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Abstract 23 

The saprotrophic fungus Penicillium griseofulvum was chosen as model organism to study responses to a 24 

mixture of hexachlorocyclohexane (HCH) isomers (α-HCH, β-HCH, γ-HCH, δ-HCH) and of potentially 25 

toxic metals (vanadium, lead) in solid and liquid media. The P. griseofulvum FBL 500 strain was isolated 26 

from polluted soil containing high concentrations of HCH isomers and potentially toxic elements (Pb, V). 27 

Experiments were performed in order to analyse the tolerance/resistance of this fungus to xenobiotics, and 28 

to shed further light on fungal potential in inorganic and organic biotransformations. The aim was to 29 

examine the ecological and bioremedial potential of this fungus verifying the presence of mechanisms that 30 

allow it to transform HCH isomers and metals under different, extreme, test conditions. To our knowledge, 31 

this work is the first to provide evidence on the biotransformation of HCH mixtures, in combination with 32 

toxic metals, by a saprotrophic non-white-rot fungus and on the metabolic synergies involved. 33 

34 

35 

Keywords: soil saprotrophic fungi, hexachlorocyclohexane, vanadium, biotransformation, metabolic 36 

phenotype, medium pH 37 
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Introduction 39 

Hazardous persistent organic pollutants, e.g. pesticides, pharmaceuticals, explosives, and potentially toxic 40 

elements (PTEs), e.g. Pb, Cr, As, Sn, constantly enter ecosystems (waters, soils, and sediments) causing 41 

severe environmental and health problems ( Polti et al. 2014; Wan et al. 2015). Anthropogenic processes 42 

associated with domestic, municipal, agricultural, industrial, and military activities represent the major 43 

sources while PTEs can also be released from natural geological processes such as weathering and volcanic 44 

eruption (Vargas-García et al. 2012; Griffith et al. 2015). Pollution due to human activities is often the 45 

result of extensive histories of multiple land use which creates sites containing mixed pollutants. More than 46 

40% of the United States National Priority List sites are co-contaminated by organic (volatile and semi-47 

volatile organic compounds) and inorganic pollutants (metals including radionuclides) while metals and 48 

mineral oil contribute jointly to around 60% of soil contamination and 53% of groundwater contamination 49 

in Europe ( Sandrin and Maier 2003; Panagos et al. 2013). The co-occurrence of organic and metal 50 

pollutants is not only a threat to human and ecosystem health, but is also a challenge because the 51 

technologies required for remediation of polluted sites are different for each group of pollutants (Sandrin 52 

and Maier 2003; Zhu et al. 2012). As more than one third of contaminated sites are polluted by more than 53 

one type of contaminant, it is imperative to develop cost-effective and sustainable techniques that can 54 

transform organic compounds while also extracting PTEs or stabilizing them in non-toxic forms (Polti et al. 55 

2014).  56 

In recent years, several studies on microbial communities or on single microbes isolated from 57 

historically contaminated sites have shown their ability to tolerate, adapt and grow in the presence of 58 

organic compounds and PTEs (Alisi et al. 2009; Wasi et al. 2011). This suggests that bioremediation based 59 

on microbial activities is feasible for the recovery of such sites by transformation or immobilization of both 60 

organic compounds and PTEs (Zhu et al. 2012; Polti et al. 2014). Previous studies on microbial 61 

biotransformations of multiple contaminants have mainly concentrated on bacteria (Alisi et al. 2009; Wasi 62 

et al. 2011), but fungi can also represent ideal candidates for future challenges in complex multi-63 

contaminated contexts. Fungi are ubiquitous chemoorganotrophic organisms, playing fundamental roles in 64 

ecological and geological processes (Gadd 2010; Gadd et al. 2012). As decomposers, pathogens, and 65 

symbionts (mycorrhizas, lichens), fungi provide fundamental ecological functions for ecosystems and 66 

human well-being (Mace et al. 2012; Lange et al. 2012). Fungi can transform a huge variety of organic 67 

substrates, including natural polymers such as cellulose, lignin, chitin and starch but also many 68 

anthropogenic products like pesticides, explosives and other xenobiotics (Gadd 2013; Harms et al. 2011). 69 

Due to their filamentous growth habit and ability to exude organic acids, protons and other metabolites, 70 

fungi are important biological weathering agents of rocks and mineral-based substrates (Gadd 2004; 2007). 71 

The potential of fungi to tolerate and transform both organic and inorganic pollutants has been highlighted 72 

in many studies which have also reported some unusual abilities shown by fungi isolated from 73 

contaminated soil (; Tigini et al. 2009;  Ma et al. 2014; Mishra and Malik 2014). In fact, isolation of 74 

indigenous fungi could provide the best candidate organisms for bioremediation of polluted soil since they 75 
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already belong to an established soil microbial community, and are best adapted to the site conditions 76 

(Czaplicki et al. 2016). 77 

In this research, we have examined tolerance to both organic and inorganic pollutants by a soil 78 

saprotrophic fungus, Penicillium griseofulvum Dierckx isolated from a historically polluted soil. The study 79 

area was the Italian National Site of Interest “Valle del Sacco” (Lazio, Italy) which is affected by high 80 

concentrations of multiple pollutants such as hexachlorocyclohexane, vanadium and lead (Ceci et al. 2012; 81 

Bernardini et al. 2016; Bernini et al. 2016). The aims of this research were to evaluate the 82 

tolerance/resistance of P. griseofulvum FBL 500 to different combinations of vanadium, lead, and isomers 83 

of HCH; to study the inorganic biotransformation in the presence of metals, and possible biomineralization 84 

phenomena; and to analyse biodegradation of an isomeric mixture of HCH, in the absence and in the 85 

presence of vanadium, and the impact of any synergistic effects on fungal metabolism. 86 
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Materials and methods 87 

Organism, media, and growth conditions 88 

A strain of P. griseofulvum Dierckx (FBL 500), obtained from the culture collection of the Fungal 89 

Biodiversity Laboratory (FBL) (Sapienza, University of Rome), was used in all the biotransformation tests. 90 

Czapek-Dox medium was used for all the experiments (; Ceci et al. 2015b, c). The strain is also preserved 91 

in the public mycological collection of Mycotheca Universitatis Taurinensis (MUT) as MUT 5854. The 92 

