METABOLIC RESEARCH IN MONOZYGOTIC TWINS WITH DIABETES MELLITUS

Progress Report*

T. GOECKE, W. GROTE, D. GRUENEKLEE

Department of Human Genetics and Anthropology and Diabetes Research Institute, University of Düsseldorf, German Federal Republic

An intravenous and oral glucose tolerance test and an intravenous tolbutamide test have been performed in 11 MZ twin pairs, discordant for diabetes mellitus. Blood sugar, immunoreactive insulin, and free fatty acids were determined. The research aimed at finding out whether prediabetic subjects may show any characteristic parameter which could be suggestive of the hereditary disposition. Three MZ twins of juvenile diabetics showed a normal blood glucose, immunoreactive insulin, and free fatty acids during the glucose and tolbutamide loads within a maximum of 10 years observation.

INTRODUCTION

For some years methodically selected series of twins with diabetes have been investigated in order to answer the question whether characteristic parameters for the so-called prediabetic state exist which can be regarded as a hint of hereditary disposition (Daweke et al. 1970). The prediabetic state is considered the phase before manifestation of diabetes mellitus where abnormalities in glucose tolerance cannot be proven. Long-term observations made with 11 MZ sets of twins, behaving discordantly concerning diabetes mellitus, are reported.

METHOD

The sets of twins have been chosen from our systematically selected series. Monozygosity was assessed by anthropological (Siemens 1924, v. Verschuer 1933) and serological characteristics. The twins were submitted to the following tests:

- 1. Intravenous glucose tolerance test (IVGTT) with 25 g glucose;
- 2. Oral 100 g glucose tolerance test (OGTT);
- 3. Intravenous tolbutamide-test with 1.0 g tolbutamide (IVTT).

The assimilation coefficient k for glucose was calculated according to Conard et al. (1953). K-values under 1.0 were considered as pathologic, above 1.4 as normal, and those in between as pathologic in the sense of subclinical diabetes mellitus (Schilling et al. 1965). The OGTT was regarded as normal if the blood glucose (BG) did not rise above 100, 160, 135 and 105 mg/100 ml when measured on fasting, one, two and three hours after glucose load respectively. BG above 130, 225, 150 and 120 mg/100 ml, respectively, were considered manifest diabetes mellitus. Subclinical diabetes was stated if BG were within these limits. The tolbutamide test was evaluated with the T₃-value by Lange and Knick (1965). The test was pathologic at T₃-values above -1.5; below -1.5 it was normal.

Glucose was determined in venous blood by the o-toluidin method (Dubowski 1962) in the Technicon Autoanalyzer.

Immunoreactive insulin (IRI) was measured firstly according to Hales and Randle (1960), since 1974 by a solid phase radioimmunoassay (Wide and Porath 1966, Wide et al. 1967, Wide 1969).

The determination of free fatty acids (FFA) was carried out titrimetrically in a modification of Dole's (1956) method.

*The investigations have been supported by the Deutsche Forschungs-Gemeinschaft.

CODEN: AGMGAK 25 281 (1976) — ISSN: 0001-5660 Acta Genet. Med. Gemellol. (Roma) 25: 281-288

T. GOECKE ET AL.

RESULTS

The first four sets of twins comprised in Table 1 were absolutely discordant after loads of glucose and tolbutamide. Three index twins out of four were juvenile diabetics, the fourth found to be a subclinical diabetic. The period of discordance of the first three sets of twins was 9, 14 and 21 years. The manifestation age of the diabetics is below 20. The fourth index twin was discovered to have subclinical diabetes mellitus at 30 years. Only in the third and fourth set of twins there is a family history of diabetes. Both parents of the fourth pair were known diabetics. During the IVGTT, OGTT and IVTT the first three sets of twins behaved discordantly with regard to BG, IRI and FFA. In nondiabetic partners BG, IRI and FFA was normal.

The insulin response of the unaffected twin of pair number 2 was delayed and diminished in the OGTT in 1964, 1965 and 1966 but, nevertheless, found to be normal in 1969 and 1974. The nondiabetic partner of the first set of twins showed normal FFA in 1969 and pathologically high values in 1971. In 1974 FFA were within normal limits.

