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Abstract

Background: The study of cancer metabolism has been largely dedicated to exploring the hypothesis that oncogenic

transformation rewires cellular metabolism to sustain elevated rates of growth and division. Intense examination of

tumors and cancer cell lines has confirmed that many cancer-associated metabolic phenotypes allow robust growth

and survival; however, little attention has been given to explicitly identifying the biochemical requirements for cell

proliferation in a rigorous manner in the context of cancer metabolism.

Results: Using a well-studied hybridoma line as a model, we comprehensively and quantitatively enumerate the

metabolic requirements for generating new biomass in mammalian cells; this indicated a large biosynthetic

requirement for ATP, NADPH, NAD+, acetyl-CoA, and amino acids. Extension of this approach to serine/glycine and

glutamine metabolic pathways suggested lower limits on serine and glycine catabolism to supply one-carbon unit

synthesis and significant availability of glutamine-derived carbon for biosynthesis resulting from nitrogen demands

alone, respectively. We integrated our biomass composition results into a flux balance analysis model, placing upper

bounds on mitochondrial NADH oxidation to simulate metformin treatment; these simulations reproduced several

empirically observed metabolic phenotypes, including increased reductive isocitrate dehydrogenase flux.

Conclusions: Our analysis clarifies the differential needs for central carbon metabolism precursors, glutamine-derived

nitrogen, and cofactors such as ATP, NADPH, and NAD+, while also providing justification for various extracellular

nutrient uptake behaviors observed in tumors. Collectively, these results demonstrate how stoichiometric

considerations alone can successfully predict empirically observed phenotypes and provide insight into biochemical

dynamics that underlie responses to metabolic perturbations.
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Background
Many parallels exist between the metabolic profiles of

cancer cells and normal proliferating cells, including the

use of aerobic glycolysis, selective expression of metabolic

enzymes with distinct regulatory features, and elevation of

amino acid consumption and biosynthesis [1–6]. Growing

tumors, like any actively dividing tissue, must continu-

ously generate the precursors for macromolecule synthe-

sis, and if the biomass composition is known, it is possible

to determine the minimum rates at which corresponding

anabolic substrates must be provided to maintain a speci-

fied growth rate. However, unlike many microorganisms,

which are capable of synthesizing the entirety of their bio-

mass from a single carbon source and a limited number of

salts [7], mammalian cells depend on a complex medium

comprised of numerous essential carbon and nitrogen

sources [8, 9]. Furthermore, many cancer cells, at least

when grown in culture, require a number of nominally

nonessential substrates to proliferate (e.g., glutamine and

serine), making them conditionally essential for growth

[10–13]. Therefore, in culture and also likely in vivo, can-

cer cells use a variety of nutrients to generate the mono-

mer components of macromolecules, which significantly

complicates analysis of their metabolic pathways.

A central aim of the field of cancer metabolism is to

identify metabolic pathways selectively activated in tumor

cells, which likely include crucial biosynthetic pathways,

to reveal therapeutic targets [14, 15]. To accomplish this
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task, it is necessary to quantify differences in metabolic

flux between transformed cells and their differentiated tis-

sues of origin. This can be achieved by direct examination

of individual metabolite measurements (e.g., assessing

changes in extracellular metabolite concentrations in cul-

ture media to calculate consumption and production

fluxes; evaluating metabolite pool sizes and enrichments

from isotope tracers to indirectly estimate intracellular

fluxes [16–18]) or with sophisticated computational ap-

proaches in which experimental measurements are incor-

porated into a data-fitting model to compute a global

representation of metabolic behavior (e.g., incorporating

extracellular flux and intracellular metabolite isotope la-

beling data to perform metabolic flux analysis; simulating

fluxes in a genome-scale metabolic model constrained by

transcriptomic and proteomic data) [19, 20]. However, all

of these techniques rely heavily on challenging experimen-

tal measurements to infer metabolic trends.

In this investigation, we use fundamental stoichiometric

and mass-balance principles to gain insight into the meta-

bolic behavior of cancer cells using only minimal

information about their proliferative needs. Previous in-

vestigations have similarly used minimal stoichiometric

models to explore the effects of using a variety of objective

functions on metabolic phenotype, the sensitivity of

growth rate and other fluxes to perturbations, and the

consistency between these in silico predictions and empir-

ical measurements in a mammalian cell line [21, 22]. Our

approach, however, is modeled on more elementary ana-

lyses of microbial systems, in which biomass measure-

ments are used to enumerate the corresponding costs in

terms of precursors and cofactors [7]. Starting with the

well-characterized biochemical composition of hybridoma

cells as a model [23], we first give a comprehensive de-

scription of all major anabolic requirements for prolifera-

tion. Next, using these tabulated requirements as a basis,

we perform stoichiometric analyses to identify consequent

implications for one-carbon metabolism and glutamine

uptake. Finally, we demonstrate how a limited flux balance

analysis network can recapitulate observed metabolic be-

havior with a model for metformin treatment, enabling

prediction of cell phenotypes in conditions relevant to

cancer through solely stoichiometric principles.

Methods

Biomass requirements

Weight analysis of biomass composition

Mammalian cell biomass composition was taken from a

study that compiled multiple sources of hybridoma bio-

mass composition measurements in the literature [23].

Biomass macromolecules accounted for 962 mg per g

dry cell weight (DCW), and this macromolecule fraction

was decomposed into its elementary components on a

mass basis (Table 1; see Additional file 1: Tables S1–S3

for component masses of each biomass element). “Essen-

tial” substrates required for direct extracellular uptake

were identified; their weight contributions were consoli-

dated, and their sum was excluded from additional ana-

lysis. The remaining “nonessential” components were

then decomposed into the anabolic precursors from

which they are derived. Eight intermediates in central

carbon metabolism where major catabolic pathways di-

verge into anabolism were designated as carbon sources:

glucose 6-phosphate (G6P), ribose 5-phosphate (R5P), di-

hydroxyacetone phosphate (DHAP), 3-phosphoglycerate

(3PG), pyruvate (Pyr), acetyl-coenzyme A (AcCoA), α-

ketoglutarate (αKG), and oxaloacetate (Oaa) (Fig. 1) [7, 24].

Nitrogen, phosphorus, and sulfur sources were denoted as

NH3, PO4, and SH, respectively, and the “additional” cat-

egory represents the contributions of additional inorganic

substrates (e.g., water, O2, CO2) and hydride groups from

reduced cofactors. The total mass contribution of each

precursor to every macromolecular component was deter-

mined (Additional file 1: Tables S1–S3), and these contri-

butions were then scaled by the molar quantities in the

given biomass composition to give masses of each per g

DCW (Table 1). The “accounted DCW” calculation nor-

malizes DCW percentage values by 962 mg to represent

the fractional contribution of each precursor to all compo-

nents of biomass accounted for by macromolecules. Like-

wise, the “nonessential component DCW” calculation

normalized DCW percentage values by 534 mg, the

weight of macromolecular biomass that can be synthe-

sized de novo.

