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Abstract: Nutritional support for acute respiratory distress syndrome (ARDS) patients shares
metabolic notions common to other critically ill conditions. Nevertheless, it generates specific
concern regarding the primary limitation of oxygen supply and the complications of carbon dioxide
elimination, as well as the significant metabolic alterations due to the body’s response to illness.
In the present narrative review, after briefly summarizing the pathophysiology of critical illness
stress response and patients’ metabolic requirements, we focus on describing the characteristics of
metabolic and artificial nutrition in patients with acute respiratory failure. In patients with ARDS,
several aspects of metabolism assume special importance. The physiological effects of substrate
metabolism are described for this setting, particularly regarding energy consumption, diet-induced
thermogenesis, and the price of their clearance, transformation, and storage. Moreover, we review the
possible direct effects of macronutrients on lung tissue viability during ARDS. Finally, we summarize
the noteworthy characteristics of metabolic control in critically ill patients with ARDS and offer a
suggestion as to the ideal methods of metabolic support for this problem.
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1. Introduction

Nutritional support for patients with acute respiratory distress syndrome (ARDS)
has metabolic notions in common with other categories of critically ill patients. Never-
theless, it may generate additional concern due to the limitations of tissue gas exchange
associated with the syndrome. Different metabolic phases follow each other during an
ICU stay [1,2]. The early period is characterized by metabolic instability and a severe
increase in catabolism. The later period is characterized by significant muscle wasting
and stabilization of the metabolic disturbances. Finally, the post-acute phase follows with
improvement and rehabilitation or persistent inflammatory catabolism. An increased secre-
tion of pro-inflammatory cytokines [3], catabolic hormones [4], and insulin resistance [5]
characterize the metabolic response to critical illness. All these cause increased glycogenol-
ysis, gluconeogenesis and lipolysis, and augmented muscle protein breakdown, with the
aim of ensuring sufficient energy and amino acids for wound repair and immune function.
The main nutritional consequences of the acute stress response, which must be taken into
careful consideration, are dysregulated endogenous glucose production and augmented re-
sistance to anabolic stimuli. Ideally, the resolution of the triggering event (such as infection
control or wound treatment) could reverse the stress response. Unfortunately, nutrition
per se could not reverse this phase. There are limited high-quality data to determine the
impact of energy overfeeding of critically ill patients. However, based on the available evi-
dence, overfeeding does not appear to affect mortality or other important clinical outcomes.
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Large RCTs have shown no beneficial impact on muscle wasting, and several RCTs have
shown increased ureagenesis by enhanced feeding (feeding-resistant catabolism) [6–10].
The appropriate caloric target for critically ill adults is unclear. For instance, in a study, the
delivery of a moderate number of non-protein calories compared with the planned delivery
of a full dosage of non-protein calories was not associated with a lower mortality risk [11],
even among patients at high and low nutritional risk [9]. Two randomized controlled trials
involving patients with acute lung injury evaluated minimal or trophic enteral feeding
(15% to 25% of estimated caloric requirements) with no protein supplementation, and the
reported outcomes were like those of standard enteral feeding [8,12]. One study even found
that enteral provision of more than 2/3 of estimated energy and protein needs given from
admission to hospital discharge increases mortality [13]. Until now, no large study has
identified a subgroup benefit from early full nutritional support, nor an advantage from
increased amino acid doses or from indirect calorimetry-based energy dosing targeted at
full energy expenditure [14]. Moreover, both enteral and parenteral routes can safely be
used to administer substrates [15], while enteral nutrition is currently preferred because it is
believed to maintain the absorbent function and integrity of the intestinal barrier. However,
the Nutrirea-2 study showed that early isocaloric enteral and parenteral nutrition did not
differ in terms of mortality, while gastrointestinal complications were more associated with
enteral nutrition [16]. On the contrary, late parenteral nutrition showed fewer infections,
enhanced recovery, and lower health care costs [6]. The primary source of easily available
energy for all tissues is the glucose metabolized from carbohydrates (CHO). However,
stress hyperglycemia may have deleterious effects on outcomes [17], accounting for the
fact that glycemic control persists as a significant target in critically ill patients. In patients
with acute lung injury, the application of initial trophic enteral feeding for the first week
of their ICU stay was associated with less gastrointestinal intolerance but did not show
as improving ventilator-free days, mortality, or infectious complications, as compared
with full enteral feeding [8]. Finally, nutrition during the recovery phase of critical illness
still often remains underrated. A few studies have demonstrated suboptimal nutritional
intake in ICU survivors and have identified a multitude of factors influencing nutritional
recovery [18,19]. Trace elements and vitamins, named together as micronutrients (MNs),
are essential for human metabolism. Recent research has shown the importance of MNs in
common pathologies, with significant deficiencies impacting clinical outcomes. In fact, a
depletion of vitamins or trace elements may be experienced during artificial nutrition [20].
Even if an adequate enteral intake of calories ensures the needs of microelements and
vitamins, the trace elements and vitamins must be supplemented in cases of inadequate
intake or parenteral support [21]. The current narrative review summarizes the available
literature on the metabolic alterations and the nutritional characteristics of critically ill
patients with ARDS, with the aim of providing suggestions for the metabolic treatment of
these patients.