After an oral glucose load, pair number 4 behaved concordantly concerning BG and IRI. Both twins had a normal increase in BG during OGTT. The insulin response, however, was delayed but greater than among normal subjects.

The index twins of pair number 5 and 6 were insulin-requiring diabetics. Their partners had only a decreased k-value. Pair number 7 had clinical diabetes but differed in the treatment: The index twin was insulin-requiring, whereas the partner was treated with diet only. The index twins were 9, 20 and 55 years of age when clinical diabetes was discovered. All three families have a positive history of diabetes. Both twins of pair number 6 showed a diminished insulin response during the IVGTT. The cotwin, however, showed lower BG-values than his diabetic partner. The FFA are more declining in the nondiabetic. A normal insulin response was found in the unaffected twin after oral glucose. Distinct changes in the behaviour after glucose and tolbutamide load could be noticed during long-term observations of the sets of twins numbers 8 to 11.

In 1974 the unaffected partner of pair number 8 showed a subnormal IVGTT in the sense of a subclinical diabetes mellitus. The insulin response was found increased in 1970 and within normal limits in 1974. The decrease of FFA was normal at both times. Neither in 1970 nor in 1974 an abnormal insulin response could be stated after oral glucose.

In 1970 the insulin response of the partner of pair number 9 was decreased in all three tests. In the IVGTT the FFA initially ascended. There was a marked decrease of FFA in the IVTT. In 1973 this twin exhibited an insulin-requiring diabetes mellitus.

In 1970 the index twin of pair number 10 had a pathologic T₃-value in the IVTT. In 1974 it was normal. Glucose tolerance tests in her partner were as well normal in 1970 as in 1974 despite a 3 kg increase in body weight.

The partner of the twin number 11 showed in 1971 an improved IVGTT as compared with the previous examination. The index twin showed unchanged results.

DISCUSSION

Three MZ twins of juvenile diabetics showed normal blood glucose, immunoreactive insulin and free fatty acids during glucose tolerance and tolbutamide tests within a maximum of 10 years observation. A diminished or delayed insulin response, described by Cerasi and Luft (1967), to be typical for the prediabetic state could only be temporarily stated in one case.

Tattersall and Pyke (1972) and Johannsen et al. (1974) also report long-term discordances of MZ twins with an insulin-requiring partner. Therefore, it can be assumed as a hypothesis that exogenous factors are of substantial importance for the manifestation of juvenile-onset diabetes mellitus. Interaction of predisposing genes and environmental factors can induce the manifestation of diabetes mellitus. In some cases juvenile diabetes melliturs may be caused by external factors alone (f. i. Coxsackie-B viruses; Gamble and Taylor 1969, Gamble et al. 1969). It may be questioned whether the

