit, the reaction was stopped with 0.16M
H2SO4. All procedures were performed at room temperature.
Plates were analyzed at 450 and 550 nm for the IL-6 ELISA kit and
at 405 nm for the IL-8 ELISA kit using an automatic Varioskan
Flash Reader (Thermo Fischer Scientific, Waltham, MA, USA).

Statistical Analyses
For metabolomic analysis, all multivariate analyses were
statistically analyzed using MetaboAnalyst v4.0 (Xia Lab, McGill
University, Canada; http://www.metaboanalyst.ca) according
to previously published protocols (27). Metabolites which
were more than 50% below the detection limit or with at
least 50% missing values were excluded from the analysis.
Metabolite concentrations were normalized using ribitol as
an internal standard, and to obtain a Gaussian distribution,
logarithmic transformation and auto scaling were performed
before the statistical analysis (27). The partial least squares-
discriminating analysis (PLS-DA) and variable importance in
projection (VIP) scores were determined. The PLS-DA model
was estimated by cross-validation and permutation tests, as
the sum of squares captured by the model (R2) > 0.9 and
p-value = 0.0295 (59/2000), respectively. Heat maps were
represented by Euclidean distance measure andWard’s clustering
algorithm. Metabolites exhibiting significantly different levels
(p < 0.05) by the Mann–Whitney test were considered for
pathway topology analyses. Bos taurus (cow) was used as the
model organism. Pathway topology analysis was performed
using the B. taurus pathway library and a hypergeometric test
was used for overrepresentation analysis. To identify potential
metabolomic pathways, the Kyoto Encyclopedia of Genes and
Genomes (KEGG; http://www.genome.jp/kegg) and the Bovine
Metabolome Database (http://www.cowmetdb.ca) were used. For
other experimental settings, data are presented as means± SEM.
For comparisons between two treatments, the Mann–Whitney
test was applied. In addition, for comparisons between three
or more groups, after variance homoscedasticity evaluation, the
one-way ANOVA followed by Fisher’s least significant difference
test, or the Kruskal–Wallis test followed by Dunn’s test, was

TABLE 1 | Target genes, forward and reverse primer (5′-3′) sequences, amplicon size (pb), regression coefficient (R2) value, slope, and amplification efficiency (%).

Gene Forward primer, 5′-3′ Reverse primer, 5′-3′ Size (bp) R2 Slope Efficiency (%)

rps9 GCTGACGCTGGATGAGAAAGACCC ATCCAGCACCCCGATACGGACG 85 0.995 −3.612 89.164

il-6 ACTGGCAGAAAATAAGCTGAATCTTC TGATCAAGCAAATCGCCTGAT 89 0.998 −3.523 92.239

il-8 ATGACTTCCAAGCTGGCTGTTG TTGATAAATTTGGGGTGGAAAG 149 0.998 −2.920 120.040

hif-1α GGAGTTGGACCTCTGCGATT GAGGGGAGAAAAGGCACGTC 102 0.995 −3.267 102.331

glut-1 GCGGACCCTACGTCTTCATC GGCCTTTTGTCTCGGGAACT 87 0.999 −3.304 100.749

pdk-1 CTCATCGGAAACACGTCGGA TCACACAGACGCCTAGCATT 91 0.996 −3.484 93.643

l-ldha AGGCCTGAGAAGTCGGAGTG GGAACCTGTCCTACCTGCC 118 0.983 −3.512 92.633

rps9, 40S ribosomal protein S9; il-6, interleukin 6; il-8: interleukin 8; hif-1α, hypoxia inducible factor-1 subunit alpha; glut-1, solute carrier family 2 (facilitated glucose transporter), member

1; pdk-1, pyruvate dehydrogenase kinase 1; l-ldha, L-lactate dehydrogenase subunit A; bp, base pairs.
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applied as the appropriate method. Values of p < 0.05 were
considered significant. PRISM v8.4.2 (GraphPad, San Diego, CA,
USA) was used for statistical analyses.

