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Metabolic signaling in T cells
Justin A. Shyer1, Richard A. Flavell 1,2 and Will Bailis3

The maintenance of organismal homeostasis requires partitioning and transport of biochemical molecules between organ systems,

their composite cells, and subcellular organelles. Although transcriptional programming undeniably defines the functional state of

cells and tissues, underlying biochemical networks are intricately intertwined with transcriptional, translational, and post-

translational regulation. Studies of the metabolic regulation of immunity have elegantly illustrated this phenomenon. The cells of

the immune system interface with a diverse set of environmental conditions. Circulating immune cells perfuse peripheral organs

in the blood and lymph, patrolling for pathogen invasion. Resident immune cells remain in tissues and play more newly

appreciated roles in tissue homeostasis and immunity. Each of these cell populations interacts with unique and dynamic tissue

environments, which vary greatly in biochemical composition. Furthermore, the effector response of immune cells to a diverse set

of activating cues requires unique cellular adaptations to supply the requisite biochemical landscape. In this review, we examine

the role of spatial partitioning of metabolic processes in immune function. We focus on studies of lymphocyte metabolism, with

reference to the greater immunometabolism literature when appropriate to illustrate this concept.
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INTRODUCTION
The immune system is the critical effector of host defense from
pathogens. Beyond this role, immune cells are important
regulators of wound repair, tissue remodeling, and basal tissue
function. Immunodeficiencies result in susceptibility to infection,
increased incidence of cancer, and cognitive and developmental
defects. On the other end of the spectrum, hyperactivation of the
immune system results in autoimmune and autoinflammatory
disorders including diabetes, inflammatory bowel disease, and
systemic lupus erythematosus. To achieve such a broad range of
function, the immune system has evolved to be highly adaptive.
Individual immune cells are capable of adopting multiple
functional programs in response to specific sets of stimuli. The
functional programs of immune cells differ in their differentiation
signals, transcriptional regulators, and effector molecules. How-
ever, a more recent body of literature has described a now well
appreciated role for cellular metabolism in regulating immune cell
plasticity. Adaptations in cellular metabolism that accompany
transcriptional reprogramming are required for immune cells to
meet the biochemical demands of each distinct functional state.
Intriguingly, the remodeling of biochemical networks also acts
upstream of signal transduction and chromatin remodeling,
suggesting that cellular metabolism acts as more than subservient
transcriptional nodes downstream of receptor signaling.

PROGRAMMING OF T CELL METABOLISM
Distinct T cell activation states require metabolic programs
compatible with their functional demands. The transition between
states is accompanied by active reprogramming of cellular
metabolism. Naïve T cells rapidly rewire metabolic networks upon
activation to meet the demands of clonal expansion and

epigenetic remodeling. Activated effector T cells adopt one of a
myriad of functional programs, each with distinct biochemical
demands. Long-lived memory T cells exhibit a quiescent program
but maintain a primed state. Compared to naïve T cells, memory
cells more rapidly take up glucose, engage in glycolysis, and more
efficiently utilize glucose for fatty acid synthesis upon antigen
rechallenge.1–3 Each transition requires coordinated adaptations
orchestrated by a series of signal transduction and transcription
factor networks. In this section, we review the mechanisms that
govern the programming of metabolism in activated T cells.

Exiting the naïve state
T cell activation is initiated by stimulation of the T cell receptor (TCR)
complex through engagement of cognate peptide-MHC complexes
as well as the ligation of the co-receptor CD28 by co-stimulatory
molecules on an antigen presenting cell.4–6 TCR activation and co-
stimulation initiate discrete sets of signaling cascades that collectively
license a T cell to exit quiescence. Broadly, stimulation of the TCR
promotes signaling through the ERK/MAPK pathways and calcium
flux, CD28 signaling activates the PI3K-AKT-mTOR axis, and both
pathways together engage the NF-κB pathway.7,8 In addition, growth
factors, such as IL-2, can stimulate PI3K-AKT-mTOR signaling and the
TCR has also been implicated in activating the pathway.9–14 Of these
signal transduction pathways, the PI3K-AKT-mTOR axis and Myc
signaling are understood to be the primary regulators of early
metabolic changes associated with T cell activation and differentiation
(Fig. 1).15,16

PI3K signaling and T cell metabolism. The primary metabolic
adaptation of an activating T cell is an increase in glucose
metabolism. Co-stimulation signaling downstream of CD28
activation licenses glucose uptake from the extracellular
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environment. Although TCR stimulation is necessary, CD28-
mediated signaling is the primary regulator of expression of the
plasma membrane glucose transporter, Glut1.17 In activated T cells
as in other cell types, the PI3K-AKT signaling axis is required for
increases in Glut1 expression and glucose uptake.17–19 Although
increasing the strength of stimulation through the TCR can license
T cell glucose import in the absence of co-stimulation, the
magnitude of glucose import in this setting is markedly
diminished.19 Glut1 expression is required for functional effector
T cell responses.20 AKT-mediated regulation of Glut1 expression
and glucose uptake is not unique to T cells activating from the
naïve state. Homeostatic maintenance of T cells by IL-7 also
requires PI3K-AKT signaling to sustain Glut1 expression, through a
mechanism dependent on STAT5 signaling.21,22 Memory cells
remain dependent on CD28-mediated PI3K-AKT signaling to
induce Glut1 expression upon reactivation.2 However, memory
T cells employ additional mechanisms, including Notch signaling,
to enhance AKT activation, Glut1 expression, and glucose
uptake.23