Table 1 Composition of 1 g DCW on a precursor mass basis,

calculated from hybridoma biomass measurements

Component Weight per
gDCW (mg)

DCW (%) Accounted
DCW (%)

Nonessential
component
DCW (%)

Essential 428 42.8 44.6 –

G6P 47 4.7 4.9 8.8

R5P 26 2.6 2.7 4.9

DHAP 10 1.0 1.1 1.9

3PG 67 6.7 7.0 12.6

Pyr 33 3.3 3.4 6.1

AcCoA 66 6.6 6.9 12.4

Oaa 64 6.4 6.6 12.0

aKG 99 9.9 10.3 18.6

NH3 73 7.3 7.6 13.8

SH 5 0.5 0.5 0.9

PO3 28 2.8 2.9 5.3

Additional 14 1.4 1.5 2.6

Total 962 96.2 100 100

Weight fractions are given for total, accounted, and nonessential

component DCWs
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Precursor and cofactor demands

Using the composition of hybridoma cells retrieved from

the literature as a basis [23] and scaling by the stoichio-

metric coefficients in anabolic reactions (Additional file 1:

Tables S4–S7 and Supplementary Notes) [8, 25, 26], the

molar demands for de novo biomass synthesis were also

calculated in units of mmol/gDCW (Table 2). Precursor de-

mands include the eight previously outlined central car-

bon metabolism intermediates, one-carbon units, and

amine groups. Cofactor demands include ATP, NAD+, and

NADPH. Additionally, molecular oxygen (O2) was in-

cluded. The demands for complete biosynthesis of all non-

essential components (i.e., only essential substrates are

consumed from the extracellular environment) are listed

under the “Synthesis” header. Additionally, these demands

were modified to consider the scenario in which nones-

sential amino acids (NEAAs) and fatty acids (FAs) are

consumed from the surrounding medium, with the results

listed under the “Uptake” header. (Essential fatty acids

such as linoleic and linolenic acids were not explicitly dis-

tinguished in the source literature [23] and are therefore

not considered separately here.)

We did not incorporate the burden of free ATP when

calculating precursor and cofactor demands. Assuming

an intracellular concentration of ATP of 4.7 mM [27], a

cell volume of 1500 fL [28], and a per-cell dry weight of

360 pg [29] leads to an estimate of 0.0019 mmol free

ATP/gDCW that must be synthesized. The corresponding

Fig. 1 Simplified schematic of central carbon metabolism. Rectangular boxes contain branchpoint metabolite intermediates, and rounded rectangular

boxes contain amino acid and fatty acid products that can be incorporated into biomass macromolecules. Arrows indicate carbon flux. Additional

metabolic intermediates are not shown; instead, they are implicitly lumped into pools with displayed metabolites (e.g., fructose 6-phosphate with G6P)

Table 2 Molar precursor and cofactor demands for producing

nonessential biomass components

Precursor/
cofactor

Cellular biosynthesis requirements

Synthesis of nonessential
components

Uptake of nonessential
components

mmol/gDCW fmol/cella mmol/gDCW fmol/cella

G6P 0.289 104 0.289 104

R5P 0.233 83.8 0.233 83.8

DHAP 0.119 42.8 0.119 42.8

3PG 1.24 448 0 0

Pyr 0.600 216 0 0

AcCoA 2.46 893 0.324 117

Oaa 0.760 274 0 0

aKG 1.02 368 0 0

1C 0.255 91.8 0.255 91.8

Nitrogen 4.89 1.76 × 103 0.891 321

O2 0.387 139 0.198 71.3

NAD+ 1.19 428 0.0654 23.5

NADPH 5.21 1.88 × 103 0.607 219

ATP 36.0 1.30 × 104 32.1 1.16 × 104

Demands are shown for two separate cases: (1) where all nonessential amino

acids and fatty acids are synthesized de novo and (2) where all nonessential

amino acids and fatty acids are taken up from the medium. Entries that are

identical between the cases indicate that cells cannot substitute nutrient

consumption for biosynthesis. Entries that are smaller in “Uptake” than “Synthesis”

indicate that cells can substitute nutrient uptake for biosynthesis (by a quantity

equal to the difference)
afmol/cell values assume a DCW of 360 pg/cell

Keibler et al. Cancer & Metabolism  (2016) 4:16 Page 3 of 16



contribution amounts to an addition of roughly 1.5 % to

the least abundant quantity (1C) and less than 1 % for

other associated components (e.g., R5P, 3PG, nitrogen)

in the “Synthesis” regime (Table 2), and we considered

these values to be sufficiently small to neglect.

Serine, glycine, and one-carbon units

The total serine, glycine, and one-carbon (1C) unit de-

mands per gram DCW were determined by combining

the demands for all biomass components for which they

serve as substrates (Table 3). 1C units were assumed to

be synthesized either from serine catabolism through

serine hydroxymethyltransferase (SHMT) or glycine ca-

tabolism through the glycine cleavage system (GCS); each

pathway was considered separately as the sole source for

1C units, and production through SHMT (GCS) was

added to the total demand for serine (glycine). The de-

mands for serine-, glycine-, and 1C-associated biomass

(Table 3) were subsequently normalized by total (serine/

glycine + 1C) serine or glycine demand to give the frac-

tional fate of each amino acid when it serves as the sole

source for 1C units (Table 4). Glutathione, which is

present at millimolar quantities inside the cell [27], also

requires glycine for its synthesis [8]; however, we assumed

that, since the original measurements that served as the

basis for the tabulated hybridoma composition relied on

quantification of total protein levels per cell and protein

hydrolysis to give the distribution of amino acids [23, 30],

glutathione, as a peptide, has been implicitly considered as

proteinogenic glycine.

Carbon, nitrogen, and glutamine demands

The total cellular carbon and nitrogen molar demands

were determined by taking the cumulative sum of all

biomass components (mmol/gDCW) scaled by their cor-

responding numbers of carbon and nitrogen atoms, re-

spectively (Table 5 and Additional file 1: Table S8) [23].

Essential demands were determined by taking the cumu-

lative sum of all components that cannot be synthesized

de novo (essential amino acids, choline, and ethanol-

amine). Nonessential carbon and nitrogen demands were

determined by subtracting the essential demands from

the total demands.