RESULTS

Metabolome Overview of Untreated- and
D-Lactate-Treated bFLS
A total of 1,306 unique m/z values with retention indices were
integrated after GC-MS analysis of bFLS, including internal
standards. After deconvolution and alignment, 93 metabolites
were identified and classified according to chemical classes
(Supplementary Figure 1A). Metabolites were identified by the
Fiehn retention index according to the FAME standard and the
Fiehn library. The chemical structure of the derivative product
was also used for metabolite identification. Carbohydrates and
their metabolites were the primary compounds detected in bFLS
(Supplementary Figure 1A), with 30 (32.6%) carbohydrates
identified, including arabinose, fructose, galactitol, gluconic acid,
glucose, glucose-1-phosphate, glucose-6-phosphate, glycerol,
hexose, lactose, mannitol, mannose, melibiose, N-acetyl-D-
hexosamine, sucrose, and UDP-N-acetylglucosamine. Amino
acids and their derivatives were the second most important
metabolites detected in the study (Supplementary Figure 1A),
with 27 (29.3%) compounds identified, including 21 amino
acids, such as alanine, aspartate, cysteine, glutamate, glycine,
leucine, methionine, phenylalanine, proline, serine, threonine,
tyrosine, and valine. Additionally, six amino acid derivatives,
including 3-aminoisobutyric acid, ethanolamine, oxoproline,
and putrescine, were detected. Seventeen (18.5%) lipidic
compounds were identified, including arachidic acid,
arachidonic acid, heptadecanoic acid, lauric acid, linoleic
acid, myristic acid, oleic acid, palmitic acid, pentadecanoic
acid, and stearic acid (Supplementary Figure 1A). Nine
(9.7%) organic acids, including citric acid, fumaric acid,
lactic acid, pyruvic acid, and succinic acid, were detected
(Supplementary Figure 1A). One (1.1%) nucleoside was
identified, corresponding to uracil (Supplementary Figure 1A).
Other organic compounds, including 2.6-di-tert-butylphenol,
methylamine, phosphate, and isothreonic acid, were also
identified (Supplementary Figure 1A). Based on their relative
abundances, hexose, ethanolamine, and mannitol were the
three most predominant metabolites detected in bFLS, with
other predominant metabolites including phosphate, myristic
acid, leucine, myo-inositol, oxoproline, 1.2-anhydro-myo-
inositol, and stearic acid (Supplementary Figure 1B). Detected
metabolites with the lowest levels in bFLS were 2.6-di-tert-
butylphenol, norleucine, fructose, inositol-4-monophosphate,
arabinose, glucose-6-phosphate, tyrosine, palmitic acid,
methylamine, and linoleic acid (Supplementary Figure 1C).

D-Lactate Induces Metabolomic Changes
in Exposed bFLS
To evaluate the metabolic changes induced by D-lactate in
exposed bFLS, we constructed a heatmap considering 50
metabolites with the lowest p-values, as determined by ANOVA.

A distinctive hierarchical separation between control and D-
lactate-treated bFLS was detected (Figure 1A). Furthermore, the
PLS-DA showed a noticeable separation associated with D-lactate
treatment, as axes 1 and 2 accounted for 34.1 and 12.4% of
the total variation, respectively (Figure 1B). In this analysis,
nine metabolites (3-aminoisobutyric acid, myristic acid, stearic
acid, inositol-4-monophosphate, linoleic acid, arachidic acid,
lauric acid, isothreonic acid, and N-acetyl-D-hexosamine) with
the highest VIP scores (>1.6) contributed most significantly
to the detected separation (Supplementary Figure 2). After
univariate analysis, we observed 17 metabolites which were
significantly altered by D-lactate treatment (Figure 2), with
markedly increased levels of glucose (3.7-fold), inositol-4-
monophosphate (3.7-fold), and pyruvic acid (2.8-fold). Gluconic
acid, threonine, isothreonic acid, and 3-aminoisobutyric acid
levels were also markedly increased (>1.7-fold) after stimulation
with D-lactate. Finally, the treatment moderately (>1.3-fold)
increased the levels of fumaric acid, galactitol, N-acetyl-D-
hexosamine, arachidic acid, linoleic acid, myristic acid, and
stearic acid, while a slight (>1.2-fold) increase in succinic
acid, heptadecanoic acid, and lauric acid levels was observed
(Figure 2). Overall, these results suggest that D-lactate induces
significant changes in the metabolome of exposed bFLS.

Additionally, intracellular levels of L-lactate were quantified
by HPLC in control and 5mM D-lactate-treated bFLS. L-lactate
concentrations were significantly higher in bFLS stimulated with
D-lactate compared to control (Figure 3A). Intracellular D-
lactate levels were also quantified by HPLC, which were three
times greater than those observed in the bFLS control group
(Figure 3B). These results show that intracellular levels of D-
lactate increased after stimulation, which was also associated with
an increase in intracellular production of L-lactate and LDHA
expression (Figure 3C).