Table 1. Behaviour of blood glucose during IVGTT, OGTT, and IVTT

Pair no.	Age	Age at diagnosis	Year at test	IVGTT	OGTT	IVTT	Other members of family with diabetes
1a	20	D.m. (Ins) 11	1969+ 1971++ 1974	0.60 0.49	path path	+ 0.05	Grandmother
b		norm. Gl. tlrc. 15	1974 1969+ 1971++ 1974	1.40 1.97 2.15	norm norm norm	0.05 4.70 2.90	
2a	33	D.m. (Ins) 19	1966+	_	path		none
b		norm. Gl. tlrc. 23	1969+ 1964+ 1965+ 1966+ 1969+ 1974	0.48 — 2.72 2.59 3.51	path norm norm norm norm norm	+ 1.90 6.75 9.10	
3a	36	D.m. (Ins) 15	1971++ 1974	_	_	-1.35 -2.00	none
b		norm. G. tlrc. 33	1974 1971++ 1974	1.69 1.53	norm norm	-2.00 -4.30 -2.50	
4a b	37	s.D.m.1 30 norm. Gl. tlrc. 30	1967+ 1967+	1.23 2.88	norm norm	1.75 3.70	Father, Mother
5a b	13	D.m. (Ins) 9 s.D.m.1 13	1974 1974	0.75	norm	— — 3.00	Grandmother
6a b	34	D.m. (Ins) 30 s.D.m.1 40	1970++ 1970++	0.19 1.26	path norm	3.30 7.40	Cousin
7a b	66	D.m. (Ins) 55 D.m. (Diet) 62	1970++ 1970++	_	path path	<u>-</u>	Cousin
8a	14	D.m. (Ins) 8	1970++ 1974	_	path path	- 0.30 + 0.35	Grandmother, Mother
b		norm. G. t.rc. 10 s.D.m.1. 14	1970 ⁺⁺ 1974	1.64 1.33	norm norm	-3.35 -3.30	
9a	27	D.m. (Ins) 17	1970++ 1974	0.05	path	+ 2.15	none
b		s.D.m.1 23 D.m. (Ins) 26	1970 ⁺⁺ 1974	1.21 —	norm —	4.80 	
10a	52	s.D.m.1 48 norm, G. tlrc, 52	1970++ 1974	1.69 1.42	norm norm	1.50 5.05	none
b		norm. G. tlrc. 48	1970++ 1974	2.03	norm norm	- 3.90 -	
11a	44	s.D.m.2 39	1969+ 1971++	1.12 1.05	path path	<u> 2.55</u>	none
b		s.D.m.l. 39 norm. Gl. tlrc. 41	1969+ 1971++	1.15 1.40	norm norm	4.30 	

D.m. (Ins) = insulin requiring diabetes mellitus s.D.m.1 = subclinical diabetes with one abnormal glucose tolerance test s.D.m.2 = subclinical diabetes with two abnormal glucose tolerance tests norm. Gl.tlrc. = normal glucose tolerance + Data from Daweke et al. (1970)

⁺⁺ Data from Grote et al. (1971).

Table 2 a. Blood glucose (mg/100 ml) during tolerance tests

10.22	1								C	T						≥	LL									
11571	7]				1	ļ	١	I	3	, ,								١				l		١	1	١
									70.00	ġ							2									
Pair 60.	•	3		è	2	3	3		70.07	•	.00		.09	120	.951	3		•		Ì	1	.02	- 1	i	- 1	.0
10 1969	12.	ž	ž	į	33	1	=	١.	=		1	1	1	2	=	•	1961	3	154		5	5	111	158	2	5
1.61	¥		٠	137	2	?	ž							2	361		1976	20				•				2
- 1969	2	202	22	ž	£	2	2	•	-					:	121	•	.	=				3				8/
<u>.</u>	2		•	2	=	2	2							: 1	: 1		7.	2				3				5
	•	.	:	:	2	= ;	<u>.</u>	2	: :					: :	1	7.	196	9				5				
	<u> </u>	£ '		2 2	:		2 :							::		ه.	. 36	2				\$				2
	: 2	. 2	. 25	2	: :	: ≘	: :		2					: :	.	,	1974	£ ;				35				~
1974	2	ž	ž	22	2		:	*						8 :	Ę	ž	•	3				2				•
1931	=			5	3	:	\$		=					2	<u> </u>			2				90				=
1974	:	5	ĭ	?	175	2	=	2	=					=	~	•	<u>.</u>	-				*				•
	2	.	502	ş	ž	:	ĕ		Ξ					~	2		. 101	s		٠		=				-
2	£ :	ž	Z :	2	<u> </u>	5	I :	٠,	Ξ					=	ĭ	÷	<u>•</u>	2				Ş				=
	2 :	=	ž	2 :	:	2 3	2 :	=	=					79	2	•	3	=				3				•
	2 2		•	8 5	:		2							2	8	:	970	2			•	30.				•
9.00	: :	•		1	. 1		: :							: 2	: 1	•	1970	2				=				•
1974	=	33	2	ź	:	2	2	5					:	: :	1 2	3	930	Š				262				~
	:		5	ž	921	:	3								: :		1974	ž								•
0.61	•		•	=	3	128	Ĭ	٠						•	Ξ.	•	920	2	•			*				-
	*			*	•	7.	:					^		8	20		. 7.61	5				\$				•
1874	=	33	:	92	Ē		<u>=</u>	I						2	=	:	9,0	<u>:</u>				150				
4	2 :	\$	2 :	2	Ξ:	2	2	:							•	•	9161	2	•			=				2
	2 :	•	:	2 :	:	3 :	:							55	250	•	1970	2				:				•
*	: :	. ¥	. 5	5 5	2	2 2	2 3		2					*	25		1974	2				3				
1441	~			:		5	z	•						22	8	•	2	2 :				3				
									-					23	117	• 4		= :				3 :				_
									Ĩ					\$	=	•		•				2				•
									2					72	280											
														=	:											
									3					~	•											
														8	z											
									-					8	*											
									-						3 2											
									=					3	3											
										1971	=			2	221											
									-					=	:											
									-					•												