Czapek-Dox agar medium contained the following (g/l distilled water): NaNO3, 3; K2HPO4 1; 93 

MgSO4·7H2O, 0.5; KCl, 0.5; FeSO4·7H2O, 0.01. All chemicals were purchased from Merck (Darmstadt, 94 

Germany).  95 

The experimental design was composed of three different experiments, in which (A) 96 

tolerance/resistance responses and biotransformation of metals (V, Pb), (B) of HCH mixture of isomers, 97 

and (C) of the synergic effects of combination of V and HCH isomers were respectively investigated (see 98 

Table 1, Online Resource). The whole phenotypic response of this fungus to the different treatments was 99 

examined using the Phenotype MicroArrayTM system (Pinzari et al. 2016). Sucrose and D-glucose (Difco, 100 

Sparks, MD, USA) were used as substrates for fungal growth (Table 1, Online Resource). The glucose 101 

concentration was 30 g/l in experiment A, in which P. griseofulvum FBL 500 was tested with metals (V and 102 

Pb compounds): this concentration was used following the same cultural conditions as in Ceci et al. (2015a, 103 

c) (Table 1, Online Resource). 5 g/l sucrose was used in experiment B to stimulate the biotransformation of104 

HCH isomers as used in previous tests of biotransformation of β-HCH by P. griseofulvum FBL 500 (Ceci et 105 

al. 2015b) (Table 1, Online Resource). The same concentration was maintained in experiment C to study 106 

synergic interactions between the fungus and different combinations of V and HCH. In experiment A, prior 107 

to autoclaving, the medium pH was adjusted to 5.5 using concentrated HCl (Ceci et al. 2015a, c), while in 108 

experiments B and C, the pH was kept at 7 in order to prevent acidic variations of the medium pH, which 109 

could result in toxicity to P. griseofulvum FBL 500 during HCH biotransformation because of benzoate 110 

formation (Guillén-Jiménez et al. 2012; Ceci et al. 2015b) (Table 1, Online Resource). 111 

In experiments A and C, prior to inoculation, 84 mm diameter discs of sterile cellophane 112 

membrane (Focus Packaging and Design Ltd, Louth, UK) sterilized by autoclaving in distilled water and 113 

were placed aseptically on the surface of the agar in each Petri dish (Ceci et al. 2015c). Growth of P. 114 

griseofulvum FBL 500 was evaluated by measuring diametric extension of the colony and by biomass yield 115 

since extension of the colony alone does not take into account the density of fungal mycelium ( Ceci et al. 116 

2015c). After 12 days, fungal colonies were removed from the agar by peeling the biomass from the 117 

dialysis membranes using a sterile razor blade. Mycelia were oven-dried at 100°C until reaching constant 118 

weight for at least 2 days. Results were expressed in terms of a tolerance index (TI)  as reported in Ceci et 119 

al. (2015c). After the dialysis membrane and mycelium were removed, the surface pH of the agar was 120 

measured at specific intervals across the diameter of the Petri dish using a conical tip FC 202D pH 121 

electrode (Hanna Instruments, Woonsocket, RI, USA) and a pH portable meter, HI 99161 (Hanna 122 

Instruments, Woonsocket, RI, USA).  123 
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124 

Genetic identification of P. griseofulvum FBL 500 125 

P. griseofulvum FBL 500 was isolated and previously identified through conventional taxonomic keys on126 

the basis of macro- and microscopic features. ITS sequence analysis was carried out in order to confirm the 127 

previous taxonomical identification findings. P. griseofulvum FBL 500 was inoculated by transferring 128 

mycelial portions with a flamed glass rod from the actively growing periphery of stock colonies grown in 129 

solid Czapek-Dox medium. After 15 days, fungal colonies were removed from the agar by peeling the 130 

biomass from the dialysis membranes using a sterile razor blade. Mycelia were freeze-dried, pulverized by 131 

using liquid N2 by using mortal and with the addition of polyvinylpolypyrrolidone to protect DNA. DNA 132 

purification and extraction was carried out from single replicates following the standard cetyltrimethyl 133 

ammonium bromide (CTAB) protocol (Doyle and Doyle 1987). Identification of P. griseofulvum FBL 500 134 

was achieved after extraction of fungal DNA and ITS sequence analysis using ITS 1F (5′- 135 

CTTGGTCATTTAGAGGAAGTAA-3′) and ITS 4 (5′ -TCCTCCGCTTATTGATATGC-3′) primers for 136 

polymerase chain reaction (PCR) analysis (Bellemain et al. 2010). DNA was quantified by using Nanodrop. 137 

The PCR amplification was performed in a final volume of 25 μl using: 2.5 μl of 10× buffer, 2.5 mM 138 

MgCl2, 0.2 μM of each primer, 0.2 mM of dNTPs, 1.5 u. of DNA Taq polymerase (Promega, Milan, IT) 139 

and 5 ng DNA. PCR was conducted using 35 cycles of the following reaction conditions: initial 140 

denaturation at 95°C for 4 min, 39 cycles of three-step cycling (denaturation at 92°C for 50 s, primer 141 

annealing at 55°C for 50 s and extension at 72°C for 50 s) and final extension at 72°C for 10 min. The PCR 142 

products were sent to Macrogen Europe (Amsterdam, Netherland) for purification and sequencing. 143 

Sequences were edited using the software CHROMAS 2.33 (Technelysium Pty Ltd, Australia). The partial 144 

sequence of 18S ribosomal RNA gene, the complete sequence of the internal transcribed spacer 1, the 145 

complete sequence of the 5.8S ribosomal RNA gene, the complete sequence of the internal transcribed 146 

spacer 2 along and the partial sequence of the 28S ribosomal RNA gene were pairwise compared with those 147 

available in the public online databases International Nucleotide Sequence Databases using the BLAST 148 

search program (Altschul et al. 1997) and UNITE database (Kõljalg et al. 2005; Abarenkov et al. 2010). 149 

The genetic sequence for P. griseofulvum FBL 500 was deposited in GenBank with the accession number 150 