2. Artificial Nutrition Pitfalls in Critical Illness Patients
2.1. The Determinants of Energy Consumption

Comprehensive reviews of the present topic are present in the literature [22–24]. The
main concepts are summarized in Table 1. Briefly, different amounts of oxygen are required
for complete oxidation of one mole of CHO, lipids, or proteins. Thus, 200, 212, and 239 mL of
oxygen are needed to obtain 1 kcal by selectively oxidizing CHO, lipids, or proteins, respec-
tively. Therefore, the oxygen supply needed for cardiac work is greatest when consuming
lipids and least when burning CHO. On the contrary, 200 mL of carbon dioxide is produced
from 1 kcal of CHO, while this is less for lipids (157 mL) and proteins (191 mL). This implies
that the respiratory work is the least for lipids. Furthermore, 3.7 L of oxygen is needed to
produce each mole of ATP for CHO, 3.9 L of oxygen for lipids, and 5 L of oxygen for protein.
In other words, the ATP generated per liter of oxygen is maximized when oxidizing CHO.
Hence, the available oxygen should be more efficiently used by burning CHO, while the re-
duction in carbon dioxide production comes from lipid oxidation. Nevertheless, a distinction
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exists regarding each gram of substratum oxidized and the energy released. Mixed CHO
produces 4.18 kcal/g, mixed lipids produces 9.44 kcal/g, while protein oxidation produces
4.7 kcal/g [25].

Table 1. Determinants of energy consumption for every mole of substrate.

Substrate O2 Consumed (L) CO2 Produced (L) RQ Energy Yield (kcal) ATP Yield (mol)

Glucose 134 134 1 670 36
Palmitate 515 358 0.7 2400 132

Amino acids 114 92 0.8 479 23

The table shows the oxygen consumption and carbon dioxide production derived from the complete oxidation
of one mole of carbohydrates, lipids, and amino acids, as well as the respiratory quotient (RQ, i.e., the ratio of
carbon dioxide produced and oxygen consumed) and the energy yield (in kcal and moles of ATP produced).

2.2. Diet-Induced Thermogenesis (DIT)

DIT means the energy required for absorbing, processing, and storing nutrients. It
requires an energy expenditure (EE) increase with respect to the post-absorptive state [26].
Jequier et al. [27] examined the thermic effect of nutrients, showing how intravenous
glucose and lipid infusions required an EE increase of 7% and of 3% of that calculated from
the energy infused, respectively. On the contrary, the stimulation of EE was 1/4 of the
energy infused as amino acids in depleted patients.