Our analysis assumes that glutamine must be taken up

from the media. Glutamine is expected to serve as the

primary nitrogen source for macromolecules synthesized

de novo [8, 31, 32], and three different regimes of

obtaining nitrogenous biomass were considered: (1) a

maximum uptake profile, where glutamine was assumed

to serve as the sole source of nitrogen for synthesizing

nonessential molecules; (2) a minimum uptake profile,

where glutamine was assumed to be consumed only for

reactions in which other nitrogen-containing com-

pounds cannot serve as substrates (i.e., proteinogenic

glutamine and reactions that consume the amide-amine

group); and (3) a predicted uptake profile, where glutam-

ine consumption is determined from a simulated stoi-

chiometric network of cells cultured in Dulbecco’s

modified Eagle medium (DMEM) (Table 5). For each

uptake profile, carbon and nitrogen contributions were

calculated by scaling the glutamine consumed by its cor-

responding number of carbon and nitrogen atoms (five

and two, respectively; Additional file 1: Table S8). For

each regime, the carbon (nitrogen) contribution from

glutamine was divided by the total and nonessential cel-

lular carbon (nitrogen) demands calculated previously to

give the fractions of total and nonessential carbon (nitro-

gen) in biomass predicted to be derived from glutamine

(Table 5).

Flux balance analysis

Problem formulation

Flux balance analysis (FBA) [33, 34] was used to gener-

ate optimal metabolic flux distributions that maximize

growth yield and satisfy stoichiometric constraints on

growth. A metabolic model, consisting of 168 metabo-

lites comprising a set ℳ = {1,…, 168} and 152 reactions

comprising a set N ¼ 1;…; 152f g; was used to generate

a 168 × 152 stoichiometric matrix. The reactions cover

major catabolic and anabolic pathways including glycoly-

sis, the pentose phosphate pathway (PPP), the TCA

cycle, the electron transport chain (ETC), one-carbon

Table 3 Molar requirements of serine, glycine, and one-carbon

units for biomass production

Substrate Fate mmol/gDCW

Serine Protein 0.43

Lipid 0.011

Total 0.441

Glycine Protein 0.538

Nucleotide 0.1201

Total 0.6581

One carbon Nucleotide 0.255

Cholesterol Byproduct −0.018

Total 0.237

Table 4 Fates of serine and glycine

Biomass fate Biosynthetic pathway

SHMT GCS

Serine 0.65 –

Glycine – 0.74

One carbon 0.35 0.26

Values represent the fraction of total serine (or glycine) that must be metabolized

through SHMT (or the GCS) to meet the demand for one-carbon units
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metabolism, and de novo synthesis of all major macromol-

ecular constituents heretofore considered (Additional

file 1: Tables S9, S10). The model is further compart-

mentalized into mitochondrial and cytosolic pools for me-

tabolites known to engage in distinctly different behavior

in each (e.g., cofactors, TCA cycle intermediates), and re-

actions constituting the malate-aspartate shuttle were in-

cluded to enable intercompartmental transport of redox

species.

This network was incorporated into the following lin-

ear programming (LP) problem:

min
v

Z

where

Z ¼
X

N

n¼1

cnvn

subject to:

S⋅v⇀ ¼ b
⇀

bm ¼ 0; ∀m∈ℳintr

bm∈ℝ; ∀m∈ℳextr

vn≥0; ∀n∈N irrev

vn∈ℝ; ∀n∈N rev

where N = 152 is the total number of reactions, ℳintr is

the set of all intracellular metabolites, ℳextr is the set of

all extracellular metabolites, N irrev is the set of all irre-

versible metabolic reactions, and N rev is the set of all re-

versible metabolic reactions.

The first constraint is a mass balance; S represents the

stoichiometric matrix, v
*

represents the flux vector, and b
*

represents the time-derivative vector of metabolite con-

centrations. The next constraints specify that at steady

state, bm is zero if metabolite m is intracellular and bm is

equal to the specific consumption (or production) flux of

metabolite m if metabolite m is extracellular. The final

constraints state that irreversible reactions can only take

nonnegative values, while reversible reactions can be

assigned any real value. Reactions were primarily

designated to be irreversible if they were recognized as

such by literature and database sources [8, 25, 26]; excep-

tions were made if a theoretically reversible reaction was

known to preferentially operate in a certain direction in

cell culture or in vivo (e.g., net secretion of lactate). Z is a

specified linear combination of metabolic fluxes, which

serves as the objective function for the LP problem.

For our metformin treatment simulation (see below),

we have chosen to maximize the yield of biomass on

carbon. To achieve this, we fixed the specific growth rate

as a basis and chose the coefficients cn such that Z is

equal to the total net carbon consumption rate:

and
cn ¼

carbons

substrate
; ∀n∈N cons

subs

cn ¼ 0; ∀n∉N cons
subs

where N cons
subs is the set of all net consumption reactions for

glucose, glutamine, all nonessential amino acids, and car-

bon dioxide. The set of substrates available for uptake was

based on the composition of DMEM; therefore, of all non-

essential amino acids, only those present in DMEM

(cysteine, glycine, and serine) are permitted to have extra-

cellular fluxes in the direction of net consumption.

Biomass composition values were taken from the lit-

erature [23] as described above, and specific growth rate

was fixed at 0.0289 h−1 (i.e., a doubling time of 24 h)

[35]. Since growth rate was fixed, substrate consumption

rates were left variable and included in the objective

functions in the LP problems to find flux distribution so-

lutions that maximized biomass yield on carbon, as de-

scribed above. For maintenance of ATP cost, we used a

literature estimate of 1.55 mmol gDCW
−1 h−1 [23]. A DCW

of 360 pg/cell was assumed to normalize biomass con-

tent on a per-cell basis [29]. Because optimization of

growth yield alone cannot capture the Warburg effect

[36, 37], a lower limit of lactate production (418 fmol

cell−1 h−1, representative of the highly glycolytic A549

lung carcinoma cell line [16]) was introduced to ensure

that the resulting flux distributions reasonably reproduced

those empirically observed. (As was the case in previous

reports [36, 37], minimization of total carbon alone did

not result in lactate production.) To represent the

Table 5 Glutamine-derived nitrogen and carbon available for biomass contribution

Glutamine uptake profile Contributed mmol/gDCW Glutamine contribution to
total biomass (%)

Glutamine contribution to total
nonessential biomass (%)

Nitrogen Carbon Nitrogen Carbon Nitrogen Carbon

Maximum 4.89 12.2 47.1 29.0 100 57.1

Minimum 1.10 2.75 10.6 6.6 22.5 12.8

Predicted 4.33 10.8 41.6 25.7 88.4 50.5

Biomass contributions are given for maximum, minimum, and predicted glutamine uptake rates. Values are given in mmol/gDCW, as well as percentages of total

and nonessential biomass
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detoxification of reactive oxygen species (ROS), we as-

sumed that 1 % of total oxygen consumed contributes to

the formation of ROS, which must be neutralized by one

equivalent of mitochondrial NADPH [38].