In contrast to effector T cells, the extent to which regulatory
T cells (Tregs) engage PI3K-AKT signaling to promote glucose
utilization and the role of glycolysis in Treg biology remain less
clear. Foxp3 has been reported to suppress PI3K-AKT-mediated
Glut1 upregulation and the glycolytic program through to
maintain suppressive capacity and survival in low glucose
environments.24,25 In contrast to murine Tregs, human Tregs must
maintain elevated glycolytic activity to retain optimal suppressor
function.26 Moreover, other groups have found that unlike
peripheral Tregs, thymic Tregs upregulate Glut1 expression to
levels comparable to T helper type 1 (Th1) cells and display similar
rates of glycolysis.27 Given that exposure to TGF-β results in

diminished glycolysis and PI3K signaling in both peripheral and
thymic Tregs, it is likely that exposure to this important cytokine
explains some of these reported differences in Treg metabolism.
Further work is needed to better deconvolute the relationship of
the PI3K-AKT pathway and TGF-β signaling in regulating
peripheral versus thymic Treg metabolism.
Pathways that antagonize co-stimulation, including signaling

downstream of the co-inhibitory receptors CTLA4 and PD-1, impair
glucose uptake and metabolism. Engagement of CTLA4 inhibits
glucose uptake and metabolism, maintaining the metabolic profile
of non-activated T cells.28 PD-1 ligation also impairs glucose
metabolism while additionally promoting fatty acid oxidation
(FAO) of endogenous lipids both in the setting of primary
activation and chronic antigen stimulation.28,29 Importantly, PD-1
signaling in chronically stimulated T cells induces a metabolically
irreversible state not rescued by PD-1 blockade, which instead
promotes reactive oxygen species (ROS) and cell death.29

Supporting pro-growth metabolism in T cells with mTOR and
Myc. Downstream of co-stimulation and PI3K-AKT, the mamma-
lian target of Rapamycin (mTOR) kinase pathway integrates
multiple signals and regulates anabolic metabolic reprogramming
in T cells exiting quiescence. mTOR complex 1 (mTORC1) is
required for cell cycle entry and coordination of early metabolic
changes that occur upon T cell activation. T cells deficient in
Raptor, an essential component of mTORC1, fail to upregulate the
expression of Glut1 and other glycolytic enzymes when
activated.30–33 Raptor-deficient T cells also exhibit defects in de
novo lipid synthesis and oxidative phosphorylation, suggesting
the mTOR pathway is a global regulator of T cell metabolic
programs.34 Beyond activation, mTORC regulates T cell

Fig. 1 “Top-down” vs “bottom-up” metabolic signaling during T cell activation. “Top-down” signaling regulates the programming of T cell
metabolism downstream of ligation of the TCR, co-stimulation and cytokine signaling. Key metabolic regulators are engaged to meet the
bioenergetic demands of effector T cells. Signal transduction pathways and de novo gene transcription lead to increased transcription and
activation of mTOR and c-Myc, two master regulators of anabolism. mTOR and c-Myc are required to increase glucose uptake and metabolism.
c-Myc is also critical for increasing amino acid (AA) and nucleic acid (NA) metabolism. mTOR activates increased lipid metabolism through
SREBP1/2. “Bottom-up” signaling refers to metabolite regulation of signaling effectors. Increased rates of glucose and amino acid uptake and
metabolism lead to the generation of metabolites that modulate the activity of several key signaling effectors, a process termed bottom-up
metabolic signaling. Levels of glycolytic intermediates alter the activity of RNA-binding proteins, regulate post-translational glycosylation, and
activate the key metabolic regulator AMPK. Amino acid metabolism and uptake regulate mTOR activity though multiple mechanisms. Lipid
species regulate the activity of several key signaling effectors of T cell activation.
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metabolism in differentiated effector T cells. Raptor deficiency
leads to impaired lipid biosynthesis and mitochondrial respiration
in Tregs and B follicular helper T (Tfh) cells, although these results
are model dependent.33–36 Regulation of mTOR signaling during T
cell activation and differentiation is regulated by asymmetric cell
division, which may explain these discrepancies.37,38 Memory
T cells also require mTOR signaling to sustain effector metabolic
programs. CD8 memory T cells deficient in Rictor, an essential
component of mTOR complex 2 (mTORC2), are unable to sustain
glycolysis upon reactivation, although initiation of glycolysis is
Rapamycin insensitive.2

The mTOR pathway functions primarily through post-
transcriptional regulation of key metabolic transcription factors,
although effector transcription factors such as Tbet can be
regulated directly by mTORC1 as well.39 Raptor-deficient T cells
have diminished protein levels of two primary regulators of lipid
synthesis, Sterol Regulatory Element Binding Proteins 1 and 2
(SREBP1 and SREBP2).40 Raptor knockout T cells also have reduced
mRNA expression of genes that encode enzymes in the glycolysis
as well as fatty acid and sterol biosynthesis pathways.41 mTORC1-
mediated signaling is also required for proteomic remodeling of
pathways including one-carbon metabolism, FAO, and the
electron transport chain (ETC) that occurs early in activating
T cells.42 mTOR also modulates T cell metabolism through control
of hypoxia inducible factor 1 alpha (HIF1a) in some contexts. Loss
of HIF1α in Th17 and CD8 T cells, but not other subsets or
activation states leads to decreased expression of Glut1 and other
key metabolic genes.30,31,43,44 Signaling through mTOR also
regulates the key metabolic transcription factor c-Myc. Raptor
deficiency results in loss of c-Myc protein without changing
transcript levels, similar to the effect on SREBP genes, in early
activated T cells.41

Myc mRNA and c-Myc protein levels in activated T cells are also
directly regulated by TCR signaling and are sustained by IL-2-
mediated signaling.45–48 Stabilization of c-Myc is essential for the
global metabolic reorganization that occurs early in activating
T cells. c-Myc deficiency results in a drastic reduction in T cell
proliferative capacity and cell growth.43,47 These defects in c-Myc-
deficient T cells are in part due to insufficient amino acid, lipid,
and nucleotide precursor accumulation. c-Myc knockout T cells are
also unable to increase glucose uptake, glycolytic flux, and the
expression of enzymes required for glucose metabolism. More-
over, c-Myc loss impairs polyamine synthesis, due to both
upstream defects in glutaminolysis and decreased expression of
polyamine biosynthesis genes.43 Network analysis of proteomic
alterations in c-Myc-deficient T cells shortly after activation also
demonstrates a role for c-Myc in controlling mitochondrial
ribosome biogenesis.42 These data together demonstrate the role
of c-Myc as a master regulator of metabolic programming in
activating T cells.

BOTTOM-UP METABOLIC SIGNALING
As reviewed in the previous sections, primary activating signals
from the TCR and co-stimulatory receptors drive many of the
metabolic adaptations during T cell responses. This “top-down”
control of metabolic protein expression and function through
signal transduction and gene transcription is essential for
establishing a framework through which biochemicals can be
produced and consumed. However, in addition to extracellular
signals, metabolites regulate these same signal transduction
networks. This layer of regulation by metabolites represents
“bottom-up” metabolic signaling whereby metabolites directly
modify the activity of signaling effectors and gene transcription.