KY560469. 151 

152 

Experiment A. Metal-amended plates and inoculation 153 

Stock solutions of vanadium pentoxide, V2O5 (Riedel-deHaën, Seelze, Germany), ammonium 154 

metavanadate, NH4VO3 (Merck, Darmstadt, Germany), and lead carbonate, PbCO3 (GPR), were prepared 155 

from oven-sterilized aliquots (48 h, 100°C). Growth experiments at different concentrations of ammonium 156 

metavanadate (2.5 and 5 mM) were performed. In addition, combinations of insoluble 2.5 mM lead 157 

carbonate with insoluble 1.25 mM vanadium(V) oxide or with slightly soluble 2.5 mM ammonium 158 

metavanadate were examined to study the toxic effects of both substances on P. griseofulvum FBL 500. 159 

These concentrations take account of the range of concentrations of these metals found in soils and volcanic 160 
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rocks at the same site. The fungus was isolated where vanadium concentrations were over the range 3–6 161 

mM, while lead concentrations were <1 mM (data not shown). Observations of colonies and media were 162 

performed using light- and stereo-microscopy to monitor growth, sporulation, pigment production and 163 

secondary mineral precipitation.  164 

165 

Experiment B. Batch experiments on HCH biodegradation by P. griseofulvum FBL 500 166 

High purity mixture of hexachlorocyclohexane isomers (α:β:γ:δ=1:1:1:1) was acquired from Sigma-Aldrich 167 

(Seelze, Germany). Ethyl acetate, acetone and n-hexane were all purchased from ROMIL Ltd (Cambridge, 168 

UK) with chemical purity >99.9%. The internal standard γ-HCH-d6 was obtained from CDN Isotopes 169 

(Pointe-Claire, Quebec, Canada) and stored at 4°C until use. The tests were carried out at 25°C under 170 

shaking conditions at 110 rpm, and with the addition of a mixture of α-HCH, β-HCH, γ-HCH, and δ-HCH 171 

isomers (1:1:1:1) to a final concentration of 4 mg/l. Prior to HCH addition, the fungus was grown for 26 172 

days, and the concentration of all isomers and formation of fungal metabolites were monitored at regular 173 

intervals over 23 days. Uninoculated sterile flasks with HCH mixture and flasks with fungal culture but 174 

without HCH mixture were used as chemical and biological controls. Growth of P. griseofulvum FBL 500 175 

and tolerance to the HCH mixture were evaluated by biomass yield. Collected mycelial pellets were oven-176 

dried at 100°C for at least 2 d, until reaching constant weight and fungal tolerance was evaluated using a 177 

tolerance index (TI), based on dry weights as described above. 178 

179 

Experiment C. Batch experiments on HCH and vanadium biotransformation by P. griseofulvum FBL 180 

500 181 

Tests with at least three replicates were carried out at 25°C in the dark with different combinations of 182 

vanadium and HCH isomeric mixture. HCH was directly added in each Petri dish to the final concentration, 183 

while Czapek-Dox medium was at a temperature between 40 to 50°C to homogenize HCH in the agar and 184 

to avoid HCH volatilization. Growth experiments with insoluble 2.5 mM vanadium(V) pentoxide, and with 185 

4 mg/l and 50 mg/l HCH mixture were performed. In addition, a combination of insoluble 2.5 mM 186 

vanadium(V) pentoxide and 4 mg/l HCH mixture was used to study any synergic effects on P. griseofulvum 187 

FBL 500. The production of fungal metabolites was monitored in biomass and in agar for 20 d at regular 188 

intervals. Data of fungal growth (diameter, dry weight) and pH were collected, and tolerance indices were 189 

calculated as described above. 190 

191 

Chemical analysis 192 

In experiment B, 5 ml samples were collected from the culture flasks: 1 ml aliquots were spiked with γ-193 

HCH-d6 as an internal standard and extracted using solid phase extraction (SPE) cartridges packed with 194 

Graphitized Carbon Black (GCB — Carbograph, Rome, Italy). HCHs were retained on the solid phase and 195 

eluted with 10 ml ethyl acetate through a vacuum manifold (Grayledge Pump & Industrial, LLC, Pelham, 196 

NE). In experiment C, the agar and the membranes were collected and analysed to measure HCH 197 
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concentration and metabolites. Specimens were posed in glass tubes with 15 mL ethyl acetate and sonicated 198 

for 30 min. After centrifugation at 2000 rpm, ethyl acetate solutions were recovered in vials and 10 ml were 199 

analyzed. 200 

Residual HCH for each isomer in the culture medium was calculated using the formula reported in 201 

Salam and Das (2014) and in Ceci et al. (2015b). 202 

In order to study the uptake of each HCH isomer and fungal transformation, mycelial biomass was 203 

collected in all experiments and extracted with Dionex ASE200 Accelerated Solvent Extractor (Dionex, 204 

Sunnyvale, USA) after γ-HCH-d6 addition as an internal standard. Operating conditions are reported in 205 

Ceci et al. (2015b). The concentration of isomers and formation of metabolites were analyzed by gas 206 

chromatography-mass spectrometry (GC-MS). HCH isomers and the possible metabolites were analyzed 207 

using a Hewlett-Packard 6890 gas chromatograph with a 5973A mass selective detector (Agilent 208 

Technologies, Palo Alto, California, USA). GC-MS analyses of liquid media were performed to detect any 209 

possible intermediate metabolites of dechlorination of HCH (e.g. pentachlorocyclohexene, 210 

tetrachlorocyclohexene), or intermediates of HCH reductive dechlorination and hydroxylation as in other 211 

studies with bacteria and fungi (Phillips et al. 2005; Guillén-Jiménez et al. 2012). 212 

 213 

Analysis of fungal metabolic profile in the presence of HCH mixture and vanadium using Biolog FF 214 

microplates  215 

The Phenotype MicroArrayTM system (Pinzari et al. 2016) was used to gather information on the whole 216 

phenotype of the P. griseofulvum FBL 500 strain and on the effects of organic and inorganic toxic 217 

compounds on its carbon metabolism. The method we used was based on the inoculation of a fungal spore 218 

suspension in FF MicroPlates (BiologTM, Inc., Hayward, California, USA) (Bochner et al. 2001;Pinzari et al. 219 