2.3. Resting Energy Expenditure (REE)

The estimation of EE by using predictive equations fails to match measured expen-
diture in up to 2/3 of patients, often overestimating the actual needs [28]. Achieving
appropriate nutrition is relevant. The studies summarized in Table 2 report a possible
favorable outcome associated with the amount of calories prescribed, as well as between
protein intake and survival [29–31]. Measurement of energy expenditure is possible by
applying indirect calorimetry, a technique based on the calculation of nitrogen excretion,
VO2, and VCO2 from substrates involved in oxidative processes [32].The simplified Weir
equation allows the calculation of the energy production (i.e., REE) [33]:

REE (kcal) = 3.9 × l O2 used (L/min) + 1.1 × l CO2 produced (L/min)

The main technical issue that limits its use is the lack of precision in the measurement
at inspired oxygen concentrations above 60%. Another limitation is the unsteady state
caused by different stores and transit times of O2 and CO2 [32,43,44]. Additional restraints
occur when gluconeogenesis, lipogenesis, or ketogenesis are elevated [45]. Even with these
limits, indirect calorimetry remains the best available method for the estimation of EE [46].
However, the feasibility of implementing it on a large scale is questionable. The TICACOS-
International RCT was stopped prematurely because of slow recruitment, perhaps reflecting
the difficulty of applying indirect calorimetry on a routine basis [47]. Very recently, a
retrospective study compared the use of REE calculated by indirect calorimetry as compared
with predictive formulae, both in healthy and critically ill patients [48]. The authors showed
computations significantly higher in the critically ill patients with lower accuracy for the
predictive formula. In the absence of an indirect calorimetry device, two different strategies
to measure energy expenditure could be applied. If cardiac output is monitored with a
pulmonary artery catheter, and assuming a median non-protein respiratory quotient of
0.94, Fick-derived VO2 × 7 yields the amount of kcal/24 h [49]. If volumetric capnography,
and thus carbon dioxide production, is available, REE ∼= VCO2 × 8.19 [50]. In summary,
the estimation of energy expenditure with complex formulae is far from being fair and
accurate, whatever the complexity of the equations utilized in that effort. The adoption
of the ESPEN guideline recommendation of 20–25 kcal/kg/day [51] seems a reasonable
suggestion, as despite its inherent imprecision, it appears to function as well as or better
than more complex equations with respect to patient outcomes [15,52].



J. Clin. Med. 2023, 12, 3216 4 of 13

Table 2. Summary of studies related to caloric and protein load and clinical outcomes.

Study Study Design Comparator Main Finding

Alberda 1999 [34] Observational cohort study;
2772 mechanically ventilated patients Calories prescribed

Provision of higher calories was associated with reduced
60-day mortality (OR 0.76 for every 1000 kcal/day provided)

Sub-analysis for BMI classes suggested significant effects for patients
with a BMI <25 or ≥35 kg/m2

Villet 2005 [31] Prospective observational study; 48 patients Energy balance The cumulative negative energy balance was significantly correlated
with the length of ICU stay and the number of infectious complications

Dvir 2006 [35] Prospective observational study; 50 patients Energy balance
The cumulative negative energy balance during ICU stays was

significantly correlated with a higher rate of occurrence of ARDS, renal
failure requiring surgery, and the total complication rate

Heyland 2011 [36] Prospective, multi-institutional audit;
7872 mechanically ventilated patients Calories prescribed Patients who received >2/3 of their caloric prescription had lower

mortality than those receiving <1/3 of their prescription (OR 0.67)

Weijs 2012 [37] Prospective observational cohort study; 886 patients Provision of both the protein and energy target

Provision of a protein target (defined as 1.2 g/kg) was associated with a
reduced 28-day mortality

(The hazard ratios for the energy target and protein + energy target were
0.83 (0.67–1.01) and 0.47 (0.31–0.73))

Allingstrup 2012 [38] Prospective observational cohort study; 113 patients Proteins prescribed
A significantly decreased hazard ratio of ICU mortality was associated

with increased protein provision (HR 0.98 for every g/day of
protein prescribed)

Wei 2015 [29] Retrospective analysis of prospectively collected
data from a multicenter RCT; 475 patients

Proportion of received/prescribed calories during
the first 8 days

Greater amounts of nutritional intake were associated with longer
survival times and faster physical recovery to 3 months

Zusman 2016 [39] Retrospective; 1171 patients Outcome vs. the percentage of administered calories

The % AdCal/REE had a significant non-linear association with
mortality after adjusting for other variables. Increasing the percentage

from 0 to 70% resulted in a hazard ratio of 0.98, pointing to reduced
mortality, while increases above 70% suggested an increase in mortality

Compher 2017 [40] Prospective; 202 patients Nutritional risk and nutritional intake In high-risk but not low-risk patients, mortality was lower with greater
protein and energy intake