D-Lactate Modifies Intracellular Metabolic
Pathways in bFLS
We performed a metabolic pathway analysis with MetaboAnalyst
v4.0 using a hypergeometric test for overrepresentation
analysis of all significantly modified metabolites after D-lactate
stimulation (Figure 4). The metabolic pathways that were
most significantly modified and had a higher impact value
were “glycolysis/gluconeogenesis;” “pyruvate metabolism;”
“galactose metabolism;” “citrate cycle (TCA cycle);” “alanine,
aspartate, and glutamate metabolism;” and “glycine, serine, and
threonine metabolism” (Figure 4). These results showed that
carbohydrate and amino acid metabolism were the primary
metabolic pathways disturbed in bFLS after D-lactate treatment.

D-Lactate Increases Expression of IL-6,
HIF-1α, Glut-1, and PDK-1 in bFLS
To evaluate the direct proinflammatory role of D-lactate, we
measured the expression of IL-6 in D-lactate-treated bFLS and
detected a significant increase in the mRNA levels of this
inflammatory gene at 6 h after stimulation (Figure 5A). bTNF-
α, which was used as the positive control for pro-inflammatory
cytokine expression, also significantly increased the mRNA levels
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FIGURE 1 | Metabolomic profile of bovine fibroblast-like synoviocytes (bFLS) after D-lactate treatment. (A) Hierarchical clustering analysis of 50 metabolites from the

control untreated and 5mM D-lactate-stimulated bFLS. The red and blue colors indicate that the metabolite level is increased and decreased compared to the mean

metabolite relative abundance, respectively. Each column represents a sample clustered according to treatment, and each row represents an individual metabolite. n

= 4. (B) The partial least squares-discriminant analysis (PLS-DA) score plot based on metabolomic analysis of D-lactate stimulated (green) and control (red) bFLS. The

explained variances of the selected components are shown in brackets. n = 4.

of IL-6 (Figure 5A). Next, we evaluated the expression of HIF-
1α, glucose transporter 1 (Glut-1), and pyruvate dehydrogenase
kinase 1 (PDK-1). D-Lactate stimulation significantly increased
the mRNA expression of HIF-1α, Glut-1, and PDK-1 in bFLS
at 6 h after treatment (Figures 5B–D). Additionally, bTNF-α
also increased the mRNA levels of these three metabolic genes
(Figures 5B–D). Taken together, these results showed the ability
of D-lactate to increase the expression of genes associated with
both the inflammatory response and the cellular metabolism.

D-Lactate Increases HIF-1α Protein Levels
Under Normoxic Conditions in bFLS
Since D-lactate increased the mRNA expression of HIF-1α in
bFLS, we also evaluated the ability of D-lactate to induce HIF-
1α protein accumulation. Under normoxic conditions (20% O2),
treatment of bFLS with D-lactate for 6 h significantly increased
the HIF-1α protein levels compared to untreated cells (Figure 6).
In addition, HIF-1α accumulation was also significantly higher
in bTNF-α-treated bFLS relative to unstimulated control cells
(Figure 6). Similar results were observed in bFLS exposed to D-
lactate and bTNF-α under hypoxic conditions (1% O2), although
the differences were not significant compared to the unstimulated
cells in hypoxia (Figure 6). These results show the ability of D-
lactate to induce HIF-1α protein accumulation in bFLS under
normoxic conditions.

D-Lactate-Induced IL-6, HIF-1α, Glut-1,
and PDK-1 Expression in bFLS Is
Dependent on the HIF-1 Activity
The possible role of HIF-1 in the pro-inflammatory response
induced by D-lactate in bFLS was evaluated by preincubating
cells with YC-1, a synthetic compound with an inhibitory effect
on HIF-1 activity (28, 29). Upon stimulation with D-lactate
and bTNF-α, the mRNA levels of IL-6 were significantly lower
in bFLS preincubated with YC-1 (Figure 7A). Similarly, the
inhibition of HIF-1 also significantly decreased extracellular
secretion of IL-6 induced by D-lactate and bTNF-α (Figure 7B).
Since D-lactate and bTNF-α also increased the mRNA expression
and secretion of IL-8 (23), we assessed the involvement of HIF-
1 in this pro-inflammatory response. However, preincubation
with YC-1 did not decrease the IL-8 expression or secretion
(Supplementary Figure 3). We also evaluated the participation
of HIF-1 in the mRNA expression of HIF-1α, Glut-1, PDK-1, and
L-lactate dehydrogenase subunit A (L-LDHA). Preincubation
of cells with YC-1 significantly reduced the mRNA levels
of HIF-1α, Glut-1, PDK-1, and L-LDHA induced by D-
lactate stimulation (Figures 7C–E; Supplementary Figure 4).
In addition, YC-1 also significantly reduced the mRNA
expression of HIF-1α and PDK-1 induced by bTNF-α treatment
(Figures 7C,E). These results suggest that D-lactate-induced IL-
6 mRNA expression and secretion are dependent on the HIF-1
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FIGURE 2 | D-Lactate alters the intracellular concentration of several metabolites. The concentrations of metabolites significantly altered after 1 h stimulation with