The minimal carbon uptake rate (i.e., the objective

function value Z*, which maximizes biomass yields at the

specified growth rate) was determined using the “lin-

prog” LP solver function in MATLAB (Version 2009b,

Mathworks). However, for a given problem formulation,

there are generally multiple flux distributions that have

this minimal carbon uptake rate. To avoid the possibility

of multiple solutions, we implemented a second opti-

mization program that, in addition to all previously spe-

cified constraints, specifies the carbon uptake rate to be

equal to the minimal rate Z* (determined from the first

problem) and minimizes the two-norm of the flux vector

v. The complete problem is therefore a bilevel opti-

mization [39] that can be represented by the following

formulation:

min
v

ffiffiffiffiffiffiffiffiffiffiffi

X

N

i¼1

v2i

v

u

u

t

subject to

min
v

Z

subject to:

S⋅v⇀ ¼ b
⇀

bm ¼ 0; ∀m∈ℳintr

bm∈ℝ; ∀m∈ℳextr

vn≥0; ∀n∈N irrev

vn∈ℝ; ∀n∈N rev

Metformin treatment simulations

To simulate treatment by metformin, an inhibitor of re-

spiratory complex I, the upper bound of the “ETCNADH”

reaction, which corresponds to the production of 2.5

equivalents of ATP in exchange for the respiration-

linked oxidation of one equivalent of mitochondrial

NADH, was successively decreased. Initially, an uncon-

strained simulation, which used the settings described in

the “Problem formulation” section, was performed to

give a baseline flux distribution reflecting untreated con-

ditions (0 % nhibition of NADH oxidation by ETC). For

all cases that simulated metformin treatment, an upper

bound on the ETCNADH flux was introduced. This upper

bound was set to 80, 60, 40, 20, and 0 % of the baseline

flux value; these conditions were designated 20, 40, 60,

80, and 100 % inhibition of NADH oxidation by ETC,

respectively. All output flux distributions are given in

Additional file 2: Table S14.

Results and discussion

Precursors

We obtained a profile of hybridoma composition from

Sheikh et al. 2005, which used hydrolyzed biomass data

to give an accounting of 96.2 % measured DCW

(Table 1). The additional 3.8 %, which presumably con-

sists of small ions, vitamins, and other free metabolites

and cofactors, is consistent with other estimates for the

DCW fraction comprising free compounds [9, 30, 40].

Of this macromolecular fraction of DCW, essential com-

pounds (i.e., those that must be taken up directly from

the surrounding media or serum, such as choline and es-

sential amino acids) constitute close to half—44.6 %.

The metabolites in the remaining nonessential fraction

can be synthesized de novo from a small set of core cen-

tral carbon intermediates and other major elemental

compounds (i.e., amino, thiol, and phosphate groups),

with glucose, glutamine, and other catabolized amino

acids as the primary carbon sources. The total demand

for each core central carbon metabolite and elemental

compound for synthesis of 1 g dry biomass was com-

puted from the hybridoma biomass composition. Not

surprisingly, almost all of the largest contributors (i.e.,

those which contributed at least 10 % of nonessential

DCW) were associated with protein (e.g., 3PG, Oaa,

αKG, and NH3) (Fig. 2), which itself constitutes nearly

75 % of the total DCW. (The exception, AcCoA, is the

major precursor of lipids.) No one single precursor con-

tributes more than 10 % of the overall DCW.

In addition to their mass contributions to DCW, we

computed the molar requirements of each of the major

precursors, 1C units, O2, and cofactors such as NAD+,

NADPH, and ATP, to give the biosynthetic burden of

complete de novo genesis of nonessential components

(Table 2). The high demand for ATP hydrolysis—at

36.0 mmol/gDCW, at least an order of magnitude larger

than any other requirement—primarily reflects the sig-

nificant free energy burden in polymerizing monosac-

charides, amino acids, and nucleotides, which alone

accounts for an estimated 29.5 mmol/gDCW. The values

of the next greatest requirements—NADPH and AcCoA

and nitrogen, 3PG, and αKG—reflect their substantial

involvement in lipid and amino acid synthesis, respect-

ively. (All other components are required at quantities of

1 mmol/gDCW or less, reflecting the relatively low abun-

dance of ribose, polysaccharide, and the glycerol lipid

backbone compared to other, mostly protein-associated,

components.) It is notable that, in contrast to the use of

NADPH for reducing power, NAD+ is primarily required

for biosynthesis in its oxidized form.
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However, this profile assumes complete biosynthesis

of all nonessential compounds starting from glucose,

whereas in practice, many cells will derive significant

contributions to TCA cycle-associated compounds from

glutamine and obtain nonessential amino acids and fatty

acids directly from surrounding media [32, 41–43]. The

effect of such uptake on the biosynthetic burden is shown

in Table 2, with considerable reductions in the needs for

3PG, Pyr, Oaa, αKG, and AcCoA, as well as nitrogen

(which is largely contributed from glutamine and other

nonessential amino acids [32]). Because the majority of

ATP equivalents are used for polymerization, which is not

influenced by substrate uptake, there is not a substantial

reduction in ATP demand. (Although the molar amount

of ATP that must be consumed for growth is greater than

for all other substrates and cofactors, this quantity is still

expected to be less than the ATP maintenance cost for all

but the fastest growing cells. Even assuming extracellular

uptake of all nonessential biosynthetic substrates, the

1.55 mmol ATP gDCW
−1 h−1 expended for cell maintenance

estimated for the hybridoma model [23] exceeds growth-

associated ATP consumption for doubling times longer

than 14.4 h; this doubling time corresponds to faster

growth than exhibited by all NCI-60 panel cell lines [35].)

Serine, glycine, and one-carbon units

A number of recent reports have implicated serine, gly-

cine, and one-carbon metabolism as being important for

tumors. The gene for phosphoglycerate dehydrogenase

(PHGDH), which encodes the enzyme that catalyzes the

first committed step in serine biosynthesis from 3PG, has

been found to be amplified in breast cancer and melanoma

[11, 12]; glycine consumption and catabolism have been

reported to be important for fast proliferation [44, 45]; and

oxidation of tetrahydrofolate (THF) compounds has been

shown to be used for redox control in cancer cells [18, 46].

In addition, 1C units possess well-established roles in nu-

cleotide synthesis, with methylene-THF required for thy-

midylate production and its oxidized form, formyl-THF,

for purine synthesis.