2016). A combined inoculum of the fungus with: a) 4 mg/l HCH mixture in toluene, or; b) 2.5 mM V2O5, or 220 

c) with the combination of 4 mg/l HCH mixture and 2.5 mM V2O5 were performed in FF MicroPlateTM 221 

arrays in triplicate. The inoculation procedure for pure cultures of P. griseofulvum FBL 500 in the arrays 222 

was based on the protocol used by Tanzer et al. (2003).  223 

Conidia of the fungus were obtained by cultivation of the pure strain on 2% MEA plates in the 224 

dark at 25°C for 7 d. Operating conditions are reported in Ceci et al. 2015b. The optical density of Biolog 225 

plates was read using a microplate reader (Molecular device, Vmax) at 490 nm (OD490), which was used to 226 

measure the intensity of the purple colour resulting from the reduction of the tetrazolium redox dye (p-227 

iodonitrotetrazolium), present in the wells of the FF plates, through the action of fungal succinate 228 

dehydrogenase as a proxy for respiratory activity. Moreover, optical density at 750 nm (OD750) was used to 229 

assess fungal biomass and mycelial growth (Tanzer et al. 2003;Ceci et al. 2015b). Immediately after 230 

inoculation, OD490 and OD750 were measured in order to zero the spectrophotometer specifically for each 231 

Biolog plate. Plates were then read at intervals of 24, 48, 72, 96, 168, 192 and 240 h of incubation (Tanzer 232 

et al. 2003;  Ceci et al. 2015b). In order to evaluate possible redox effects of vanadium pentoxide on the 233 

tetrazolium dye, two sets of microplates with V2O5 and V2O5 with HCH mixture were prepared without the 234 
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fungus inoculum. Data obtained from the Phenotype MicroArrayTM assays were used to compare the three 235 

growth conditions to evaluate the overall differences in metabolism (co-metabolism, inhibition, synergic 236 

effects) by studying the utilization of different substrates in the absence or presence of the xenobiotic and 237 

PTEs (vanadium and HCH) and their combinations.  238 

 239 

Statistical analysis  240 

R elaboration and programming software, version 3.3.2 (The R Foundation for Statistical Computing, 241 

Vienna, Austria) and the statistical package XLStat (Addinsoft 2007-Pro, Paris, France) were used to 242 

perform statistical analyses (Fahmy and Aubry 2003). They were used to perform one-way ANOVA tests 243 

on means for dry weight, diametric growth, surface pH, and HCH concentrations (at least three replicate 244 

determinations were used). One-way ANOVA tests on means were performed for the OD490 and OD750 245 

values for all different treatments at 168 h, when a plateau was reached in the metabolic curves.  246 

The Phenotype MicroArray data were further analysed using the opm R package (Vaas et al. 2013). All the 247 

OD values were combined in a dataset which comprised three replicates × 96 substrates × four treatments 248 

(control, HCH mixture in toluene, vanadium, combination of vanadium and HCH mixture in toluene) × two 249 

metabolic parameters (respiration and mycelial growth), giving rise to 2304 individual phenotypic curves. 250 

Comparison of substrate utilization in the different treatments was carried out using the estimated curve 251 

parameter of A — maximum height of the metabolic curve — calculated with the opm package and plotted 252 

as confidence-interval plots and heatmaps (Vaas et al. 2012). The confidence intervals and the ANOVA 253 

were performed on the optical density measurements for 168 h in FF microplates. 254 

  255 
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Results 256 

Genetic identification of P. griseofulvum FBL 500 257 

Sequence analysis using the internal transcribed spacer (ITS) regions (ITS1F and ITS4 primers) confirmed 258 

the identification of P. griseofulvum FBL 500 through conventional taxonomic keys. A 100% sequence 259 

identity over the BLAST alignment was obtained with the name of the reference sequence being P. 260 

griseofulvum SH207147.07FU and KJ467353 for UNITE and NCBI databases, respectively.  261 

 262 

Experiment A. Fungal interactions with metals  263 

The presence of vanadium and lead compounds did not inhibit colony expansion of P. griseofulvum FBL 264 

500 under all test conditions. In fact, all the calculated tolerance indices were greater than 1 and colony 265 

extension rates in the presence of metal (Rt) showed higher values than the control extension rate (Rc), 266 

which was statistically significant in all tests (P < 0.01) (Table 2, Online Resource). Multiple comparisons 267 

using the Tukey test showed that fungal extension in all tests was significantly higher than the control (P < 268 

0.01). Tolerance indices (TI) were used to compare biomass yields of control and test conditions (Table 3, 269 

Online Resource). Biomass yields were stimulated (TI > 100%) by the lead and vanadium compounds. The 270 

highest TI value occurred with 2.5 mM NH4VO3 (TI = 231.49%). Multiple comparisons using the Tukey 271 

test revealed that biomass production in all tests was significantly higher than the control (P < 0.01). Table 272 

4 (Online Resource) shows the differences (ΔpH) between average surface pH values of uninoculated agar 273 

and agar underneath fungal colonies of P. griseofulvum FBL 500, growing on Czapek-Dox medium in the 274 

different treatment conditions. In uninoculated agar of all experimental conditions, the range of pH medium 275 

was 5–5.3. In contrast, for test conditions, the medium pH decreased after growth for 12 days (pH =4–4.3) 276 

with the exceptions of those with combinations of vanadium and lead compounds where the pH values 277 

were similar to the uninoculated controls. In the latter, the buffering effect of carbonate might have 278 

neutralized fungal acidification of the media (Table 4, Online Resource). Sporulation in tests was limited to 279 

the central part of the colonies, occasionally green coloured, and the production of yellow-orange pigments 280 

and exudates was observed to be higher in treatments than in controls. No secondary mineral precipitation 281 

was observed over 12 days. In contrast, the complete dissolution of insoluble crystals of lead carbonate and 282 

vanadium pentoxide by P. griseofulvum FBL 500 occurred. Notably, few crystals were observed 283 

underneath growing fungal colonies in media amended with combinations of ammonium metavanadate and 284 

lead carbonate after 3 months incubation of P. griseofulvum FBL 500 (Fig. 1). The crystals were red, 285 

acicular and tapered, and morphologically resembled lead oxalate. However it was not possible to extract 286 

them for further identification because of their limited quantity. 287 

 288 

Experiment B. Fungal interactions with HCH mixture of isomers in liquid Czapek-Dox medium  289 