5mM D-lactate are expressed as relative abundance with respect to ribitol. Each bar represents the mean ± SEM. Each point represents an independent experiment,

n = 4. *p < 0.05.

activity. Similar to IL-6, D-lactate-mediated mRNA expression
of HIF-1α, Glut-1, and PDK-1 was dependent on the HIF-
1 activity.

PI3K/Akt Signaling Pathway and the NF-κB
Activity Mediate D-Lactate-Induced
Expression of HIF-1α, Glut-1, and PDK-1 in
bFLS
We used the pharmacological PI3K inhibitor LY294002 (30)
to evaluate the involvement of the PI3K/Akt signaling axis in
mRNA overexpression of metabolism-associated genes, such as
HIF-1α, Glut-1, and PDK-1, induced by D-lactate and bTNF-
α. Preincubation of cells with LY294002 significantly decreased
the mRNA levels of HIF-1α (Figure 8A), Glut-1 (Figure 8C),
and PDK-1 (Figure 8E) induced by both D-lactate and bTNF-
α. Finally, we also used BAY 11-7082, a synthetic inhibitor of
IκB-α phosphorylation (31), to evaluate the involvement of NF-
κB activity in the altered mRNA expression of HIF-1α, Glut-1,
and PDK-1 induced by D-lactate and bTNF-α. Inhibition of NF-
κB activity also significantly decreased the mRNA expression of
HIF-1α (Figure 8B), Glut-1 (Figure 8D), and PDK-1 (Figure 8F)
induced by both D-lactate and bTNF-α. Taken together, these

results suggest that D-lactate induces the expression of metabolic
genes, namely HIF-1α, Glut-1, and PDK-1, via PI3K/Akt-
dependency, as well as the NF-κB activity, in exposed bFLS.

DISCUSSION

Lameness and its adverse implications for animal welfare and
health have become recognized as problems in recent years,
particularly in the intensive dairy cattle farming industry (32, 33).
High energy diets rich in easily available carbohydrates favor
acidotic states, the consequences of which include the occurrence
of laminitis, a diffuse, aseptic inflammation of the corium, and
aseptic polysynovitis, which also contributes to lameness (3, 9).
In addition, neutrophil recruitment in the joints of heifers with
ARA has been reported, although its pathophysiology has yet to
be studied in more detail (9, 10). Alarcon et al. reported high
concentrations of D-lactate (∼5mM) andmetabolic disturbances
in the synovial fluid extracted from heifers with ARA (17).
Given the central role of bFLS in maintaining the synovial fluid
composition and contributing to inflammatory and metabolic
changes during joint diseases (14), we first evaluated the effect
of D-lactate on bFLS metabolome.
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FIGURE 3 | D-Lactate treatment increases the intracellular levels of both

lactate stereoisomers as well as the L-lactate dehydrogenase subunit A

(L-LDHA) expression. bFLS were treated with 5mM D-lactate for 1 h. (A)

L-lactate and (B) D-lactate were quantified at the intracellular level by

high-performance liquid chromatography (HPLC). Each bar represents the

mean ± SEM. Each point represents an independent experiment, n = 5. (C)

The relative mRNA expression of L-LDHA was assessed by RT-qPCR. Bovine

tumore necrosis factor-α (TNF-α) was used as the positive control. Each bar

represents the mean ± SEM, n = 5. *p < 0.05; **p < 0.01.