Nucleotide synthesis is essential for cancer cells, as

well as any proliferating cells, to divide. Unlike amino

acids (and potentially lipids), which can be derived from

serum or culture medium to bypass de novo production

[41, 47, 48], nucleotides are not thought to be scavenged

from the extracellular environment in sufficient quan-

tities to contribute to growth. Consequently, many clas-

sic chemotherapeutic drugs directly inhibit various steps

in nucleotide generation, and their administration also

induces a range of side effects resulting from impaired

proliferation of healthy tissue [14, 49]. Nucleotides are

the only major class of macromolecules that require one-

carbon THF compounds; accordingly, there is strong mo-

tivation to understand the production of one-carbon units

in the context of tumor metabolism.

Two major routes exist for methylene-THF generation:

SHMT, which couples one-carbon production to serine

catabolism to glycine, and the GCS, which oxidizes and

deaminates glycine to form methylene-THF, carbon diox-

ide (CO2), and ammonium (NH4
+) (Fig. 3). SHMT has

both cytosolic and mitochondrial isoforms—SHMT1 and

SHMT2, respectively—while the GCS is exclusively mito-

chondrial, although intercompartmental transporters exist

for serine, glycine, and possibly folates [50, 51].

The demand for 1C units for nucleotide (and potentially

NADPH) production places constraints on the fluxes

through the serine-glycine pathway. We investigated these

Fig. 2 Fates of major biomass precursors and cofactor equivalents

consumed in synthesis of macromolecules. Fates of biomass precursors

(3-phosphoglycerate and oxaloacetate), nitrogen/amine groups, and

cofactors (NAD+, NADPH, and ATP) are classified by their requirements

for major classes of macromolecules (proteins, nucleotides, lipids, and

polysaccharides). Demands for each macromolecule include both costs

of polymerization and de novo synthesis of monomers
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constraints by analyzing the biomass requirements of

serine, glycine, and tetrahydrofolate compounds. The

number of millimoles of each substrate required per gram

DCW are given in Table 3; as indicated, the demands for

biosynthetic serine and glycine each surpass those of one-

carbon units, primarily due to the high requirements for

protein synthesis. (Note that each equivalent of cholesterol

generated also produces, as a side product, an equivalent

of formate which can be directly converted to formyl-

THF. The formyl-THF expected to be derived from chol-

esterol synthesis is subtracted from nucleotide one-carbon

requirements.) We considered each extreme case in which

1C substrates are generated exclusively by either serine ca-

tabolism via SHMT or glycine catabolism via the GCS, re-

spectively. In the case of SHMT, approximately 1 mol of

serine must be metabolized through SHMT to produce

1 mol of 1C for every 2 mol of serine incorporated into

biomass (Table 4). In the case of the GCS, it is roughly

1 mol glycine catabolized for every 3 mol glycine incorpo-

rated into biomass (Table 4). As noted above, recent stud-

ies have suggested that significant 1C production is

required for redox control, with SHMT2 being most com-

monly implicated [18, 45, 46]. If one-carbon units are used

for NADPH production for control of oxidative stress in

addition to nucleotide synthesis, the 1C demand will in-

crease and the 1:2 and 1:3 ratios of flux through SHMT or

GCS to direct biomass incorporation become lower

bounds for serine and glycine use; for one-carbon metab-

olism to contribute significantly to NADPH generation,

even larger fractions of the total serine or glycine pool

would need to be catabolized through SHMT or the GCS,

respectively.

These results give insight into some recent findings

about the importance of serine and glycine in the metab-

olism of cancer cells. Previous results have shown an im-

pairment in proliferation in breast cancer cells with

amplified PHGDH copy number when the gene is

knocked down, but this knockdown does not result in a

change in intracellular serine levels and cannot be res-

cued by exogenous serine [11]. As in the case where

SHMT is used to generate one-carbon units through

conversion of serine to glycine, this represents a situ-

ation in which metabolic flux rather than metabolite

levels themselves is important. Although the link be-

tween PHGDH and SHMT is less well understood, regu-

lation of biosynthetic pathways at the committed step is

a common motif in metabolism, so it is plausible that

knockdown of PHGDH may affect the activities of other

enzymes in the pathway, including SHMT. Thus, it may

be that even when exogenous serine is added to the

medium to bypass the PHGDH reaction, the flux through

the serine-glycine pathway, and therefore production of

one-carbon units, is still impaired, this could explain why

exogenous serine cannot rescue the PHGDH knockdown.

Glutamine and nitrogen metabolism

Although glutamine is nominally a nonessential amino

acid (it can be synthesized through the ATP-dependent

condensation of glutamate and free ammonia), it has

been extensively reported that glutamine serves as a

major biosynthetic substrate for cancer cells [13, 32, 52].

In effectively all cases that have been examined, cancer

cells are not able to proliferate in tissue culture if glu-

tamine is absent, and in particular, expression of the

Myc oncogene has been indicated to cause “glutamine

addiction,” with glutamine starvation inducing cell death

[10, 13, 53, 54]. While glutamine has a unique role in

contributing nitrogen to protein and nucleic acid synthe-

sis, its function in maintaining cell viability and division

appear to extend beyond this, as its deaminated catabolic

product αKG appears at least partially able to rescue sur-

vival and/or proliferation under glutamine starvation [55].

Using a stoichiometric analysis, we explored the down-

stream metabolic consequences of glutamine consump-

tion to satisfy cellular nitrogen demand.

Each molecule of glutamine consumed contains two

nitrogen atoms that can contribute to biomass gener-

ation: an “amide” nitrogen that is lost when glutamine is

converted to glutamate and a “transamination” nitrogen

that is lost when glutamine-derived glutamate is con-

verted to αKG. Although these two amine groups are

used by distinct biosynthesis reactions, the amide nitro-

gen, for which there is a considerably smaller biomass

demand, can be converted to a transamination nitrogen

if it is first liberated by glutaminase to become free

ammonia and then added to a molecule of αKG by glu-

tamate dehydrogenase to become the amine group in glu-

tamate (Fig. 4). (This model assumes that GDH operates

reversibly, which, while thought to be unlikely unless am-

monium concentrations are in the range of toxicity, pro-

vides a lower bound estimate of potential glutamine

Fig. 3 Schematic of the major routes of one-carbon unit production.

Serine is catabolized through serine hydroxymethyltransferase (SHMT),

and glycine is catabolized through the glycine cleavage system (GCS).

Intracellular compartmentalization is not shown
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contribution to biomass [56].) As a consequence, our ana-

lysis does not differentiate between the two amine groups.

In addition to its two nitrogen atoms, each glutamine

molecule contains five carbon atoms that may be incorpo-

rated into biomass precursors, such as AcCoA, αKG, or

Oaa. Although assuming that all five carbon atoms may

contribute to biomass likely represents an overestimata-

tion due to the presence of several intermediate decarb-

oxylation reactions, which each evolve one carbon as CO2,

the calculation nonetheless provides a suitable approxima-

tion (in addition to the fact that alternate downstream

pathways, such as reductive carboxylation of αKG to isoci-

trate [16, 57, 58], may result in net CO2 fixation).