Koekkoek 2019 [41] Retrospective; 455 patients Low vs. high protein intake

Time-dependent association of protein intake and mortality; low protein
intake (<0.8 g/kg/day) before day 3 and high protein intake

(>0.8 g/kg/day) after day 3 were associated with lower 6-month
mortality compared to patients with overall high protein intake

Hartl 2022 [42] Retrospective; 16,489 patients Protein intake

In comparison with an exclusively low-protein diet, a late standard
protein diet was associated with a lower hazard of in-hospital death:

minimum 0.75 (95% CI 0.64, 0.87), and a higher hazard of live hospital
discharge: maximum HR 1.98 (95% CI 1.72, 2.28)

BMI = body mass index; ICU = Intensive Care Unit; HR = High Rate; RCT = randomized control trial; REE = rest energy expenditure; CI = confidence interval.
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2.4. Polyunsaturated Fatty Acids

Based on the location of the first double bond, polyunsaturated fatty acids can be
categorized into Ω3, Ω6, or Ω9, each one with a specific biological action (Figure 1).
Long-chain Ω6 fatty acids (linoleic and gamma-linolenic acid) were correlated with the
pro-inflammatory phenotypes that are particularly worrisome in critically ill patients [53].
Their source may also result in increased synthesis of vasodilating prostaglandins [54].
Furthermore, they can affect lung mechanics and ventilation/perfusion regulation, worsen-
ing gas exchange [55,56]. Ω3 fatty acids—such as eicosapentaenoic and docosahexaenoic
acid—could moderate inflammatory processes [57]. Their use seems to be able to shift the
production of cytokines in favor of leukotrienes and trienoic prostaglandins [58]. Currently,
we are unaware of any potential negative effect of the Ω9 polyunsaturated fatty acids.
Protein administration leads to increased minute ventilation, suggesting an augmentation
of ventilatory drive [59]. This must be considered when the work of breathing cannot be
improved. Finally, in severe sepsis, attention has been drawn to the risks of enhancing the
supply of arginine due to its pro-inflammatory characteristics [60].
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3. Peculiarity of Artificial Nutrition in Acute Respiratory Failure

ARDS is characterized by different degrees of hypoxemia and increased pulmonary
permeability without cardiogenic pulmonary edema [61]. ARDS patients often present with
altered respiratory system properties, with an increased and ventilatory dead space shunt
fraction, impairing hypoxemia and hypercapnia [62]. From a metabolic perspective, ARDS
is characterized by a pro-inflammatory response associated with hyper-catabolism [63].
Related nutritional deficits can alter lung defense mechanisms in association with respira-
tory muscle function [64]. In these critically ill patients, impaired lung and often cardiac
function lead to elevated resting energy expenditure (REE) over 100% of that predicted by
their body mass, increasing oxygen consumption (VO2) and carbon dioxide production
(VCO2) [65,66]. Parenteral nutritional support with high levels of CHO increases body tem-
perature respiratory quotient, VCO2 [67], and ventilatory demand, as suggested by a small
uncontrolled study [68] and a small RCT [69]. However, enteral CHO has been associated
with improved clinical outcomes [70] and better muscle protein accumulation [71]. Due
to a scarce utilization of fat due to impaired oxidation and inefficient transport between
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nutrient pools, carbohydrates appear to be the preferential substrate in critical illness [72].
Indeed, the potential development of endotoxemia may develop in high-fat diets due to
changes in gastrointestinal barrier function or microbiota composition [73]. Therefore, since
ARDS patients either experience or are predisposed to infections, the use of a high-fat diet
is contraindicated. Interestingly, Ω3 fatty acid supplementation has been experimentally
associated with restored permeability of an injured alveolar–capillary membrane and with
lower levels of tissue inflammation [74].