Concentrations of several carbohydrates were significantly
higher in bFLS exposed to 5mM D-lactate than that
observed in untreated cells. Based on these metabolites,
primary metabolic pathways altered after D-lactate treatment
were “glycolysis/gluconeogenesis” as well as “galactose
metabolism.” GC-MS metabolomic profiling of the synovial
fluid of heifers with ARA at 9 h post oligofructose overload
primarily included the “starch and sucrose metabolism,”
“galactose metabolism,” and “glycolysis or gluconeogenesis”
pathways (17). Comparative metabolomic analysis of
cultured FLS from patients with rheumatoid arthritis (RA)
and osteoarthritis (OA) showed that the altered primary
metabolic pathways were “glycolysis and gluconeogenesis,”
“galactose metabolism,” and “fructose and mannose metabolism”
(16). Supporting our results, disturbances of carbohydrate
metabolism appear to be key in the aseptic inflammatory
joint (34).

The levels of several amino acids, including threonine, were
significantly increased by D-lactate treatment. Threonine is one
of the most abundant amino acids present in the bovine synovial
proteins and fluid (35, 36), and its augmented levels have been
observed in the joints of patients with OA (16, 37). Threonine is
considered to be a glucogenic amino acid that can be converted
into pyruvic acid for energy supply in organisms (38, 39). In
addition, its putative role in glucose and pyruvate metabolism
during the inflammatory response has also been previously
reported (16, 40).

A significant increase in the level of several saturated long-

chain fatty acids was observed in bFLS treated with D-lactate.
Linoleic acid, an omega-6 polyunsaturated fatty acid, was also

higher in stimulated cells. Interestingly, increased levels of
fatty acids were also detected in the synovial fluid of heifers
with ARA at 24 h after oligofructose overload (17), suggesting
that lipid metabolism may be a metabolic pathway involved
during inflammatory processes in synovial cells. Supporting
the above hypothesis, Ahn et al. suggested that significantly
higher levels of fatty acids in RA-FLS than OA-FLS were
due to increased lipolysis in inflamed tissues for energy
production (16). Additionally, omega-6 polyunsaturated fatty
acids are precursors to several pro-inflammatory eicosanoids
and prostaglandins through the arachidonic acid cascade, which
actively participates in the pro-inflammatory process (41).
Furthermore, Hidalgo et al. reported high levels of PGE2 in
the synovial fluid of heifers at 9 and 24 h after oligofructose
overload (42).

In the present study, increased levels of glucose, pyruvic

acid, succinic acid, and fumaric acid were detected by GC-
MS in bFLS stimulated with D-lactate. Additionally, we also

detected a significant increase in the intracellular levels of L-

lactate in stimulated bFLS by HPLC analysis together with an
intracellular accumulation of D-lactate, which was attributable to
transport mechanisms via monocarboxylate transporter 1 (43).
These metabolites were associated with alterations in “pyruvate
metabolism” and “citrate cycle (TCA cycle).” According to
our results, high levels of lactate have been detected in the
synovial fluid of patients with aseptic inflammatory conditions,
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FIGURE 4 | D-Lactate reprograms bFLS metabolism. bFLS were stimulated with 5mM D-lactate for 1 h. Metabolic pathway analysis was performed using

MetaboAnalyst v4.0 based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) using all metabolites significantly altered after D-lactate treatment. All matched

pathways are shown as circles. The color of the circles is based on p-values from pathway enrichment analysis, where darker colors indicate more significant

metabolites changes in the corresponding pathway. The size of the circles represents the pathway impact score. The most impacted pathways with high statistical

significance (p < 0.05) are labeled. n = 4.

such as RA (44–46) and gouty (47). In addition, Borenstein
et al. also reported higher levels of lactic, fumaric, and succinic
acids in non-septic inflammatory synovial fluids than in non-
inflammatory fluids (48). Alarcon et al. also reported higher levels
of D-lactate, L-lactate, and pyruvic acid in the synovial fluid of
heifers with ARA at 9 h after oligofructose overload, which was
associated with an upregulation of the “pyruvate metabolism”
and “glycolysis or gluconeogenesis” pathways (17). Thus, our
results demonstrate the ability of D-lactate to induce metabolic
reprogramming in bFLS and support the hypothesis that it has
a central role in the metabolic changes detected in the synovial
fluid of heifers with ARA.

During inflammation, cells need to generate energy and
biomolecules to support growth, proliferation, and pro-
inflammatory molecule production, resulting in cell metabolism
shifts toward glycolysis (49, 50). Moreover, a metabolic shift
toward anaerobic glycolysis enables cells to better cope with
metabolically restrictive conditions during inflammation, such as
those that occur in the transition from normoxia to hypoxia (49).