We considered three cases: maximum, minimum, and

predicted glutamine contribution to nitrogen supply. The

maximum contribution case assumes that glutamine is the

only nitrogen source available for incorporation into other

nonessential amino acids; the minimum contribution case

assumes that glutamine is used only for direct incorpor-

ation into protein and donation of its amide group for nu-

cleotide synthesis, with all other nonessential amino acids

being taken up directly from the medium; and the pre-

dicted contribution case uses the glutamine consumption

value obtained from a simulation maximizing biomass

yield on total carbon in DMEM nutrient conditions.

The amounts of carbon and nitrogen made available

by glutamine uptake under these three scenarios were

compared to both the total and nonessential carbon and

nitrogen demands for producing new biomass (where

“nonessential” designates requirements that can be syn-

thesized de novo) (Additional file 1: Table S8). Consump-

tion of glutamine to meet nitrogen demand can have a

profound influence on the supply of biosynthetic carbon:

while glutamine contribution under the minimum uptake

profile corresponds to a supply of 22.5 % of nonessential

nitrogen and 12.8 % of nonessential carbon, its maximum

uptake profile corresponds to 100 % of nonessential

nitrogen and 57.1 % nonessential carbon (Table 5). The

“predicted” uptake profile, in which glutamine supplies all

nonessential nitrogen except that needed for cysteine and

approximately two thirds of glycine, corresponds very

closely to maximal contribution, with 88.4 % of nonessen-

tial nitrogen coming from glutamine. In this case, the car-

bon in the glutamine consumed to meet nitrogen demand

is equivalent to roughly half of the total nonessential bio-

synthetic carbon demand.

These results indicate that proliferating cells may in-

corporate significant glutamine-derived carbon into the

precursors for macromolecular synthesis simply as a

consequence of meeting their nitrogen demand. Previous

studies indicate that glutamine-consuming cells excrete

considerable ammonia and, to a lesser extent, glutamate,

which supports the notion of an important role for glu-

tamine beyond nitrogen supply [32, 40, 59, 60]. Whether

these findings reflect an involvement in signaling, kin-

etic/thermodynamic limitations in “efficient” use of ni-

trogen for anabolism or other metabolic factors remains

an open question for the importance of glutamine as a

biosynthetic substrate.

Metformin treatment simulations

Metformin is a safe and widely used biguanide drug that

has long been used to treat type II diabetes. Diabetics

taking metformin have a reduced incidence of cancer

compared to diabetics that control blood sugar by other

means, and a surge of investigations has followed to bet-

ter understand its potential as a cancer therapeutic and

its mechanism of action [61–66]. The compound is a

direct inhibitor of complex I of the respiratory chain,

and although it is believed to trigger numerous down-

stream phenotypic effects, it also induces substantial

short-term, transcription-independent changes in metab-

olism [67, 68]. These changes reflect the robustness of

cell metabolism, and it is important to be able to

Fig. 4 Schematic of the major routes of glutamine contribution to carbon and nitrogen biomass. Deamidation of glutamine to glutamate occurs

either via glutaminase (GLS) or various enzymes in nucleotide biosynthesis pathways. Glutamate subsequently can donate its remaining α carbon

amine group (NH4
+
α-C) to α-keto acids via aminotransferases (ATs) to form amino acids, resulting in conversion of the glutamate carbon skeleton

to αKG. GLS also produces free ammonium (NH4
+
amide), which can subsequently be incorporated into αKG to regenerate glutamate by glutamate

dehydrogenase (GDH)
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anticipate these compensatory effects to identify poten-

tial routes of adaptation [69, 70]. As with other meta-

bolic inhibitors that may be putatively used as cancer

therapeutics, stoichiometric analysis enables the predic-

tion of immediate changes in metabolic fluxes following

metformin treatment.

To model the effects of metformin treatment, we ap-

plied an FBA approach to a stoichiometric model of cen-

tral carbon metabolism and major anabolic pathways.

After first obtaining a baseline profile of steady-state me-

tabolism of cells, we successively decreased the upper

bound on ETC-mediated NADH oxidation to simulate

increasing doses of metformin treatment. The flux alter-

ations revealed by these simulations closely mirrored

many of the behavioral trends observed experimentally in

cancer cells treated with metformin (Fig. 5a; Additional

file 1: Tables S11, Additional file 2: Table S14). As would

be expected for a respiratory inhibitor, decreasing the

upper bound for ETC NADH oxidation reduces the oxy-

gen consumption rate (Fig. 5b); in parallel, glucose con-

sumption and lactate production increase (Fig. 5c, d),

presumably to maintain the ATP production rate under

effectively anaerobic conditions. Interestingly, increasing

levels of inhibition also induce the net direction of the iso-

citrate dehydrogenase (IDH) reactions to move in the re-

ductive direction, as has been observed in cells treated

with metformin and other complex I/III inhibitors (Fig. 5e)

[57, 69, 71]. (It should be noted that the net flux consid-

ered is the sum of all—mitochondrial and cytosolic—IDH

isoform reactions and that net reductive flux is only pre-

dicted in the extreme, complete-inhibition case.) While

this does not contradict previous findings that reductive

IDH flux correlates with a decrease in the citrate-to-αKG

ratio [54, 71], it is encouraging that this behavior can be

predicted as well in a purely stoichiometric model, which

lacks the kinetic and thermodynamic driving forces associ-

ated with metabolite concentration changes. To our

knowledge, this represents the first instance in which an

in silico model has predicted reductive IDH flux following

inhibition of mitochondrial NADH oxidation, and it sug-

gests that the phenomenon can be justified in a purely

stoichiometric manner.

As previously suggested [69, 71–73], a relative de-

crease in the mitochondrial NAD+ regeneration rate ap-

pears to be a factor in the decrease in oxidative TCA

cycle flux. ETC NADH oxidation is overwhelmingly the

major NAD+-producing step in the mitochondria, and

constraining this flux correlates closely with decreases in

the fluxes through pyruvate dehydrogenase (PDH), oxo-

glutarate dehydrogenase (OGDH), and mitochondrial

malate dehydrogenase (MDHm), all of which catalyze

NAD+-consuming mitochondrial reactions (Additional

file 1: Table S12, Additional file 3: Figure S2B–D). While

the inhibition of respiration-linked NADH oxidation

results in a roughly threefold decrease in total mitochon-

drial redox activity (i.e., NAD+ consumption and produc-

tion), this is compensated by an approximately twofold

increase in total cytosolic redox activity (Additional file 1:

Table S13). Primarily, this elevation is accomplished by

roughly proportional increases in the major NAD+-con-

suming and NAD+-producing reactions in the cytosol,

glyceraldehyde 3-phosphate dehydrogenase (GAPDH),

and lactate dehydrogenase (LDH), respectively, resulting

in an increased fraction of glucose being converted to

lactate. In addition, as indicated by lower cytosolic malate

dehydrogenase activity upon simulated metformin treat-

ment, malate-aspartate shuttle activity decreased in coord-

ination with lower oxidative TCA cycle flux; this is

because NADH generated in glycolysis is oxidized in the

cytosol rather than being shuttled into the mitochondria

for OXPHOS. In total, these results reflect the tight regu-

lation between redox-associated steps across major meta-

bolic pathways—complex I activity within the ETC,

NADH oxidation in the TCA cycle, and GAPDH during

and LDH following glycolysis—which, solely by satisfying

stoichiometric mass-balance constraints on redox cofac-

tors, enables robust maintenance of cellular growth and

homeostasis.