Table 2 b. Serum insuline (uU/ml) during tolerance tests

						Ì																				
IV	VGTT	Ţ					-	8	GTT							1	[VTT	H								
3,10							- I	1	غ						· ·		ro.									
,,,,					.02		. 021			•	.5	90	.0	,021	.00							.02				
1961	95		\$1	*	_	15 25		:			١,	:	ء	=	2	=	1961	=		5	<u>-</u>			95		*
•												: :	: :	: :	: :		1974									
												•	•	9	;	۵	961	^								~
: 2								-				9	2	02.	3		1974									_
**									1971			2	202	2	3	2	1969									
*									1974		=	2	2	2	2	•	1961						•		•	. X
26							=	2	1961			Š	5	2	Ş		1974									22
								•	1565			\$:	2	35	÷	183									•
							2	2	386			9,	z	=	Ξ		1974									=
									696			14	=		136	٥	187									=
								_	396			#	25	2	3		1974									<u>-</u>
64 197		•							;			105	3	=	9	;	1970									•
											;	:	: :	:	:	•	1970									<u>=</u>
											•	: ;	•	:	3	=	1970									2
					•		=		2		•	2	2	*	=		1970									•
									1974		20	2	8	210	2		1974									
9.01						•		3	1967			2	3	176	¥	:	1970									•
1974							. •	•	. 2961			25	90	×200	9	۵	1970				•			-	•	ž
1974							: 2	:	1970			:	=	=		6 0	1970								•	52.
	•			•				_	1970			22	Ş	\$	69		1874									٠,
								3	1970		•	180	153	::	Ξ	•	1970			Ī	ĺ	_				5 2.
•		•							1874		35	2	2	2	9	Ē	1969		3			×				~ :
								•	1970	=		125	21.	120	3	۵	1363									×.
								•	1974		23	120	:	ž	•											
								2	1970			=	175	:	135											
									1970			\$	2	2	Ş											
								2	1970			≈	2	•	\$2											
									1974		130	230	23		2											
								•	1970			=	æ	=	=											
									1974		33	3	\$	=	z											
								: :	1961			ž	č	I	≅											
								•	1871.		•	≂,	S	=	22											
								•	•	3		Ē	3	=	S											
									161	~	•	22	2	=	•											