Metabolic regulation of signaling effectors
Metabolites act as key regulators of signaling effector molecules,
either through mechanisms that directly sense metabolite

concentration or by providing the substrates required for
functional protein modifications. In this section, we review the
mechanisms of bottom-up metabolic signaling that regulate T cell
activation and function described in the current literature.

AMPK: balancing energy homeostasis and T cell activation. One of
the most well appreciated mechanisms of bottom-up metabolic
signaling is the AMP-activated protein kinase (AMPK) signaling
network. Cells must constantly regulate energy stores, primarily in
the form of ATP, to coordinate energy-producing and energy
consuming processes. AMPK binds to and is activated by adenine
nucleotides, detecting when cellular energy stores are low by
sensing the relative concentration of ATP to its low-energy
enzymatic products AMP and ADP. A drop in cellular energy
promotes AMPK’s kinase activity. Upon activation, AMPK phos-
phorylates components of cellular energetic pathways, including
glycolysis, mitochondrial metabolism, and lipid metabolism.49

AMPK also activates the TSC complex, which inhibits mTORC1.50,51

Together, these actions promote catabolism to restore cellular ATP
levels (Fig. 1).
AMPK is a critical regulator of T cell metabolism and function.

Highly glycolytic activated T cells are unable to maintain ATP
levels in low glucose environments. In this setting, the disruption
of cellular energetics engages AMPK, which in turn inhibits mTOR
activity, mRNA translation, and T cell proliferation. Loss of
AMPKα1, the catalytic component of AMPK, is sufficient to restore
mTOR signaling and T cell cytokine production, but not
proliferation, when cells are stimulated in limiting glucose
conditions. Although loss of AMPK can restore some functions in
glucose-restricted T cells, the cells do not initiate metabolic
adaptations necessary to recover ATP levels. In vivo, AMPKα1-
deficient T cells have decreased mitochondrial respiration, flux of
glutamine into the mitochondria, and ATP:AMP ratios, and
therefore fail to proliferate and function effectively.52 These data
illustrate how metabolic sensing, rather than a depletion of
metabolic resources per se, can act upstream of T cell functional
programming.
AMPK has been proposed to play an important role in sensing

other metabolic changes associated with T cell activation, beyond
energetics. T cell activation results in an increase in ROS. When T
cell ROS levels are reduced through the use of scavengers, T cells
display sustained AMPK signaling after activation. Consistent with
this, ROS scavenger treatment results in impaired mTOR signaling
throughout activation. Moreover, T cells treated this way exhibit
diminished glucose uptake, glycolysis, and decreased proliferative
capacity, in keeping with enhanced AMPK activity.53

Metabolic sensing through mTOR. The previously described mTOR
pathway is another nutrient responsive pathway critical for
regulating T cell responses. Apart from its regulation by PI3K-
AKT and indirect sensing of changes in metabolism through
AMPK, mTOR signaling is directly regulated through multiple
metabolic processes (Fig. 1). Amino acids act as potent activators
of mTORC1 signaling through multiple mechanisms. One well
characterized mechanism is through amino acid binding to Rag
GTPases, which bind to mTORC1 and localize the complex to
Rheb-containing lysosomal compartments.54,55 Leucine further
promotes Rag GTPase-mTORC1 interactions by relieving Sestrin
inhibition of the pathway. Sestrins impair mTORC1 activity
through their binding and negative regulation of GATOR2.
GATOR2 indirectly promotes mTORC1 signaling by inhibiting
GATOR1, which in turn is a negative regulator of Rag GTPases.
When leucine binds Sestrin2, it relieves GATOR2 inhibition and
potentiates mTORC1 activity.56,57

Other metabolic sensors can influence mTORC1 signaling
through their inhibition of GATOR2. The CASTOR1/2 complex
antagonizes mTORC1 signaling by negatively regulating GATOR2
when cellular arginine is limiting. High concentrations of cellular
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arginine relieve CASTOR1-mediated GATOR2 inhibition and thus
promote mTORC1 activity.58,59 Methionine also regulates mTORC1
though the activity of GATOR family proteins. S-
adenosylmethionine (SAM), a methionine metabolite, binds the
recently identified SAMTOR protein, disturbing its interaction with
GATOR1 and relieving mTORC1 inhibition.60 Amino acids activate
mTORC1 through Rag GTPase-independent mechanisms as well.
For example, in Rag GTPase-deficient cells, high glutamine
concentrations activate mTORC1 through lysosomal translocaliza-
tion via a mechanism dependent on protein ADP-ribosylation
factor 1 (ARF1).61

Modulation of mTOR pathway activity by amino acids is critical
for T cell activation. As has been documented in other cell types,
amino acid deprivation results in potent inhibition of mTORC1 in
activated T cells.62 Upon activation, T cells rapidly increase
glutamine uptake through the glutamine transporter, ASCT2/
Slc1a5, and require extracellular glutamine to proliferate.43,63–65

Evidencing the important role glutamine plays as a signaling
molecule, T cells fail to properly engage mTORC1 signaling when
they lack Slc1a5 or are cultured in glutamine-free media.64,66

Furthermore, glutamine supplementation is sufficient to partially
restore signaling in amino acid-depleted media, and culturing
T cells in high levels of glutamine can overcome the impact of
Slc1a5 deficiency on mTORC1 activity.64,66

In addition to directly interacting with the mTOR pathway,
glutamine has also been shown to indirectly regulate mTORC1
through glutaminase GLS1 and glutaminolysis in a Th cell
program-specific manner. In the absence of GLS1 activity,
Th1 cells display enhanced mTORC1 signaling, whereas Th17 cells
show impaired activity.65 This differential effect of GLS1 on
mTORC1 results from glutaminolysis promoting the Th1-specific
expression of PI3KIP, a PI3K-mTOR signaling inhibitor. Formally
demonstrating this mechanism, sgRNA targeting of PI3KIP in
Th1 cells phenocopies GLS1 inhibition, enhancing mTORC1, while
stimulating PI3KIP with cross-linking antibody yields diminished
mTORC1 activity.65