We further explored the issue of NAD+ regeneration by

assessing the sensitivity of NAD+-consuming mitochon-

drial reactions (PDH, ODGH, and MDHm) to the pres-

ence of the two non-ETC reactions predicted to oxidize

NADH in the mitochondria, nicotinamide nucleotide

transhydrogenase (NNT), and NAD+-dependent glutam-

ate dehydrogenase (GDHNAD). Previous reports have sug-

gested that NNT can promote reductive IDH flux by

converting mitochondrial NADH to NADPH [57, 74], and

our model predicted NNT to serve as the largest mito-

chondrial NADH sink under high levels of inhibition and

the second-largest mitochondrial NADH sink under

conditions of low (or zero) inhibition (Additional file 1:

Table S12, Additional file 3: Figure S1A). Removal of

NNT from the network produced effectively no changes

in any reactions that consumed NAD+, but GDHNAD, op-

erating in the reverse direction, became the sole reaction

aside from ETC NADH oxidation that regenerated mito-

chondrial NAD+, fully compensating for the loss of

NNT (Additional file 3: Figure S1B–F, Additional file 2:

Table S14). As previously mentioned, GDH activity is not

thought to be reversible under baseline conditions of low

ammonium concentrations [56], so we repeated our simu-

lations (with and without NNT) after constraining all

GDH enzymes to operate irreversibly. The flux distribu-

tions that resulted from using the NNT-absent, GDH-

irreversible model changed substantially from previous

results, with PDH, OGDH, and MDHm fluxes decreasing

considerably (Additional file 3: Figure S1C–E, Additional

file 2: Table S14). These changes became more dramatic

Keibler et al. Cancer & Metabolism  (2016) 4:16 Page 10 of 16



as ETC inhibition increased, with MDHm operating in the

negative direction upon high levels of inhibition. Under all

conditions, total NADH oxidation was lower than in the

original model (Additional file 3: Figure S1F). Inclusion of

the NNT reaction in the GDH-irreversible network gave a

substantial “rescue” of the metabolic phenotype; NAD+-
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consuming fluxes and total NADH oxidation increased to

values much closer to those in the original network

(Additional file 3: Figure S1A,C–F, Additional file 2:

Table S14). These results support the notion that NNT

conversion of NADH to NADPH can substantially con-

tribute to the metabolic phenotype, particularly under

conditions of inhibited NADH oxidation by the ETC.

As a final step in the analysis of our metformin simu-

lations, we considered how glutamine usage changed

with increasing inhibition of mitochondrial NADH oxi-

dation. Despite dramatic alterations in downstream TCA

cycle metabolism [57, 69], glutamine consumption has

been reported to either increase slightly or remain un-

changed following biguanide treatment [75]. Our simula-

tions provided similar results, predicting a small initial

decrease upon constraining ETC NADH oxidation 20 %

but no change upon further inhibition (Additional file 3:

Figure S2A, Additional file 2: Table S14). However, as

previously mentioned, oxidative TCA cycle reactions re-

sponsible for catabolizing glutamine-derived α-ketoglutarate

decrease (Additional file 3: Figure S2B–D), which is also

consistent with previously reported experimental results

[57, 71]). These decreases in flux are compensated by in-

creases in reductive carboxylation flux, as noted (Fig. 5e).

To assess the general importance of oxidative glutam-

ine metabolism, we modified our objective function so

that glutamine uptake, rather than total carbon uptake,

was minimized. As a consequence, glutamine uptake

dropped to 11.5 fmol cell−1 h−1 (reflecting only direct in-

corporation into protein and contribution of its amide

group to asparagine and nucleotide synthesis), and gluta-

minase flux became zero for all cases (Additional file 2:

Table S14), suggesting that oxidative glutaminolysis is

not necessary for proliferation. The 7.5 fmol cell−1 h−1

decrease in glutamine consumption experienced by

ETC-inhibited simulations was almost completely offset

by a 7.1 fmol cell−1 h−1 increase in pyruvate carboxylase

flux, consistent with reports suggesting that pyruvate

carboxylase is required for growth in cells when gluta-

minase activity is insufficient for anaplerosis [76–78].

Many caveats remain in using this relatively simple

FBA model to understand the behavior of cells treated

by metformin or, through limiting other fluxes, other

metabolic inhibitors. This model assumes that, in re-

sponse to a particular perturbation, cells are freely able

to adjust their metabolic fluxes as necessary to maintain

a previously specified growth rate. Cells, of course, are

limited in their short-term response to stress by the ex-

pression of appropriate enzymes, which involves tran-

scription, translation, and post-translational modifications,

with each process responsive on its own distinct time

scale. The total cell volume and expression of essential

“housekeeping” proteins bound the profile of metabolic

enzymes and, hence, fluxes [79]. (Constraining enzyme

expression by the total solvent capacity or proteome size

is, unlike our approach, able to predict aerobic glycolysis

without setting a lower bound on lactate production

[36, 37].) Further, signaling cascades (such as the AMPK

pathway, which is activated in cells following metformin

treatment unless it has been lost [80–82]) are typically

triggered by such stresses, and the profile of available

fluxes changes following expression of their downstream

products. Finally, many of these fluxes, putatively allowed

even on the basis of enzyme expression, may be infeasible

due to kinetic and thermodynamic constraints, which,

aside from the simplified categorization of reactions on

the basis of their reversibility, are not captured in this ap-

proach. Including additional constraints on fluxes derived

from transcriptomic, proteomic, or physicochemical infor-

mation can overcome some of these limitations and pro-

vide more powerful predictive capabilities, but requires a

larger, more sophisticated model where such data have

been incorporated [19, 36, 37]. While we recognize that it

may not be sufficient for some contexts, our approach

demonstrates that a relatively small (roughly 150 reaction)

stoichiometric network consisting of little more than mass

balances, optimized biomass yield, and a lower bound on

lactate production is nonetheless capable of predicting

metabolic phenotypes in contexts relevant to cancer cells.