Addition of 4 mg/l isomeric HCH mixture to liquid Czapek-Dox medium had no obvious adverse effects on 290 

the growth of P. griseofulvum FBL 500. Biomass yield was not strongly reduced (TI > 50%) by the 291 

presence of the HCH mixture, and an average TI value of 87.2% was obtained. Results from the time-292 
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dependent studies of HCH concentration in liquid batch tests are shown in Fig. 2. No measurable changes 293 

in isomer concentration were detected in the abiotic controls throughout the experiments. The HCH mixture 294 

was added 26 d after fungal inoculation, and the isomer concentrations were monitored for 23 d. Up to the 295 

third day, the isomer concentration increased and reached a maximum concentration for all the isomers. 296 

This phase was followed by a reduction of α-HCH, β-HCH, and γ-HCH in the medium with residual α-297 

HCH = 63.0%, residual β-HCH = 67.1%, and residual γ-HCH = 63.5% (Fig. 2). In contrast, the δ-HCH 298 

concentration appeared to be stable and close to the initial concentration of ~1 mg/l. According to ANOVA, 299 

there was a significant difference (P < 0.01) between the means of the γ-HCH concentrations measured 300 

during the second and third day. There was a significant difference (P < 0.05) between the means of α-HCH 301 

and the β-HCH concentrations measured over the same days. At the end of the experiment, the 302 

concentrations of α-HCH, β-HCH, γ-HCH and δ-HCH in the solution were respectively 0.56 ± 0.02 mg/l, 303 

0.76 ± 0.04 mg/l, 0.48 ± 0.02 mg/l and 0.92 ± 0.02 mg/l with a resulting substantial deficit with regard to 304 

the initial value of 1 mg/l for each isomer. 305 

 306 

Experiment C. Fungal interactions with HCH mixture of isomers, vanadium and combinations of V 307 

and HCH in solid Czapek-Dox medium  308 

The presence of 4 mg/l HCH mixture in Czapek-Dox agar medium had no apparent adverse effects on the 309 

growth of P. griseofulvum FBL 500. The fungus showed a slight reduction of the extension rate in 310 

comparison to the control (significant at P < 0.01) (Table 2, Online Resource). Biomass yields were not 311 

reduced (TI > 70%) by the HCH mixture (Table 3, Online Resource). The TI value was 82.8%, and the 312 

difference in biomass yields was statistically significant (P < 0.01). Table 4 (Online Resource) shows the 313 

differences (ΔpH) between average surface pH values of uninoculated agar and agar underneath fungal 314 

colonies of P. griseofulvum FBL 500, growing on Czapek-Dox medium in the different treatment 315 

conditions. The ΔpH revealed a low medium acidification (Table 4, Online Resource). After growth of P. 316 

griseofulvum FBL 500, the inoculated medium pH measured in the test condition (6.67 ± 0.19) was slightly 317 

higher than the one of the control (6.31 ± 0.19) and statistically significant (P < 0.01).  318 

50 mg/l HCH mixture had a toxic effect on growth of P. griseofulvum FBL 500 with the extension 319 

rate being significantly reduced (Table 2, Online Resource). Biomass yields were strongly reduced (TI < 320 

25%) (Table 3, Online Resource). The TI value was 23.8%, and the difference in biomass yields was 321 

statistically significant (P < 0.01). After growth of P. griseofulvum FBL 500, the average pH value of 322 

inoculated medium pH measured in the test (6.73 ± 0.11) was slightly lower than the one of the control 323 

(6.31 ± 0.19) and statistically significant (P < 0.01).  324 

The addition of 2.5 mM V2O5 to Czapek-Dox did not result in adverse effects on the fungal 325 

extension rate in comparison to the control, although the differences were not statistically significant (Table 326 

2, Online Resource). Biomass yields were stimulated (TI > 100%) by the presence of vanadium pentoxide 327 

(Table 3, Online Resource). The TI value was 123.7%, although the difference in biomass yield was not 328 

statistically significant. After growth of P. griseofulvum FBL 500, the average pH value of inoculated 329 
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medium pH in the test (5.98 ± 0.41) was slightly lower than the one of the control (6.31 ± 0.19) and 330 

statistically significant (P < 0.01); ΔpH was slightly negative (Table 4, Online Resource).  331 

The combination of V and HCH mixture in Czapek-Dox agar showed a slight reduction of the 332 

extension rate in comparison to the control, although differences were not significantly different (Table 2, 333 

Online Resource). Biomass yields were not reduced (TI > 70%) by the HCH mixture (Table 3, Online 334 

Resource). The TI value was 88.1%, although the difference in biomass yields was not statistically 335 

significant. The average pH value in the test (6.24 ± 0.26) was slightly lower than the control (6.31 ± 0.19), 336 

although it was not statistically significant. ΔpH was slightly negative (Table 4, Online Resource).  337 

 338 

Fungal metabolites from HCH biotransformation  339 

Different metabolic intermediates were observed in experiments B and C (Fig. 3) and different isomers of 340 

pentachlorocyclohexene (PCCH) tetrachlorocyclohexene (TCCH), trichlorobenzene (TCB), 341 

dichlorobenzene (DCB) and chlorobenzene (CB) were detected. In experiment B, only PCCH was always 342 

detected during all the monitoring period in the solid Czapek-Dox medium experiments, while no 343 

metabolites were found in liquid Czapek-Dox medium. In experiment C, after 12 d fungal growth, PCCH 344 

was found in all tests in the presence of HCH mixture, i.e. 4 or 50 mg/l HCH mixture and the combination 345 

of HCH mixture and vanadium. TCB was found only in the combination of HCH and vanadium and in the 346 

experiment with 50 mg/l HCH mixture. In the latter, all metabolites (PCCH, TCCH, TCB, DCB, CB) were 347 

detected. Moreover, the benzoates, benzaldehyde and benzyl alcohol, were also detected during the 348 

experiments. 349 

 350 

Analysis of fungal metabolic profile in the presence of HCH mixture and vanadium using Biolog FF 351 

microplates  352 

The Phenotype MicroArrayTM system (Biolog Inc., Hayward, CA, USA) was used to investigate the whole 353 

phenotype and nutrient utilization by P. griseofulvum FBL 500 in both control and test conditions. P. 354 

griseofulvum was able to grow in the presence of 71 substrates out of the 96 available in the FF plates 355 