Table 2 c. Fatty acids (uMol/l) during tolerance tests

IVGTT	T	1							IVTT									
Pair 740.									Pair No.									
Year	•	2,5	2.	.01	20	.07	,09	120.	Year		2,5	5	2	50.	30.			120.
1969	722		633	585	540	184	717	•	190			119	713	553	609			709
1971	586	•	•	215	581	205	536	٠,	19			191	362	370	338			370
b 1969	208	•	497	\$15	7 0	362	309					463	517	327	401			558
1971	803	•		726	\$95	960	428	٠				300	308	27.4	247			
1974	326	3	303	862	141	214	230	525				480	466	123	¥17			
7. 1969	533	•	472	3	452	392	327	•	961			164	757	577	•			175
996.		•		67.	333	3.5	207				-	555	818	1	305			
1974	769	689	643	;	4 30	312	294	374	34 1971	11 464	•	•	433	388		713	457	
36 1971		•		£53	377	362	304					346	115	300	298			717
1974		510	503	452	388	402	630	\$19				•	407	354	•			
40 1967		•	590	213	205	493	490	•	- 2			787	7.00	176	7.18			***
b 1967		٠	6 02	283	285	474	544			,								
64 1970		•		495	468	Ç	386					0 1	00	226	97			040
0 1970		•		391	357	305						593	267	•	221			598
86 1970		•		191	373	303						124	5	†	534	-		969
1974		123	954	789	985	435	395	580			•	48	294	389	379			553
94 1970		•	310	332	284	278	892				•	573	\$17	453	\$			483
b 1970		•	458	363	308	337	283				•	405	370	327	322			305
1970		•	197	404	678	:	٠ ;	٠ ;			•	312	162	260	250			129
1974		26.	• •	/2 3	S	3 5	č	£ \$	181		٠	•	298	348	197			505
966		;	;	=		235	• •	•			•	413	\$ 1	359	305			267
1.61		•	•	442	426	362	359				•	450	348	=	347			412
6961 9		•	387	327	263	£13	142	•				90	373	315	296			365
1.61		•		678	280	458	437											

Table 3. Body-weight (first line) and Broca-index (second line) at test

c	ъ:				Year		
Sex	Pair no.	1974	1971	1970	1969	1967	1966
мм	1a	57.9 0.78	53.0 0.73		45.1 0.71		
MM	b	66.0 0.86	61.4 0.81		50.8 0.75		
	2a				66.5 0.88		62.9 0.80
MМ	b	66.7 0.90	,		65.0 0.88		58.6 0.78
1111	3a	82.3 0.94	76.9 0.89				
MM	b	107.5 1.18	103.5 1.14				
MN4	4a					94.0 1.14	
MM	b					91.0 1.11	
EE	5a	38.0 0.85					
FF	b	47.9 0.86					
	6a			67.5 0.69			
MM	b			69.2 0.99			·
FF	7a			63.5 1.22			
ГГ	b			73.5 1.55			
PP.	8a	38.5 0.65		29.6 0.72			
FF	b	47.6 0.71		30.6 0.71			
	9a	61.0 0.79		60.4 0.79			
MM	b	63.0 0.82		61.0 0.81		· · · · · · · · · · · · · · · · · · ·	
	10a	56.3 1.08		56.9 1.11			
FF	b	61.6 1.14		58.3 1.08			
	11a		71.4 1.08		72.7 1.06		
MM	ь		79.2 1.14		77.1 1.11		

288 I. GOECKE ET AL.

development of diabetes progresses in every case from prediabetes via the latent to a manifest diabetes. The diminished k-value in MZ twins of insulin-requiring diabetics was not always due to an abnormal insulin secretion. The cotwin who developed an insulin-requiring diabetes mellitus during our investigation was found to have an impaired glucose tolerance with markedly reduced insulin release prior to manifestation of the disease.

However, other identical twins were found to have normal blood glucose values in spite of an insignificantly diminished insulin response. Two partners showed a slightly reduced decline of blood glucose together with normal insulin release. It is to be expected that not only the insulin secretion but also other mechanisms — unknown up to now — play a part during the development of diabetes mellitus. Further observations will have to show whether only these MZ twins of insulin-requiring diabetics develop a manifest diabetes mellitus in whom a reduced insulin response is correlated with reduced glucose assimilation.

These results no longer justify our former assumption (Grote et al. 1971) that increased fasting values of free fatty acids could be a first sign of the manifestation of diabetes mellitus.

Toeller and Knussmann (1973) report dissimilar blood glucose levels after repeated oral glucose loads under similar conditions. A phenomenon alike can be suggested concerning the insulin response. With these reservations it will have to be decided whether transitional abnormalities of insulin secretion are a hint for the genetic disposition of diabetes mellitus (Daweke et al. 1970).