A comparably simple approach similar to what we pur-

sued here may be more accessible for biologists who do

not normally perform computational modeling but are

nonetheless interested in simulating metabolic networks

to explore their questions.

Additional discussion

Several additional insights emerge from this analysis.

First, on a carbon-molar basis, the fluxes associated with

biomass production are small compared to the elevated

rates of glucose consumption typical of cancer cells.

Considering only the serine biosynthesis pathway and

assuming complete de novo synthesis of serine, glycine,

and cysteine, cells doubling once per day would require

only 41.4 fmol carbon cell−1 h−1 (Table 2), which would

constitute less than 3 % of carbon flux associated with

glucose consumption (Additional file 1: Table S11). In

fact, at such a growth rate, the carbon required to

synthesize the entire nonessential fraction of biomass is

equivalent to only roughly 15 % of the carbon intake

associated with a typical glucose consumption rate

(Additional file 1: Table S8). These numbers suggest

that, from a purely stoichiometric or mass-action stand-

point, it is very unlikely that the supply of anabolic

needs substantially contributes to the largest fluxes in

central carbon metabolism in cancer cells (i.e., glycoly-

sis). As would be anticipated given the higher biosyn-

thetic demand for ATP than any biomass building

blocks (Table 2), most of the carbon flux is dedicated to
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producing energy (Additional file 1: Table S11). Indeed,

this is consistent with the notion that the distribution of

major metabolic fluxes in cancer cells should be insensi-

tive to their specific biomass composition, as has been

reported in other studies involving FBA simulations [19].

However, the relatively small magnitudes of these ana-

bolic fluxes do not mean that they are “insignificant” or

that they may not serve as promising therapeutic targets

for inhibition. Rather, they suggest that additional factors

beyond stoichiometry strongly influence the cancer cell

metabolic phenotype. Allosteric activation, inhibition,

and post-translational modification of enzymes by me-

tabolites or metabolism-mediated epigenetic changes all

contribute strongly to metabolic regulation in a complex,

bidirectional manner that is difficult to capture using

current models [83–86].

Second, the diverse pathways available to cells for co-

factor production impart them with enhanced adaptabil-

ity and robustness in their ability to survive inhospitable

microenvironments and potential chemical inhibitors.

For the case of ATP, the baseline, uninhibited FBA pre-

dicts a roughly 50 % contribution by glycolysis, which is

near the upper limit of glycolytic contribution to energy

production observed in cancer cells [87] (and largely a

result of the assigned lower bound for lactate production).

However, the simulated metformin treatment demon-

strates how, even approaching complete inhibition of oxi-

dative metabolism, only a roughly twofold increase in

fermentation can maintain ATP production without any

change in growth. Additionally, numerous pathways exist

to allow considerable flexibility for cells to satisfy their

demands for NADPH. The FBA model predicts most

NADPH to be generated from malic enzyme, glutamate

dehydrogenase, nicotinamide nucleotide transhydrogen-

ase, and methylenetetrahydrofolate dehydrogenase, and

presumably minimizes flux through the oxidative PPP as a

consequence of the objective function (maximized bio-

mass yield on carbon) and lower bound on lactate produc-

tion. However, given that the oxidative PPP has been

demonstrated to possess considerable activity, particularly

in response to increased ROS, it too appears to serve a

prominent role in generating reducing equivalents in

tumor cells [18, 51, 88]. This notion of metabolic flexibility

underscores a challenge in targeting cancer cell metabol-

ism, which suggests that combination treatments that

minimize the likelihood of adaptation to selective pressure

may be promising strategies.

Finally, the high rate of glucose consumption, while

enabling the generation of biomass precursors and co-

factors beyond necessary requirements, comes at no ap-

parent cost to the cell under these conditions (i.e., the

specified growth rate and lactate production rate, each

based on tissue culture measurements). Under most in

vitro cell culture conditions, glucose concentrations are

highly relative to physiological levels (e.g., 25 mM vs. 5–

10 mM), and when tumor cells are sufficiently close to

blood vessels, they are afforded access to roughly con-

stant glucose levels. In effect, glucose is “free” for these

cells, and there is no cost to consuming it when it is

available. Although ATP and amino acids are required to

generate the enzymes and transporters needed for high

rates of fermentation, this burden is presumably consid-

ered in the “Protein” biosynthesis demands (Additional

file 1: Table S7), and these do not appear prohibitive to

growth. Additionally, despite the low yield of ATP per

mole glucose consumed, previous analyses using prote-

omic data have suggested that the overflow metabolism

that characterizes the Warburg effect is indeed max-

imally efficient when considering additional constraints

on enzyme levels, such as cellular volume or total protein

cost [37, 89, 90]. Furthermore, continuous supply of high

glycolytic flux may provide a buffering system such that,

in responses to various stresses that may be experienced

in the tumor microenvironment (e.g., oxidative stress, en-

ergy depletion, drug treatment), flux can be easily shunted

to produce substrates (e.g., NADPH, glutathione, ATP)

necessary to maintain growth and evade apoptosis.

Conclusions
In this investigation, we used a series of stoichiometric

analyses to elucidate the metabolic requirements of

mammalian cell proliferation. First, using a hybridoma

line as a model for cancer cell composition, we gener-

ated comprehensive profiles of the major precursor and

cofactor requirements for biomass synthesis on both

mass and stoichiometric bases. These assessments re-

vealed the importance of meeting ATP, NADPH, NAD+,

and precursor demands in synthesizing new biomass

and how these burdens could be selectively reduced by

increasing fatty acid and amino acid uptake. Next, we

applied the generated profiles to explore the limits of

metabolic behavior in two case studies relevant to cancer

cells—the production of 1C units from serine and gly-

cine catabolism, and the contribution of glutamine to

total cellular nitrogen and carbon—which demonstrate

how quantifying biomass demands can yield insight even

in the contexts of metabolic branchpoints. These queries

demonstrated that flux through serine and glycine bio-

synthesis pathways is required for sustaining 1C produc-

tion for nucleotide synthesis and that glutamine may

contribute substantially to biomass carbon as a conse-

quence of its natural role as the predominant nitrogen

source. Finally, we incorporated these biomass require-

ments into a constraint-based FBA simulation that mod-

eled the metabolic effects of metformin, a widely used

antidiabetic medication currently under consideration as

a potential cancer therapeutic. The resulting flux distri-

butions successfully recapitulated the major metabolic

Keibler et al. Cancer & Metabolism  (2016) 4:16 Page 13 of 16



changes observed in cells following metformin treatment

and also enabled greater understanding of the interac-

tions within the reaction network that contributed to

these changes.
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