FLS from patients with RA have increased glycolytic activities
characterized by an elevated expression of glycolytic markers,
such as hexokinase 2 and Glut-1 (51). In these cells, a metabolic
switch to anaerobic glycolysis is essential to support angiogenesis,
cellular invasion, and pannus formation (52). Indeed, glycolysis
blockade has been shown to ameliorate inflammation and
subsequent cartilage damage in several models of arthritis
(51, 53). Similarly, studies on macrophages and dendritic cells
focusing on metabolic adaptations have highlighted the key role
of glycolysis in the initiation and development of inflammation
induced by danger signals (54).

Supporting the above, D-lactate treatment increased the
mRNA expression of IL-6 in bFLS, a response also observed
in bFLS treated with bTNF-α. IL-6 is a key pro-inflammatory
cytokine in numerous joint diseases (55, 56). Indeed, the
expression of IL-6 and the severity of lesions in aseptic
joint diseases are correlated (55, 57). Furthermore, IL-6
levels were shown to be increased in the synovial fluid
of heifers with ARA at 9 and 24 h after oligofructose
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FIGURE 5 | D-Lactate increases the expression of inflammation and metabolism-associated genes in bFLS. Relative mRNA expression of (A) IL-6, (B)

hypoxia-inducible factor-1 subunit α (HIF-1α), (C) glucose transporter 1 (Glut-1), and (D) pyruvate dehydrogenase kinase 1 (PDK-1) in bFLS stimulated with 5mM

D-lactate for 6 h. bTNF-α was used as the postitive control. Each bar represents the mean ± SEM, n = 5. *p < 0.05; **p < 0.01.

overload (17, 42), and incubating bFLS with 2 and 5mM
D-lactate significantly increased the mRNA expression of IL-
6 (17).

HIF-1 is a master regulator of the transcription of hundreds
of genes required to maintain a balance between oxygen
supply and metabolic demand (58). HIF-1 is a heterodimeric
protein complex comprising an oxygen-sensitive α subunit (HIF-
1α), which is degraded by the proteasomal pathway under
normoxic conditions, and an oxygen-insensitive β subunit (HIF-
1β) (59, 60). Under hypoxic conditions, accumulation of HIF-
1α induces HIF-1-regulated adaptive responses that facilitate
the production of glycolytic ATP, including the transcription
of Glut-1, hexokinase (HK), PDK-1, and enzymes of the
glycolytic pathway (61–63). In the present study, treatments
with D-lactate and bTNF-α induced the accumulation of HIF-
1α protein under normoxic conditions in bFLS. Consistent with
our findings, HIF-1 activation under normoxic conditions has
also been reported after cellular exposure to pro-inflammatory
agents, including growth factors; bacteria; and their compounds,
namely TNF-α, IL-1β, and lactate, among other agents (20,
21, 64–68). In addition, D-lactate treatment also increased the
mRNA expression of HIF-1α, Glut-1, PDK-1, and L-LDHA in

stimulated bFLS. To assess the role of HIF-1 in this response,
we used the HIF-1-inhibitor YC-1, which enhances the binding
of factor inhibitor of HIF-1 (FIH) to the transactivation domain
COOH-terminal (C-TAD) in the HIF-1α subunit, dissociating
the binding of the latter to the p300 coactivator and leading
to the functional repression of HIF-1 (29). YC-1 significantly
reduced the gene expression of HIF-1α, Glut-1, PDK-1, and L-
LDHA, suggesting the involvement of HIF-1 in the metabolic
reprogramming induced by D-lactate in bFLS under normoxic
conditions. Similarly, YC-1 also significantly decreased the gene
expression of bTNF-α-induced HIF-1α, PDK-1, and Glut-1.
Consistent with the results, previous reports also showed the
involvement of HIF-1 in the mRNA expression of HIF-1α (69),
Glut-1 (70), and PDK-1 (62). Interestingly, YC-1 also decreased
the IL-6 mRNA expression, suggesting the involvement of
HIF-1 in the upregulation of gene expression of this relevant
pro-inflammatory cytokine induced by D-lactate and bTNF-
α in bFLS. Based on the results, findings of other related
studies also showed an increased production of IL-6 through a
HIF-1-dependent mechanism in synoviocytes and chondrocytes
using an experimental model of ischemic osteonecrosis (56),
while the ability of lactate to induce IL-6 secretion through a
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FIGURE 6 | D-Lactate induces HIF-1α protein accumulation under normoxic conditions in bFLS. bFLS were stimulated with 5mM D-lactate for 6 h under normoxic