While glutamine is an important regulator of mTORC1, T cells
are particularly sensitive to leucine availability. Unlike glutamine,
leucine is sufficient to restore mTOR activity in the absence of
other exogenous amino acids. Selectively depleting leucine or
blocking the neutral amino acid transporter that transports
leucine, Slc7a5, impairs mTORC1 activity equivalently to pan-
amino acid deprivation.66 Consistent with leucine playing a
privileged role in regulating the mTOR pathway in activating
T cells, impairing leucine processing through the branched chain
amino acid catabolism pathway promotes mTOR activity. Upon T
cell activation, both the transcript and enzymatic activity of the
cytosolic isoform of branched chain aminotransferase (BCATc) are
rapidly induced, leading to the production of the ketoacid α-
ketoisocaproate. BCATc-deficient T cells have elevated mTORC1
activity and increased rates of glycolysis.67

Amino acid regulation of mTOR activity is not restricted to effector
T cells, as has been recently highlighted by Chi et al.68 Tregs also rely
on amino acid-induced mTORC1 activation. Like inflammatory
effector T cells, Tregs display greater mTORC1 activity than their
naïve counterparts. Tregs have increased transcript levels of the
amino acid sensors Sestrin1, CASTOR1, CASTOR2 as well as
components of the GATOR1 and GATOR2 complexes. Similar to
their mechanism of action in other cell types, these amino acid
sensors and the downstream effector GATOR complexes interact
with RagA in activated Tregs, suggestive of functional activity. In
vivo, mTOR activity is essential for Treg suppressive capacity.
Selective deletion of RagA and RagB in FoxP3-expressing cells leads
to spontaneous T cell activation, systemic inflammation, and early
lethality.68 These data demonstrate the importance of amino acid
sensing to homeostatic Treg function.
Beyond amino acid levels, mTOR signaling in T cells is also

sensitive to changes in cellular ROS. T cell activation induces rapid

production of ROS, as early as 15min after activation.69 To cope with
this burst in superoxide production, activated T cells engage in
increased synthesis of the antioxidant glutathione (GSH). Both CD4
and CD8 T cells display elevated GSH levels within the 1st day of
activation. This is accompanied by increased transcription of the
catalytic subunit of glutamate cysteine ligase (GCLC). Accordingly,
conditional deletion of GCLC in T cells results in a loss of activation-
induced GSH synthesis and elevated ROS. Though GCLC-deficient
T cells express markers of early activation, like CD44 and CD69, at
normal levels, and show intact ERK-MAPK signaling, they fail to
properly activate the mTOR pathway or to stabilize Myc expression.
Consistent with this, loss of GCLC results in decreased glycolysis,
proliferation, and cell size. Supplementation with either GSH or the
ROS scavenger N-acetyl-cysteine is sufficient to restore mTOR and
Myc in activated T cells and reverse the metabolic and cellular
defects resulting from GCLC deficiency, illustrating the role of ROS
sensing in the reprogramming of these networks.70

Lipids as metabolic mediators of T cell signaling. Working
upstream and synergistically with mTOR signaling, many of the
key initiating events of T cell activation are metabolic signaling
reactions of membrane phospholipids. T cell receptor engage-
ment leads to activation of phospholipase C (PLC), which
hydrolyzes the membrane phospholipid phosphatidylinositol 4,5-
biphosphate (PIP2) to generate IP3 and diacylglycerol (DAG).7,71,72

The lipid signaling mediators IP3 and DAG activate store-operated
calcium signaling and protein kinase C, respectively.73 Co-
stimulation and IL-2 signaling also promote alterations in
membrane phospholipid content through PI3K recruitment to
the cell membrane where it converts PIP2 to phosphatidylinositol
3,4,5-trisphosphate (PIP3), which serves as a docking site for PDK1
and its target AKT.7 Conversion of PIP2 to PIP3 by PI3K is
antagonized by PTEN, a critical negative regulator of T cell
homeostasis. Haploinsufficiency of PTEN results in a lethal T cell-
mediated autoimmune disorder characterized by spontaneous T
cell activation and reduced Fas-mediated activation-induced cell
death.74 Conditional deletion of PTEN using the T cell-specific
CD4-Cre in mice leads to an autoimmune phenotype character-
ized by spontaneous activation and differentiation of effector
T cells.75,76 PTEN activity also regulates Treg function. PTEN-
deficient Tregs rapidly proliferate in response to IL-2 stimulation
alone, with restoration of PTEN expression sufficient to reverse this
phenotype.77 More recently, Zou et al.78 identified the lipid kinase
acylglycerol kinase (AGK) as a novel regulator of the PI3K-PTEN
axis in CD8 T cells. AGK phosphorylates monoacyl glycerol and
DAG to generate lysophosphatidic acid and phosphatidic acid,
respectively. Upon TCR and CD28 stimulation, PTEN is recruited to
the plasma membrane and interacts directly with and is
phosphorylated and inactivated by AGK. In AGK-deficient CD8
T cells, PTEN remains in an active, unphosphorylated state leading
to impaired AKT and mTOR signaling. AGK-deficient CD8 T cells
are less proliferative, functional, and capable of controlling tumor
growth in vivo than wild-type cells. Notably, this mechanism is
specific to CD8 T cells, as CD4 T cells are not dependent on AGK
for PTEN inactivation.
Beyond the role phospholipids play in signaling downstream of

receptor activation, metabolic pathways play an important role in
regulating the initiating T cell activation events. IP3 produced by
PLC potently stimulates calcium efflux from the endoplasmic
reticulum (ER) by engaging IP3 receptors, the initiating step of
store-operated calcium entry. The sarco/ER Ca2+-ATPase (SERCA)
channels mediate calcium uptake into the ER to restore the
cytoplasm-ER calcium gradient and terminate calcium flux-
mediated signaling. This metabolite-mediated process is further
regulated by the glycolytic intermediate phosphoenolpyruvate
(PEP). PEP inhibits SERCA channels leading to potentiated calcium
signaling, integrating glycolytic activity and proximal TCR signal-
ing.79 T cells activated in low glucose environments flux less
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calcium while exhibiting normal PLC, ERK-MAPK, and PI3K-AKT
activity, indicating a mechanism independent of IP3. Inhibiting
SERCA channels with thapsigargin or knockdown of the enzyme
responsible for PEP production, enolase 1 (Eno1), is sufficient to
restore calcium signaling and translocation of the Ca2+-activated
transcription factor NFAT1 to the nucleus in T cells with impaired
glycolysis. In vivo, enhancing PEP production through over-
expression of PCK1, an enzyme that produced PEP from
oxaloacetate, is sufficient to enhance CD4 and CD8 T cell function
in murine tumor models, suggesting that glycolytic regulation of
signaling is a mechanism by which glucose-replete tumors evade
immune responses.79