(Pinzari et al. 2016). A heatmap of A values — the maximum height of the growth curve — for all 356 

treatments and all substrates at 750 nm is presented in Fig. 4. The clustergram above the heatmap shows 357 

clusters of substrates that refer to the different intensities of fungal metabolism according to the A values 358 

measured. The clustergram on the left side shows clusters of treatments in which vanadium and 359 

combinations of vanadium and HCH are together, as well as the control and HCH mixture, resulting in a 360 

different general response of fungal metabolism to the presence of the xenobiotics. The confidence intervals 361 

and the ANOVA were performed on the optical density measurements at 750 nm for the estimation of 362 

mycelial growth and at 490 nm for the estimation of respiration after incubation for 168 h in FF microplates 363 

in the different treatment conditions — control (no xenobiotics, only fungus), 2.5 mM vanadium oxide, 4 364 

mg/l HCH mixture and combination of both xenobiotics. Significant differences were detected according to 365 

specific growth substrates. P. griseofulvum FBL 500 was able to use the same substrates in the treatments 366 
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as in control conditions, but the presence of xenobiotics influenced fungal metabolism, reducing or 367 

increasing respiration rates and/or mycelial growth. The negative effect on respiration and fungal growth 368 

was significant (P < 0.05) in the presence of vanadium or with a combination of vanadium and HCH for 369 

some substrates. In particular, there was a statistically significant reduction of fungal metabolism for D-370 

ribose (pentoses), rhamnose (hexoses), D-gluconic acid (sugar acids), N-acetyl-D-glucosamine 371 

(hexosamines), maltose, maltotriose, D-melibiose, D-raffinose (oligosaccharides), all considered glucosides 372 

with the exception of arbutin, D-salicin and sucrose, all nitrogen-containing compounds and all the 373 

biochemical group “other” with the exception of L-asparagine, L-phenylalanine, L-pyroglutamic acid, L-374 

threonine, ethanolamine, malic acid, and sebacic acid (Fig. 5). For all other substrates (36 — 50 %) used by 375 

P. griseofulvum FBL 500, there was no significant difference (P > 0.05) in respiration and growth between 376 

control and test conditions. It is worth mentioning that for several substrates, HCH and V (alone or in 377 

combination) affected fungal metabolism as revealed by calculated confidence intervals and the absorbance 378 

curves for respiration and growth. In particular, for L-sorbose, D-mannitol, L-asparagine, i-erythritol and L-379 

threonine, vanadium influenced fungal metabolism, increasing respiration and growth compared to the 380 

control (Fig. 5). In contrast, for D-mannitol, D-cellobiose, D-sorbitol and D-glucosamine, the presence of 381 

HCH inhibited fungal metabolism (Fig. 5). For ethanolamine, L-phenylalanine and D-salicin, HCH 382 

increased respiration and mycelial growth (Fig. 5). For sebacic acid, the presence of HCH and the 383 

combination of HCH and V resulted in metabolic stimulation (Fig. 5).   384 
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Discussion 385 

This work examines the potential of P. griseofulvum FBL 500, which was isolated from polluted sites, to 386 

tolerate high concentrations of the potentially toxic metals, vanadium and lead, and hexachlorocyclohexane, 387 

and mediate their biotransformation.  388 

Hexachlorocyclohexane (HCH) is a persistent organic pollutant (POP) of global concern with 389 

potentially toxic effects on humans and ecosystems. It is a halogenated xenobiotic which has been reported 390 

to be carcinogenic and an endocrine disrupter for humans and other organisms (; Ceci et al. 2015b). Three 391 

isomers of hexachlorocyclohexane, α-HCH, β-HCH and γ-HCH, were included as persistent organic 392 

pollutants in the 2008 Stockholm Convention because of their worldwide spread and environmental 393 

persistence (Vijgen et al. 2011).  394 

Vanadium is considered to be the one of the most abundant elements and one of the most 395 

important metals in modern technology (Rehder 2008; Ceci et al. 2015c). Vanadium is also essential for 396 

certain organisms (e.g. some algae, bacteria, fungi and lichens) as a cofactor of enzymes and a constituent 397 

of metabolites (haloperoxidases, nitrogenases and amavadin) (Crans et al. 2004). In recent decades, 398 

hydrocarbon fuel combustion, industrial activities and mining have increased the vanadium concentration in 399 

the environment, raising concern over its spread and toxicity for humans and ecosystems (Rehder 2008; 400 

Ceci et al. 2015c). 401 

P. griseofulvum has been found to successfully tolerate and accumulate potentially toxic metals 402 

such as Cu and Cr (Shah et al. 1999; Shi et al. 2011; Abigail et al. 2015), to tolerate and mediate the 403 

biotransformation of Cu-based wood preservatives (Bridbžiuviene and Levinskaite 2007) and Ni and V 404 

porphyrins (Cordero et al. 2015). Moreover, this fungus was reported to tolerate high concentrations of 405 

pyrene and mediate its biotransformation (Ravelet et al. 2000).  406 

In experiment A, vanadium and lead compounds (NH4VO3, V2O5, PbCO3) were used. 407 

Vanadium(V) oxide and ammonium metavanadate are important products of industrial metal recovery 408 

(Teng et al. 2006). Vanadium(V) oxide is often found in leachates from mining and milling activities that 409 

account for the most significant fluxes of vanadium in the environment and can also originate from fossil 410 

fuel combustion as an insoluble by-product (Teng et al. 2006). Lead carbonate (cerussite), a common 411 

insoluble lead mineral in soil, has been used in metal tolerance tests to evaluate possible combined effects 412 

of the two metals on P. griseofulvum FBL 500 and to evaluate possible metal biotransformations mediated 413 

by the fungus (Ceci et al. 2015c ). Aspergillus niger has been tested with the same metal compounds in 414 

similar research on vanadium geomycology (Ceci et al. 2015c). In this work, P. griseofulvum FBL 500 415 

showed good growth in experiment A (Table 2 and 3, Online Resource). The presence of ammonium added 416 

in the test medium could explain the higher growth rates and biomass yields, being used as an additional N 417 

source. However, ammonium was not present with the combination of lead carbonate with vanadium(V) 418 