(20% O2 ) and hypoxic (1% O2) conditions. bTNF-α was used as the positive control. HIF-1α stabilization was detected in total protein extracts by Western blot using

cobalt chloride (CoCl2) as the hypoxia-mimetic agent. (A) Representative HIF-1α immunoblot is shown. (B) Densitometry HIF-1α values were quantified using Image

Studio Lite v5.2 software and normalized to β-actin. Each bar represents the mean ± SEM, n = 3. **p < 0.01; ****p < 0.0001; n.s., not significant.

HIF-1-dependent pathway was also reported by other researchers
in chondrocytes (20). In contrast, in bFLS, D-lactate and bTNF-
α induced the expression and secretion of IL-8 in a HIF-
1-independent manner, suggesting a selective role of HIF-
1 in the expression of pro-inflammatory genes in synovial
cells. In support of this, HIF-1α knock-down in RA-FLS did
not reduce the expression of IL-8 and MMP-1 induced by
hypoxia (71).

The PI3K/Akt pathway has a central role in the regulation
of cell growth and metabolism in different host cell types
(72). Consequently, Akt regulates several processes associated
with glucose metabolism, including Glut-1 localization to
the cell membrane, pentose phosphate shuttle activity, and

the activation of various glycolytic enzymes such as HK
and phosphofructokinase (73, 74). We recently described
that D-lactate induced Akt phosphorylation, and inhibition
of the PI3K/Akt pathway reduced the mRNA expression
and secretion of IL-6 and IL-8 (23). In the present study,
PI3K/Akt pathway inhibition by LY294002 (30) significantly
reduced the mRNA levels of IL-6, HIF-1α, Glut-1, and PDK-
1 induced by D-lactate and bTNF-α. Similarly, the PI3K
inhibitor LY294002 interfered with TNF-α-induced activation
of OA-FLS, attenuating the overexpression of cadherin-11 and
reducing the invasive ability of these cells (75). Similarly,
Jia et al. demonstrated that the PI3K/Akt pathway inhibition
by LY294002 or cucurbitacin E significantly reduced the
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FIGURE 7 | HIF-1 is involved in the D-lactate-induced overexpression of inflammation- and metabolism-associated genes in bFLS. bFLS were preincubated with

40µM YC-1 and then stimulated with 5mM D-lactate for 6 h. The relative mRNA expression levels of (A) IL-6, (C) HIF-1α, (D) Glut-1, and (E) PDK-1 are shown. (B)

IL-6 levels in conditioned media were measured by ELISA. bTNF-α was used as the positive control. Each bar represents the mean ± SEM, n = 5. *p < 0.05;

**p < 0.01; n.s., not significant.

TNF-α-induced production of IL-1β, IL-6, and IL-8 mRNA
and the protein expression in human synoviocytes (76). A
dependence on the PI3K/Akt pathway for the expression of

pro-inflammatory cytokines, namely IL-6, IL-8, IL-17a, and IL-
1β, was also reported by Li et al. in synovial fibroblasts isolated
from rats with experimental OA (77). Similarly, in human
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FIGURE 8 | The PI3K/Akt pathway and the NF-κB pathway regulate the overexpression of metabolic genes induced by D-lactate in bFLS. bFLS were preincubated

with 10µM LY294002 or 10µM BAY 11-7082 and stimulated with 5mM D-lactate for 6 h. The relative mRNA expression levels of (A,B) HIF-1α, (C,D) Glut-1, and

(E,F) PDK-1 are shown. bTNF-α was used as positive control. Each bar represents the mean ± SEM, n = 5. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.

tumoral cell lines, pharmacological inhibition of the PI3K/Akt
pathway was shown to reduce the mRNA expression of Glut-
1 (78–80) as well as the protein levels of HIF-1α and PDK-
1 (81).