The cholesterol biosynthesis pathway and T cell signaling. T cell
signaling can be modulated by several other lipid species,
particularly those within the cholesterol biosynthesis pathway.
T cells rapidly increase their cholesterol stores and the expression
of cholesterol biosynthesis genes upon activation.40,80–82

Though a major role for this increase in cholesterol biosynthesis
is to support membrane production for proliferation, the
pathway is also appreciated to control T cell signaling at multiple
levels.
Engagement of the TCR and co-stimulation results in a marked

restructuring of the plasma membrane.83–85 As part of this
process, lipid species condense at the site of the TCR and display
an altered lipid composition.86–90 Depletion of CD8 T cell plasma
membrane cholesterol impairs TCR receptor clustering and
signaling; conversely enhancing plasma membrane cholesterol
localization by impairing the cholesterol esterase Acat1 results in
increased TCR clustering and signaling.91 These detergent-
resistant clusters of cholesterol and phospholipids, known as
“lipid rafts”, are rich in kinases and signaling scaffolds critical for
the initiating events of T cell activation.86,88,92–94 The accumulation
of lipid rafts at the site of the TCR during antigen presentation has
been proposed to concentrate these signaling effectors and
permit T cell activation.88,92,95 Although membrane cholesterol
deposition can contribute to T cell signaling, signaling micro-
domains can form in the absence of lipid rafts through
protein–protein interactions and disruption of lipid raft formation
does not impair microdomain clustering.96,97

In addition to controlling plasma membrane structure, the
cholesterol biosynthesis pathway has the ability to impact the
localization of signaling effectors through prenylation. Farnesyl
pyrophosphate (FPP) is a common precursor of both cholesterol
and isoprenoids. Both FPP and the downstream product
geranylgeranyl pyrophosphate (GGPP) can modify and activate
signaling proteins by localizing them at the plasma membrane.98

In T cells, prenylation regulates ERK signaling downstream of the
TCR through prenylation of RhoA and farnesylation of Ras.99

Depletion of isoprenoid stores or use of prenylation inhibitors
impairs T cell proliferation and Th1 differentiation.99,100 Impair-
ment of prenylation has also been shown to promote Treg
differentiation at the expense of Th17 cells, downstream of TGF-β
signaling.101,102

Intracellular sensing of cholesterol species plays an important
role in T cell activation and differentiation. Cellular sterol stores are
predominantly sensed and controlled by the SREBP and LXR
families of transcription factors.103,104 Suppression of LXR signaling
and enhancement of SREBP signaling are critical steps during T
cell quiescence exit to promote proliferation and growth.40,82 After
T cells activate, cholesterol sensing by LXR and SREBP also plays an
important role in differentiation. LXR signaling impairs Th17
differentiation, with Srebp-1 expression being responsible down-
stream of LXR.105 Consistent with this, LXR agonists suppress IL-
23R expression and diminish EAE severity.106 In contrast, LXR
activation supports Treg differentiation at the expense of the Th1
and Th17 cell programs.107 Sterol sensing can regulate Th17
differentiation even more directly as sterol binds to RORγt and

drives its activity to serve as a transcription factor, while treatment
with statins impairs RORγt expression.108,109

Modulation of T cell activation by glucose. In addition to
metabolic sensing by signaling effectors and transcription factors
during T cell activation, metabolic enzymes themselves have been
found to act as sensors that toggle T cell function. Glycolytic
enzymes act as direct regulators of T cell function through
mechanisms independent of catalytic activity. Glyceraldehyde 3-
phosphate dehydrogenase (GAPDH) catalyzes the sixth step of
glycolysis and also acts as an mRNA-binding protein.110,111 In
multiple cell types, enzymatically inactive GAPDH binds mRNA
and inhibits translation.112–116 This inhibition is relieved when
glycolytic flux is elevated. In T cells, GAPDH binds the key effector
molecule transcript Ifng to control translation, linking glycolytic
activity directly to effector function.117 Mechanistically, GAPDH
associates with an AU-rich region of the 3′ untranslated region
(UTR) of the Ifng mRNA, limiting protein translation when GAPDH
is insufficiently engaged in catalytic activity. Further studies are
required to define the complete set of RNAs bound by GAPDH in
various T cell stimulation conditions to determine how else
glycolytic activity influences the proteome.
Glucose and glucose-derived metabolites regulate T cell

activation and signaling through modulation of receptors. The
majority of plasma membrane receptors and transporters are
thought to be N-glycosylated within the ER.118 N-glycosylated
proteins are further modified in the Golgi apparatus by the MGAT
family of N-acetylglucosaminyltransferases that require UDP-N-
acetylglucosamine (UDP-GlcNAc). UDP-GlcNAc is synthesized by
the hexosamine pathway using the substrates and glycolysis
intermediate fructose-6-phosphate as well as glutamine, Acetyl-
CoA (Ac-CoA), and UTP. This pathway integrates central carbon,
amino acid, and nucleotide metabolism.119 Therefore, glycosyla-
tion acts as a mechanism by which metabolic information is
integrated into protein function.
T cell activation induces the expression of MGAT protein,

increases intracellular UDP-GlcNAc biosynthesis, and results in
elevated protein N-glycosylation.120–125 Several regulators of T cell
activation are actively modified by N-glycosylation, including the
TCR, the CD4 and CD8 co-receptors, inhibitory receptors such as
CTLA4, and cytokine receptors including the TGF-β recep-
tors.124,126 In T cells, MGAT5 has been found to be the dominant
regulator of glycosylation. Early studies using inhibitors of N-
glycosylation demonstrated that depletion of MGAT5-modified
glycans enhances T cell proliferation.127 Corroborating these
findings, MGAT5-deficient mice develop spontaneous autoim-
mune disease due to diminished TCR signaling thresholds due to
increased CTLA4 endocytosis and a loss of N-acetylgalactosamine-
galectin lattices that restrict the TCR to sites of antigen
presentation.120,123 This is an established mechanism by which
galectins impair T cell activation and induce apoptosis when
present at high levels.128,129 Extracellular lattices partition T cell
signaling complexes by counteracting cytoskeleton to inhibit
naïve T cell activation. When antigen is absent, galectin maintains
CD45 in TCR microdomains and impairs recruitment of WASP and
suppressive signaling.130