oxide where the extension rate and biomass yield were also significantly higher than the control. Moreover, 419 

in the presence of vanadium(V) oxide and sucrose in experiment C, the TI was particularly high. Higher 420 

tolerance indices than the control may be related to metabolism-dependent or -independent mechanisms of 421 
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tolerance/resistance, implemented to cope with the stress due to metal toxicity (Gadd 1993; 2007; Gadd et 422 

al. 2012). The presence of toxic metals can strongly influence the physiology and morphology of fungal 423 

mycelia and the resulting interactions can include acidolysis, complexolysis, redoxolysis, metal 424 

accumulation, production of high local concentrations of extracellular enzymes, and other metabolites (e.g. 425 

organic acids, siderophores, polyphenolic compounds and pigments), mycelial growth strategies (e.g. 426 

explorative growth) and hyphal aggregation (e.g. phalanx growth) (;  Gadd et al. , 2014; Ceci et al. 2015a, 427 

c). The excretion of organic acids (e.g., oxalic, citric, gluconic, and lactic acid) can be strongly influenced 428 

by growth conditions such as the presence of toxic metal minerals, nutrient availability, the C and N 429 

sources, pH and buffering capacity of the medium (Gadd et al. 2012; Ceci et al. 2015a, c). P. griseofulvum 430 

FBL 500 was able to acidify the medium beneath the colonies either from the initial value of pH 5.5 or 431 

from an initial value of pH ~7 (Table 4, Online Resource). In experiment A, the final pH values in all test 432 

conditions were all acidic (pH 4–5), with the only exception being the treatments with the combinations of 433 

Pb and V compounds. These were close to the uninoculated control and this is probably related to the 434 

buffering effect of carbonate (Table 4, Online Resource). Generally, fungi lower the pH of their medium 435 

during growth. Mechanisms such as the excretion of protons via the plasma membrane ATPase, the uptake 436 

of essential cation nutrients in exchange for protons, the release of organic acids and acidification due to 437 

fungal respiration can all cause acidification (Ceci et al. 2015c). On the other hand, in the presence of 438 

specific metal compounds such as carbonates or apatites, buffering effects can be evident (Ceci et al. 2015a, 439 

c). In this work, the formation of new biominerals, which are assumed to be lead oxalate, is evidence of 440 

metal biotransformation. Similar results were observed with A. niger in the presence of V and Pb 441 

compounds, vanadinite and mimetite (Ceci et al. 2015a, c). The organic acids produced by P. griseofulvum 442 

FBL 500 can provide ligands for metal-complex formation, electrons for metal redox reactions and metal 443 

precipitation as new mycogenic minerals, that can result in mobilization or immobilization of lead and 444 

vanadium (Ceci et al. 2015a, c). In experiment C, the medium pH values were close to the control (Table 4, 445 

Online Resource). The fungal growth in such conditions did not significantly change the pH of media 446 

(Table 4, Online Resource), and a pH range close to neutrality could avoid some possible toxic effects in 447 

acidic conditions due to the production of benzoates during HCH biodegradation. The benzoates detected 448 

during these experiments were previously observed with P. griseofulvum FBL 500 in the presence of β-449 

HCH (Ceci et al. 2015b). 450 

In experiments B and C, P. griseofulvum FBL 500 was able to grow and tolerate high 451 

concentrations of a mixture of HCH isomers. The tolerance of this fungus was tested in previous work at a 452 

combination of 1 mg/l β-HCH (Ceci et al. 2015b). The presence of a 4 mg/l HCH mixture did not inhibit 453 

fungal growth, and similar TI values were found for liquid and solid Czapek-Dox media. Similar results 454 

were observed in previous work (Ceci et al. 2015b) confirming that the presence of different HCH isomers 455 

had no obvious synergic effects on growth. In liquid medium, the biotransformation of the isomers was 456 

observed to be different and isomer-specific, with β-HCH and δ-HCH being the most stable and recalcitrant. 457 

These findings also agree with some other biotransformation studies (Willett et al. 1998; Phillips et al. 458 
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2005). The biodegradation of different mixtures of α-HCH, β-HCH, γ-HCH and δ-HCH by ligninolytic 459 

white-rot fungi has been previously reported (Quintero et al. 2007; 2008; Mohapatra and Pandey 2015). To 460 

our knowledge, this work is the first evidence of the biodegradation of a HCH mixture by a saprotrophic 461 

fungus, isolated from a historically co-contaminated site with metals and HCH. In Quintero et al. (2007), 462 

biodegradation values exhibited by Bjerkandera adusta (Willd.) P. Karst. of 91.5%, 94.5%, 78.5% and 66.1% 463 

were attained after 30 d for γ-, α-, δ- and β-HCH isomers, respectively. The δ- and γ-HCH isomers were 464 

degraded to between 15.1 and 70.8% by six different white-rot fungi tested and the highest β-HCH 465 

biodegradation (56.6%) occurred with B. adusta (Quintero et al. 2008). In our tests with liquid Czapek-Dox 466 

medium, it is possible to hypothesize the existence of a lag phase during the first 3 d followed by a 467 

reduction of α-HCH, β-HCH and γ-HCH isomers in the media (Fig. 2a–2c). This could be related to slow 468 

HCH solubilization in the media and/or enzyme induction and an adaptation period of the fungus to 469 

addition of the HCH mixture. These phases were also observed in P. griseofulvum FBL 500 in the presence 470 

of β-HCH  as an adaptation period associated with time and a specific compound threshold for induction of 471 

catabolic enzymes (Ceci et al. 2015b. In a slurry batch reactor using B. adusta, Quintero et al. (2007) 472 

observed a lag phase during the first 5 d followed by a 7-day period in which the concentration of the HCH 473 

isomers α, γ, δ, and β decreased to 73.9%, 57.4%, 40.8% and 28%, respectively. Valentin et al. (2007), 474 

using the same slurry reactor system, observed a lag period of 6 d, but they related this to stressful culture 475 

conditions, e.g. high agitation rates, or a decrease in oxygen transfer. Ceci et al. 2015b observed a lag 476 

period of 4 days, followed by a reduction period of β-HCH in the medium (residual β-HCH = 44.8%). 477 