The results of previous studies suggest that the PI3K/Akt
pathway regulates the nuclear translocation of NF-κB (76, 82).
Thus, to evaluate the role of NF-κB in inflammatory and
metabolic responses induced by D-lactate, we preincubated bFLS

Frontiers in Veterinary Science | www.frontiersin.org 13 March 2021 | Volume 8 | Article 625347

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Quiroga et al. Metabolic Reprogramming and Inflammation

FIGURE 9 | Metabolic reprogramming supports the inflammatory response induced by D-lactate in bFLS. D-Lactate induces the PI3K/Akt pathway activation and

downstream activation of NF-κB and HIF-1. Through this signaling pathway, D-lactate induces the gene expression of IL-6, with the pro-inflammatory cytokine

involved in the synovial inflammatory response. HIF-1 activation also increases the expression of the Glut-1 transporter, which increases glucose uptake for use in

glycolysis. Glycolysis is also favored by the HIF-1-dependent overexpression of L-LDH, which oxidizes pyruvate to L-lactate. In addition, an increased PDK-1

expression blocks the mitochondrial utilization of pyruvate through the TCA cycle, contributing to the glycolytic fate of glucose. Overexpression of the HIF-1α subunit

would favor the accumulation of HIF-1 heterodimers, maintaining glycolytic metabolic reprogramming. IL-6, interleukin 6; Glut-1, solute carrier family 2 (facilitated

glucose transporter) member 1; L-LDH, L-lactate dehydrogenase; PDK-1, pyruvate dehydrogenase kinase 1; HIF-1α, hypoxia inducible factor 1 subunit alpha; PDH,

pyruvate dehydrogenase; TCA, tricarboxylic acid cycle; PI3K, phosphatidyl inositol 3-kinase; Akt, protein kinase B; NF-κB, nuclear factor kappa B; HIF-1,

hypoxia-inducible factor 1.

with the pharmacological inhibitor BAY 11-7082, which inhibits
IκB-α phosphorylation and interferes with NF-κB nuclear
translocation, functionally inactivating the pathway (31). The
results of the study demonstrated that inactivation of the NF-κB
pathway strongly decreased mRNA levels of IL-6 induced by D-
lactate and bTNF-α in exposed bFLS. Recently, we demonstrated
that D-lactate and bTNF-α induced the degradation of IκBα after
30min of stimulation in bFLS, and treatment with BAY 11-7082
significantly reduced the expression and secretion of IL-6 and IL-
8 induced by both stimuli, supporting that the NF-κB pathway is
induced by D-lactate in bFLS (23). The NF-κB activity was also
shown to be key for the expression of several pro-inflammatory
cytokines in bovines, including IL-6, TNF-α, and IL-1β (83–87).
Similarly, the NF-κB activity is strongly involved in the mRNA
expression of IL-6, IL-8, and IL-1β induced by TNF-α in human
FLS (82, 88, 89). Interestingly, the gene expression of HIF-1α,
Glut-1, and PDK-1 induced by D-lactate and bTNF-α was also

significantly inhibited by BAY 11-7082. The role of NF-κB in cell
metabolic reprogramming has been poorly investigated, although
it was reported that the RelA subunit of NF-κB upregulates the
transcription of Glut-3, increasing glucose uptake and glycolytic
flux (90), as well as upregulates mitochondrial respiration (91) in
murine primary cultured cells. Furthermore, the role of the NF-
kB pathway in HIF-1 mRNA expression in RA-FLS stimulated
with IL-17A has also been demonstrated (92), suggesting its
participation in metabolic reprogramming during inflammation.

Nonetheless, although we demonstrated the role of HIF-
1 in metabolic and inflammatory responses induced by D-
lactate in FLS, we cannot rule out the involvement of other
upstream signaling pathways that could be activated by D-lactate,
thus regulating HIF-1 activity. Several studies have described
involvement of extracellular-regulated kinase (ERK), PI3K/Akt,
and mammalian target of rapamycin (mTOR) pathways in the
regulation of HIF-1α mRNA and protein levels after stimulation
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with proinflammatory cytokines and growth factors (64, 93–99).
Therefore, additional studies are required to elucidate precise
mechanisms involved in HIF-1 activation induced by D-lactate
in bFLS of joints.

In conclusion, D-lactate induces an inflammatory response
along with metabolic reprogramming in bFLS. Both processes
are dependent on activities of transcription factors, such as
HIF-1 and NF-κB, as well as the activation of the PI3K/Akt
signaling pathway, which contribute to an increased expression
of IL-6, HIF-1α, Glut-1, PDK-1, and L-LDHA (Figure 9). These
results support the pivotal role of D-lactate in bovine joint
inflammation and glycolytic metabolic disturbances observed in
synovitis induced by ARA in cattle.
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