N-glycosylation also plays a critical role in thymocyte selection.
MGAT5-mediated branching is a critical factor of TCR-MHC affinity.
First, N-glycosylation negatively regulates high-affinity TCR activ-
ity, allowing cells with these receptors to survive negative
selection. Secondly, N-glycosylation enhances surface expression
of CD4 and CD8 co-receptor, allowing cells expressing low-affinity
TCRs to survive positive selection.126 MGAT5 also modulates
mature Th cell differentiation in the periphery. MGAT5-deficiency
impairs IL-4 and enhances IFNγ production in Th2-skewing cell
culture conditions, suggesting that N-glycosylation restricts
aspects of Th1 cell differentiation.122 Consistent with these data,
T cells from animals fed GlcNAc or in vitro T cells treated with the
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same metabolite have increased N-glycosylation and are defective
in Th1 and Th17 cell differentiation.123,131 Highlighting the
importance of N-glycosylation in Th cell differentiation, the Th17
metabolic program actively antagonizes the hexosamine pathway.
Inflammatory T cells readily engage glycolysis and Th17 cells favor
glutaminolysis. Both of these metabolic pathways deprive carbon
and nitrogen from UDP-GlcNAc biosynthesis and enhance Th17
cell differentiation. Anti-inflammatory Tregs are more dependent
on oxidative phosphorylation, which increases flux into the
hexosamine pathway and N-glycosylation. This results in increased
CD25 glycosylation, stabilizing its expression in the cell surface to
promote Treg maintenance.132

In addition to N-glycosylation, O-glycosylation has also been
found to regulate T cell biology. UDP-GlcNAc can also be
metabolized by O-GlcNAc transferase (OGT) to reversibly add a O-
GlcNAc modification to serine and threonine residues of proteins.133

In contrast to the role of N-glycosylation on cell membrane
proteins, O-GlcNAcylation acts on intracellular proteins, where it can
limit accessibility of serines and threonines to phosphorylation and
modulate kinase signaling.134–136 Activation of T cells results in a
rapid increase in protein O-GlcNAcylation.137–139 In particular, T cell
O-GlcNAcylation impacts nuclear proteins, including positively
regulating the activity of NFAT and NF-κB subunits.137,140 Beyond
T cell activation, OGT activity is also critical during thymic
development as well as malignant transformation of the T
lineage.139 In this manner, glucose and glutamine uptakes work
in concert to modulate T cell signaling from receptors on the cell
surface to transcriptional regulators within the nucleus, through N-
and O-glycosylation.

Transcriptional regulation
Mitochondria-cytosolic crosstalk and histone acetylation in differ-
entiating T cells. Cellular metabolism supports cell program-
specific epigenetic remodeling in addition to providing substrates
for biomass generation and protein modification.141,142 Many
metabolic adaptations that result from T cell activation are
interconnected with epigenetics. One of the primary pathways

that connect metabolism to epigenetic regulation is the export of
mitochondrial citrate to the cytosol via the mitochondrial citrate
carrier (Slc25a1). Citrate is an abundant mitochondrial metabolite
produced in an early TCA cycle reaction by citrate synthase from
mitochondrial Ac-CoA and oxaloacetate (OAA). Cytosolic metabo-
lism of citrate by ATP citrate lyase (Acly) regenerates Ac-CoA in
this compartment, providing the main pool of this substrate
required for histone acetylation143 (Fig. 2).
Activated T cells rely on citrate export from the mitochondria to

support extensive epigenetic remodeling required for differentia-
tion. Lactate dehydrogenase A (LDHA)-deficient CD4 T cells have
impaired glycolytic function and produce less IFNγ, indicating a
functional defect.144 To compensate for decreased glycolytic
function, these cells increase metabolic flux through the TCA cycle,
decreasing the pool of citrate for mitochondrial export and
cytosolic Ac-CoA production. Decreased cytosolic Ac-CoA con-
centrations directly modulated T cell effector functions, leading to
decreased histone acetylation at the Ifng promoter and CNS-22
enhancer, but not at other gene bodies such as Cd3e. How gene
locus specificity is accomplished and whether Ac-CoA production
occurs in other cellular compartments such as the nucleus is an
area of open investigation. Supporting a role for glycolysis in
promoting T cell reprogramming via citrate export, metabolic
inputs that enhance glycolysis promote Acly and acetylation-
dependent changes in T cell function. Supplementation of Th17-
cultured T cells with the short-chain fatty acids pentanoate or
acetate enhances IL-10 production. These supplementation
conditions enhance glycolysis, Ac-CoA production, and histone
acetylation at the IL-10 promoter by a 2DG and Acly inhibitor-
sensitive mechanism.145 More recently, direct genetic evidence
demonstrates the critical role of citrate export in T cell epigenetic
reprogramming. Using a CRISPR-Cas9-based approach in vitro,
deletion of either Slc25a1 or Acly in activated CD4 T cells resulted
in a loss of total cellular H3K9 acetylation and a decrease in IFNγ
production.146 The results of this study suggest that widespread
changes to the histone acetylome occur as a result of Ac-CoA
deprivation, and further studies are required to determine the
mechanisms that regulate locus-specific modifications. These
studies together highlight the importance of metabolic exchange
between the mitochondria and the cytosol to pattern T cell
differentiation.
The regulated transport of metabolites between metabolically