REFERENCES

- Cerasi E., Luft R. 1967. Insulin response to glucose infusion in diabetic and non-diabetic monozygotic twin pairs. Genetic control of insulin response? Acta Endocrinol., 55: 330-345.
- Conard V., Franckson I.R.M., Bastenie P.A., Kovacs L. 1953. Etude critique du triangle d'hyperglycémie intraveineux chez l'homme normal et détermination d'un « coefficient d'assimilation glucidique ». Arch. Int. Pharmacodyn. Ther., 13: 277-292.
- Daweke H., Grote W., Gries F.A., Liebermeister H.
 1970. Zur Genetik des Diabetes mellitus:
 Glukosetoleranz, Seruminsulin und freie Fettsäuren bei eineiigen Zwillingen. Dtsch. Med.
 Wochenschr., 95: 983-988.
 Dole V.P. 1956. A relation between non-esterified
- Dole V.P. 1956. A relation between non-esterified acids in plasma and the metabolism of glucose. J. Clin. Invest., 35: 150-154.
- Dubowski K.M. 1962. An orthotoluidine method for body fluid glucose determination. Clin. Chem., 8: 215-235.
- Gamble D.R., Taylor K.W. 1969. Seasonal incidence of diabetes mellitus. Br. Med. J., 3: 631-633.
- Gamble D.R., Kinsley M.L., Fitzgerald M.G., Bolton R., Taylor K.W. 1969. Viral antibodies in diabetes mellitus. Br. Med. J., 3: 627-630.
- Grote W., Daweke H., Hessing J. 1971. Weiterer Beitrag zur Genetik des Diabetes mellitus: Glukosetoleranz, Serum-Insulin und freie Fettsäuren bei eineiligen Zwillingen. Paper presented at: 12. Tagung d. Ges. f. Anthropologie und Humangenetik, Göttingen.
- Hales C.N., Randle P.J. 1960. Immunoassay of insulin with insulin-antibody precipitate. Biochem. J., 88: 137-146.
- Johannsen K., Soeldner J.S., Gleason R.E., Gottlieb

- M.S., Park B.N., Kaufmann R.L., Tan M.H. 1974. Serum insulin and growth hormone response patterns in monozygotic twin siblings of juvenile diabetics. Diabetologia, 10: 357-400. Abstract.
- Lange H.J., Knick B. 1965. Vermehrte Informationsnutzung beim Auswerten des intravenösen Tolbutamid-Tests. Klin. Wochenschr., 43: 215-220.
- Schilling W. H., Oberdisse K., Hüter K.A., Blank H. 1965. Vergleichende Untersuchung der oralen und intravenösen Glukosebelastung zur Erfassung einer verminderten Kohlenhydrattoleranz. Diabetologia, 1: 187-194.
- Siemens H.W. 1924. Die Zwillingspathologie-ihre Bedeutung, ihre Methodik, ihre bisherigen Ergebnisse. Berlin: Springer.
- Tattersall R.B., Pyke D.A. 1972. Diabetes in identical twins. Lancet, 2: 1120-1125.
- Toeller M., Knussmann R. 1973. Reproducibility of oral glucose tolerance tests with three different loads. Diabetologia, 9: 102-107.
- V. Verschuer O. 1933. Die erbbiologische Zwillingsforschung. In K. Diehl, O. v. Verschuer (eds.):
 Zwillingstuberkulose. Jena: Fischer.
- Wide L., Porath J. 1966. Radioimmunosorbent assay for proteins with the use of Sephadexcoupled antibodies. Biochem. Biophys. Acta, 130: 257-260.
- Wide L., Axén R., Porath J. 1967. Radioimmunosorbent assay for proteins. Chemical couplings of antibodies to insoluble dextran. Immunochemistry, 4: 381-386.
- Wide L. 1969. Radioimmunoassays employing immunosorbents. Acta Endocrinol. [Suppl.] (Kbh.), 142: 207-221.
- Dr. T. Goecke, Institut für Humangenetik und Anthropologie, Ulenbergstrasse 127/129, Düsseldorf, German Federal Republic.