4. Metabolic Control in ARDS Patients

The available guidelines suggest administration of nutritional support to ARDS
patients who undergo mechanical ventilation [51]. Observational studies [37] and
RCTs [47,75,76] in mechanically ventilated patients have reported the clinical benefits of
prescribing an energy supply based on indirect calorimetry. However, metabolic support
for this category of patients remains tricky. Figure 2 summarizes a few suggestions.
Firstly, a reduction in metabolic demands can be achieved in different ways, such as
reducing physical activity, controlling body temperature, and avoiding the provision of
energy intake greater than needed [77–79]. Interestingly, the increase in caloric provision
has been correlated with VCO2 [80]. The suggested energy supply is 25 kcal/kg/day;
however, given the presence of a significant (although difficult to measure) amount of
endogenous glucose production, this target should be reached gradually over the first
week of an ICU stay. Indeed, energy capacity can be reduced to even less than 15 kcal/kg
when gas exchange is severely impaired; then, the use of continuous feeding may confer
an advantage from a metabolic point of view as DIT is minimal during enteral feed-
ing [81,82]. However, when the energy supply approaches twice the REE, DIT increases
up to 20% of the total EE. These observations have been attributed to the fact that diges-
tion and absorption of nutrients cost energetically less than nutrient storage [83]. Oral
administration of nutrients causes a higher thermogenic effect than a continuous enteral
supply, while VO2 and VCO2 are essentially reduced even with continuous PN [84]; then,
the components of macronutrients may be modified. Doing so can help minimize the
need for mechanical ventilation, possibly manipulating VO2/VCO2 and DIT. Nonethe-
less, macronutrient components are estimated to have much less of an impact on carbon
dioxide production when the design of the nutrition support program approaches the
energy requirements [85]. Thus, we should abandon the traditional suggestion that
more than half of the non-protein portion of enteral caloric intake should consist of
lipids to reduce VCO2 and minute ventilation. Parenteral administration of Ω6 linoleic
acid seems to be detrimental in patients with severe pulmonary failure [86,87]. Several
studies have reported how the use of Ω3 fatty acids may confer biochemical and clinical
advantages by modifying the metabolic stress response and modulating immunity and
inflammation [55,88,89]. Other authors [36,90] and a more recent meta-analysis [91] have
shown no significant reduction in ARDS mortality nor in ventilator- and ICU-free days
when an immunomodulatory diet was supplied. However, these studies have significant
heterogeneity and study design biases such as giving a relatively high amount of Ω6 fatty
acids in the control group. Consequently, the guidelines on nutrition support in ARDS
patients recommended providing an enteral/parenteral formula with balanced Ω6, Ω3,
and Ω9 long-chain fatty acids and avoiding enteral formula with an anti-inflammatory
lipid profile and antioxidants [61,92,93]. The role of glutamine supplementation is highly
controversial, even if the ASPEN/SCCM guidelines no longer suggest glutamine by the
enteral or parenteral route [85]. This was suggested by recent negative results seen with
the MetaPlus trial [94] and the REDOX Trial [95], as well as several RCTs that showed no
benefit [96–98]. In summary, limited administration of substrates in the first days of the
early phase of illness is acceptable and possibly necessary if both endogenous energy
production and resistance to anabolic signals are considered. Nutritional support then
must be gradually increased to reach the targets in the following days.
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5. Special Issues Related to SARS-CoV-2 Infection