compartmentalized organelles is required to maintain substrate
availability for various processes (Fig. 2). Beyond the example of
citrate export presented above, the malate-aspartate shuttle is
another transport system that regulates T cell function. Together,
these shuttling systems effectively involve the first and last steps
of the TCA cycle to run forward in the mitochondria and then
reverse in the cytosol, with the net effect being the movement of
electrons into the mitochondria (in the form of NADH) and carbon
into the cytosol (in the form of Ac-CoA). The malate-aspartate
shuttle consists of a cycle in which cytosolic OAA and NADH are
converted into malate and NAD+ by malate dehydrogenase 1
(Mdh1), and then mitochondrial malate is oxidized to OAA by
malate dehydrogenase 2 (Mdh2), generating mitochondrial NADH.
Cytosolic and mitochondrial pools of malate and OAA are
connected by two transporters — the malate-2OG transporter
(Slc25a11) and the glutamate-aspartate transporter (Slc1a3)— and
by the interconversion of aspartate and glutamate into OAA and
2OG by the cytosolic and mitochondrial isoforms of the
glutamate-oxaloacetate transaminase, Got1 and Got2, respec-
tively. OAA can also be used to generate citrate in mitochondria
by citrate synthase (Cs), which in turn may be transported to the
cytosol using Slc25a1 and cleaved by Acly back into OAA and
Ac-CoA.
The malate-aspartate shuttle is required for CD4 T cell activation

and differentiation. CRISPR-Cas9 targeting of any of the enzymes
or transporters of the malate-aspartate shuttle results in impaired

Fig. 2 Metabolic regulation of transcription. Crosstalk between
metabolites generated by citrate cycle (TCA) reactions in the
mitochondria and effectors in nucleus/cytosol regulate protein
and histone post-translational modifications. Mitochondrial citrate
export through the citrate transporter SLC25a1 is a required source
of extra-mitochondrial Ac-CoA for protein and histone acetylation.
The malate-aspartate shuttle regulates concentrations of α-
ketoglutarate (α-KG), succinate (Suc), fumarate (Fum), and FAD,
which regulate the activity of the JMJ, LSD, and TET family
demethylases. This shuttle also regulates the redox status of the
cell, controlling the activity of NAD-activated sirtuin deacetylases.

Review Article

654

Cell Research (2020) 30:649 – 659



IFNγ cytokine production in activated Th1 cells.146 Loss of malate-
aspartate shuttle activity also leads to reduction in H3K9
acetylation, suggesting a connection between this pathway and
the citrate export pathway previously described. Formally
demonstrating that the activity of the shuttle network, rather
than the TCA cycle, regulated CD4 T cell biology, targeting either
shuttle or the cytosolic isoform of Mdh1 was sufficient to impair
mitochondrial respiration. In addition to the impact of the malate-
aspartate shuttle on histone acetylation, the shuttling network was
also found to be essential for T cell proliferation through its
control of respiration.146 Similar to what has been found in cancer
cells,147,148 Complex-I activity regenerates NAD+ that allows
cytosolic aspartate to be produced by GOT1, which is necessary
for nucleotide biosynthesis. Indeed, impairing either Complex-I
with the inhibitor rotenone or targeting the malate-aspartate
shuttle results in a block in the synthesis of aspartate and its
downstream nucleotide precursor, N-carbamoyl-L-aspartate. In this
manner, CD4 T cell division is impaired when cells are treated with
rotenone, but can be restored simply by supplementing with
exogenous aspartate.146 It is therefore likely that the malate-
aspartate shuttle contributes to histone remodeling both by
interacting with citrate export as well as by supporting cell
proliferation.

Metabolic regulation of deacetylation by sirtuins. The NADH/NAD+

ratio also directly impacts histone and protein acetylation by
controlling the activity of NAD+-dependent sirtuin deacety-
lases149,150 (Fig. 2). Sirtuin 1 (SIRT1)-deficient T cells spontaneously
activate, displaying a breakdown in tolerance.151 These cells are
also resistant to in vitro anergy induction.152 However, the T cell-
driven pathological phenotype in SIRT1 knockout mice is likely
contributed to by extrinsic factors, as T cell conditional knockout
mice do not develop disease or have dysfunctional effector
T cells.153 Mechanistically, SIRT1 deacetylates the Tbx21 locus in
CD8 T cells, and is suppressed by AP1 family members BATF and c-
Jun to promote Tbet expression in CD8 T cells.154 Although the
sirtuin family proteins are reported to regulate histone acetylation
in CD4 T cells, this is a largely unexplored aspect of the metabolic-
epigenetic axis warranting further study.155

Sirtuin family members are also key regulators of post-
translational modifications to non-histone proteins. Several studies
have documented the role of sirtuin proteins in regulating
acetylation of key T cell-associated transcription factors. SIRT1 is
critical for maintaining FoxO1 protein stability and sustaining
oxidative phosphorylation in resting CD8 T cells.156 In the context
of T cell anergy, SIRT1 negatively regulates c-Jun to suppress T cell
activation.151 This axis specifically is the target of the HIV Tat
protein, which directly interacts with SIRT1 to suppress deacetyla-
tion of the p65 subunit of NF-κB to promote T cell proliferation.157

Perhaps the best characterized role for SIRT1 in T cells is in Treg
biology. Acetylation blocks ubiquitination and proteasomal
degradation of FoxP3. Active SIRT1 deacetylates FoxP3, allowing
for its subsequent degradation.153,158,159 Impairing or knocking
out SIRT1 in Tregs leads to increased suppressor function and
promotes the acceptance of allografts in murine transplant
models.153,158 Other sirtuin family members regulate Treg cell
biology. Similar to SIRT1, SIRT4 regulates FoxP3 stability and Treg
cell function.160 More generally, SIRT1 regulate the balance of
Th17-Treg differentiation. T cell-specific deletion of SIRT1 and
SIRT1-specific inhibitors suppress the Th17 program and are
protective in mouse models of experimental autoimmune
encephalomyelitis (EAE). Mechanistically, active SIRT1 deacetylates
the key Th17 cell transcription factor RORγt, enhancing its
activity.161

Mitochondrial control of histone methylation. In addition to
regulating histone and protein acetylation, alterations in meta-
bolic flux control the availability of substrates that regulate protein

methylation (Fig. 2). Intermediates of the TCA cycle, 2-oxoglutarate
(2OG) and FAD, are obligate cofactors of the two main classes of
histone demethylases, 2OG-dependent dioxygenases (JMJ family)
and FAD-dependent amine oxidases (LSD family). Additionally,
metabolites of the TCA cycle negatively regulate demethylase
activity. For example, succinate and fumarate are potent allosteric
inhibitors of the 2OG-dependent dioxygenases. Therefore, the
production and consumption of these metabolites, and their
transport from the mitochondria to the cytosol dictates histone
dynamics in the nucleus.
2OG-dependent demethylation is a critical regulatory step in T

cell activation and differentiation. Mitochondrial 2OG is generated
by the TCA cycle or by glutaminolysis and transamination of
glutamate. In activated effector T cells, glutamine catabolism and
transamination is the major source of 2OG synthesis.43,65,162

Accordingly, many of the transcriptional defects that occur as a
result of glutamine deprivation or GLS inhibition can be rescued
with 2OG supplementation.65,163 These data link the TCA cycle and
glutamine metabolism to epigenetic remodeling in T cells. High-
lighting the importance of 2OG to T cell transcriptional
reprogramming, 2OG regulates roughly a third of all IL-2-
induced genes. This regulation occurs through JMJD3 and TET2-
mediated removal of H3K27 trimethylation (H3K27me3) and DNA
methylation, respectively, at IL2-regulated loci. In this model, 2OG-
dependent epigenetic modifications altered CTCF binding
dynamics and chromatin structure.163 These results illustrate the
dramatic role that metabolism can play in altering the genomic
architecture of differentiating cells.
Several studies have demonstrated how T cell production and

consumption of 2OG can have program-specific effects on
epigenetic remodeling during T cell differentiation. Compared to
Th1 and Treg cells, Th17 cells have higher rates of glutaminolysis
and rely on this pathway for functional differentiation.65 Down-
stream of the glutamine-to-glutamate conversion catalyzed by
GLS1, GOT1 acts as the dominant aminotransferase that generates
2OG from glutamate.162 Unlike Th1 cells that do not require GLS1
for effector cytokine production, GLS1-deficient Th17 cells
produce less IL-17 than wild-type cells. Conversely, loss of GLS1
activity promotes Th1 cell cytokine production and Tbet expres-
sion.65 Further demonstrating the importance of glutaminolysis in
Th17 cell differentiation, inhibition of GOT1 with aminooxyacetic
acid (AOA) promoted the conversion of Th17 cells to FoxP3-
expressing Tregs. shRNA targeting of GOT1 phenocopied this
result, suggesting the activity of AOA is indeed through inhibition
of glutaminolysis.162 Conversely, glutamine deprivation favors
Treg differentiation and proliferation in both mouse and human
T cells, even in the absence of TGFβ.164,165 These program-specific
glutaminolysis inhibition phenotypes are mediated by 2OG-
dependent methylation. Inhibition of GLS1 enhances H3K27me3
in Th17 cells, favoring differentiation of Th1 cells in a JMJD3-
dependent mechanism. Strikingly, these results are entirely
dependent on the Th cell program being engaged. In contrast
to cells stimulated in Th17-skewing conditions, cells treated with
IL-12 and IFNγ exhibit enhanced chromatin accessibility and
elevated transcription upon GLS1 inhibition.65 Further studies are
required to determine the program-specific mechanisms that
account for these differences in effector T cell subsets.
Glutaminolysis also regulates T cell differentiation by modulat-

ing DNA demethylation. 13C-labeled glutamine metabolic flux
studies revealed that Th17 cells preferentially metabolize 2OG to
2-hydroxyglutarate (2HG), compared to Tregs. In cancer cells, 2HG
is a competitive inhibitor of 2OG-dependent dioxygenases,
including TET and JMJ family demethylases.166–169 2HG also
regulates CD8 T cell demethylation. Upon activation, CD8 T cells
rapidly accumulate 2HG that promotes H3K27me3 and enhances
H3K4me3 at promoter regions, with only minor effects on DNA
demethylation.170 In contrast, 2HG is a critical regulator of DNA
methylation in CD4 T cells. Upon treatment with 2HG, Treg cells
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convert to Th17 cells, even when maintained in Treg cell culture
conditions. Moreover, 2OG supplementation partially rescues AOA
treatment or knockdown of the enzymes responsible for 2HG
production, IDH1 and IDH2. These phenomena are at least in part
explained by the activity of 2HG as an inhibitor of TET enzymes.
Treatment with 2HG promotes DNA methylation of the FoxP3
promoter in both Th17 and Treg culture conditions.162

CONCLUSIONS AND FUTURE OUTLOOK
Our understanding of immune cell metabolism and the inter-
connectedness of signaling with metabolic networks has changed
rapidly over the past decade. The traditional view of metabolism
as a “house-keeping” program that sustains all cells in a uniform
way has been shown as inadequate in explaining the biochemical
diversity seen particularly in the immune system. As described
above, many of these core metabolic processes can play vastly
different roles within the same lineage of cells, depending on the
functional program they adopt. This can even mean that some cell
programs display a critical dependency on a pathway, while an
alternate program is impeded by the same process. These
discriminating metabolic features are both driven by the signaling
pathways that dictate differentiation to sustain the biology of a
given program and can act upstream of those same signaling
networks to direct programming. Ultimately, cells must generate
the biochemical landscape needed to sustain the transcriptome
and proteome launched by differentiating cues. This is ensured by
incorporating metabolic information as an input in signaling.
While this paradigm is now well established, there remain many

outstanding questions. The field is just beginning to explore how
metabolic interconnectivity of organelles regulates immune cell
biology. Glutaminolysis, citrate export, and the malate-aspartate
shuttle all connect the mitochondria to the cytosol and in turn to
the nucleus. How other shuttling networks and the transport of
metabolites in and out of the mitochondria pattern differentiation
has only just begun to be explored. Moreover, we lack insight into
how these changes mediate such profoundly specific alterations
to gene expression when they affect seemingly fundamental and
cell-wide processes (i.e., Ac-CoA availability). Zooming another
level out, we know very little about how the flow of metabolites
between interacting cells can mediate cell-to-cell communication
or influence function. This is of particular interest within the
immune system, whereby lymphocytes go from solitary circulating
cells to fixed in intimate cell contact during antigen presentation
and cell killing and the intercellular relationships between resident
immune cells in organ systems. Indeed, at the level of organ
systems, we know very little how responses to infection or other
alterations in homeostasis in one system (e.g., the liver) change
organismal homeostasis to alter immune responses. Illuminating
how this higher order metabolic architecture is organized through
the lens of metabolic signaling offers the opportunity for the
development of a new wave of metabolic therapies for cellular
and host pathology.
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