In COVID-19 patients, the impact of inflammation and the often extended length of
hospital stay may aggravate the baseline nutritional level, leading to increased disability,
mortality risk, and reduced quality of life [99,100]. The risk of malnutrition is especially
high in elderly patients, with multiple comorbidities, and those with a loss of skeletal
muscle and reduced mobility [101,102]. Regarding critically ill COVID-19 patients, artificial
ventilator assistance may average two weeks [98], thereby increasing the already high
nutritional risk [103,104]. In COVID-19-related ARDS, adequate nutritional support can
reduce the inflammatory pattern by helping the immune system and avoiding malnutrition,
possibly facilitating ventilator weaning [105]. On the other side, critically ill COVID-19
patients are at a higher risk of sepsis and multiple-organ failure. Gastrointestinal functions
are affected by high-PEEP ventilation, certain medications, and immobility [106]. For
these reasons, malnutrition screening is needed in all COVID-19 ARDS patients, with a
NUTRIC score greater than 5 (without IL-6 dosage) having been proposed as a threshold
for a high nutritional risk [107]. Nasogastric tube feeding is considered the standard
approach for artificial nutrition, and the latter should be delivered with an infusion pump,
with a slow start and an incremental infusion rate based on individual tolerance [108].
Supportive or total PN, along with daily micronutrient and vitamin supplementation,
should be considered if enteral nutrition is not sufficient. Central venous access is needed
if PN is needed for >15 days, while peripheral access is sufficient if the duration of PN is
<15 days or is provided in the lower dosages supportive of enteral nutrition [109]. During
the non-invasive ventilation support of patients who are not able to eat, enteral nutrition
is generally delivered by a nasogastric feeding tube, given the inability to eat by mouth.
Enteral feeding in this circumstance is often difficult or risky; however, the gastric tube
itself may be associated with air leakage that compromises the effectiveness of non-invasive
ventilation, or it can lead to gastric distension, affecting diaphragmatic function and posing
a hazard of regurgitation [110]. In these patients, given the long course of ventilator
support, supportive PN has been proposed as a strategy to limit the interruptions of
assisted ventilation during meals [111]. Regarding oral nutrition, frequent and small meals
are suggested, and they should be supplemented with calorie- and protein-dense nutritional
supplements in powder or liquid form. COVID-19 patients often experience loss of appetite,
dysphagia, and gastrointestinal symptoms [112]. Gastric residual volumes greater than
500 mL/6 h and a higher risk of aspiration and nausea are factors that may suggest the
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positioning of post-pyloric nasojejunal tubes for 6 h [113]. Like other non-COVID-19
ARDS patients, energy expenditure could be determined by indirect calorimetry, with the
already-mentioned limitations. In case of unavailability, it can be predicted as VCO2 × 8.19,
using carbon dioxide production derived from the ventilator, or as VO2 × 7, using oxygen
consumption estimated using data from a pulmonary arterial catheter [114]. In all the
other situations, a simple, weight-based predictive formula of 20–25 kcal/kg/day is used,
using the actual body weight if the BMI <30 Kg/m2, or the adjusted body weight (i.e., the
ideal body weight + (actual body weight – ideal body weight) × 0.33) if the BMI exceeds
30 Kg/m2 [115]. Marginally hypocaloric nutrition (about 70% of the estimated needs)
should be provided during the first week, before achieving the targeted 80–100%, due to
the higher risk of overfeeding associated with the use of predictive equations [105]. Protein
requirements are about 1.3 g/Kg/day. However, as with energy provision, that goal should
be achieved gradually within 3–5 days [108]. Glucose/carbohydrates should not be given at
rates greater than 5 mg/Kg/min or 3–4 mg/Kg/min in case of pre-existing hyperglycemia.
Intravenous lipid infusions should not exceed 1.5 g/Kg/day [116]. Nutritional formulae
enriched with Ω3 can be considered [117], and severely ill patients with low vitamin D
blood levels (<12.5 ng/mL) can be supplemented [118]. Extracorporeal supply or prone
position should not limit or contraindicate EN [119]. Finally, after resolution of a critical
illness, patients have been shown to experience high rates of dysphagia that can persist after
critical phases, limiting nutritional intake [120]. Consequently, nutritional modifications are
often necessary to adjust the food consistency to the swallowing capability, and nutritional
counseling is often required after ICU discharge.

6. Conclusions

In summary, nutritional support for patients with ARDS may be provided from an
early stage of hospitalization when patients are hemodynamically stable (even if still
under vasoactive drugs) and blood gases are adequate. The prescription for nutritional
support should consider the underlying metabolic modifications of patients with ARDS,
such as endogenous glucose production and anabolic resistance. It should then start at
a low rate and be increased gradually. Energy may be given in amounts equal to REE
(possibly measured by indirect calorimetry) or not greater than 25 kcal/kg, provided
by a balanced CHO/lipids formula, possibly coupled with insulin. Moreover, an ad-
equate amount of protein should be provided, even if its cost in terms of VO2/VCO2
is significant. Indeed, this approach may not be able to fully reduce the utilization of
endogenous stores and does not possess the same protein-sparing action of diets with
greater energy content. Still, as compared to starving conditions, such therapy signifi-
cantly reduces the wasting of vital tissue substrates and does not prompt a dangerous
increase in cardio-respiratory demands.
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