Detrimental conditions, such as benzoate formation, could speed up the decay phase, which implies that 478 

degradation stops at shorter treatment periods (Guillén-Jiménez et al. 2012; Ceci et al. 2015b). In liquid 479 

medium, no expected metabolites that have been reported in the literature for HCH biodegradation were 480 

observed, while different metabolites derived from fungal dehalogenation of HCH were observed in 481 

experiment C with HCH (Fig. 3). In liquid media, possible intermediates could not be detected probably 482 

because of the fast kinetics of biodegradation involved in liquid medium, the low detection limits of the 483 

transient products, or their different values of polarity and volatility (Guillén-Jiménez et al. 2012; Ceci et al. 484 

2015b). Isomers of PCCH, TCCH, TCB (1,2,3-TCB, 1,3,5-TCB and 1,2,4-TCB), DCB (1,2-DCB, 1,3-DCB 485 

and 1,4 DCB), and chlorobenzene were detected in solid Czapek-Dox medium incubated with P. 486 

griseofulvum FBL 500 in experiment C (Fig. 3). A combination of vanadium and HCH did not significantly 487 

inhibit fungal growth, showing similar TI values as those with the presence of HCH alone, while a 50 mg/l 488 

concentration of the HCH mixture negatively reduced the fungal growth (TI < 50%). Despite this, in both 489 

cases HCH biodegradation was not influenced negatively, as some metabolites were observed. 490 

Intermediates of HCH reductive dechlorination and hydroxylation have been observed in other studies on 491 

biotransformation of lindane by bacteria and saprotrophic fungi (Phillips et al. 2005; Salam and Das  2015). 492 

PCCH is reported to be the first intermediate of HCH dehalogenation in aerobic degradation pathways 493 

(Willett et al. 1998; Middeldorp et al. 2005; Camacho-Pérez et al. 2012). The presence of TCCH was 494 

generally observed during anaerobic HCH degradation by bacteria, while a Pseudomonas sp. isolated from 495 
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soil was able to transform lindane aerobically producing PCCH and TCCH (Phillips et al. 2005). Microbial 496 

degradation of lindane has been reported to produce volatile transformation products such as chlorinated 497 

benzenes and phenols ( Phillips et al. 2005; Salam et al. 2013). Previously, tetrachlorocyclohexane and 498 

tetrachlorocyclohexanol were observed in the biodegradation of lindane by white rot-fungi (Phillips et al. 499 

2005), while PCCH and benzoic acid derivatives were observed in aerobic degradation of lindane by 500 

Fusarium verticillioides AT-100 (Guillén-Jiménez et al. 2012). γ-PCCH and different metabolites were 501 

observed in lindane biodegradation by Candida VITJzN04 (Salam and Das 2014), while the proposed 502 

degradation route for lindane in Rhodotorula sp. is very similar to the one that can be hypothesized in this 503 

investigation and γ-PCCH, 1,2,4-TCB, 1,2.DCB, CB and other intermediates were reported (Salam et al. 504 

2013). 505 

The Phenotype MicroArrayTM microplate system was used to study the whole phenotype of P. 506 

griseofulvum FBL 500 in response to the different combinations of V and HCH. This fungus was able to 507 

use ~74 % of the all available microplate substrates. This confirms a high metabolic versatility of P. 508 

griseofulvum FBL 500 in different environmental habitats. The different treatments did not change the 509 

number of substrates used, but instead the rate of utilization, with significant effects on fungal metabolism. 510 

The presence of vanadium alone or in combination with HCH negatively influenced respiration and growth 511 

in the presence of different compounds, according to their different chemical categories. The results 512 

showed a strong similarity with the treatments with vanadium and with the combination of V and HCH. 513 

This can be explained by V inhibition of specific enzymes which are essential for the activation of different 514 

metabolic pathways of substrate utilization and also masks the effects of HCH. For instance, enzymatic V 515 

inhibition could be due to chemical similarity of vanadate with phosphate, and the resulting competition for 516 

phosphorylation of some enzymes, which, in turn, could reduce utilization of specific substrates and 517 

metabolism. It has been demonstrated that vanadium enters Neurospora crassa as vanadate, which is a 518 

potent inhibitor of the plasma membrane ATPase when cells are growing in an alkaline medium and are 519 

depleted for phosphate (Ceci et al. 2015c). Functional and phenotypic studies on microbial communities 520 

from metal polluted sites using Biolog microplates with high concentrations of Cu and Zn, showed negative 521 

effects on community functions due to metal toxicity, but also pollution-induced community tolerance to 522 

metals (Klimek and Niklińska 2007). In particular, the fungal community was shown to be less sensitive to 523 

metal toxicity than the co-occurring bacterial community (Klimek and Niklińska 2007). Kong et al. 2006 524 

observed that synergic effects of Cu and the antibiotic oxytetracycline on a microbial community 525 

negatively influenced functional diversity, resulting in a significantly stronger negative effect for each 526 

substrate group on the utilization potential of carboxylic acids and carbohydrates than those of 527 

oxytetracycline or Cu alone (Kong et al. 2006). It is worth noting that in our study it has been found that for 528 

nearly 50% of substrates used by P. griseofulvum FBL 500 there was no significant difference among the 529 

metabolic curves for all the treatments. This may indicate that the mechanisms of tolerance/resistance 530 

utilized by the fungus were adequate to cope with the stress imposed by the different combinations of 531 

xenobiotics and PTEs. Apparently P. griseofulvum FBL 500 could transform metal and/or organic 532 
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pollutants into less toxic forms since in their presence it showed the same metabolic profile as the control. 533 

In fact, for some substrates higher values of A, the maximum height of the metabolic curve, were observed 534 

or higher values of OD for HCH, V and combinations of both. These evidences may represent a stimulatory 535 

effect of HCH, V or combinations of both in the co-metabolism of specific organic compounds. In the 536 

presence of carbon- and nitrogen-containing compounds, specific metabolic pathways, such as the pentose 537 

phosphate pathway and glucuronate interconversion, and the presence of relatively non-specific enzymes, 538 

such as laccases and cellulose dehydrogenase saprotrophic can be activated, and fungi, could play roles in 539 

the biotransformation of HCH alone or with V (Cameron et al. 2000; Mander et al. 2006; Ceci et al. 2015b). 540 

V can help in cancer treatment, because it may be actively involved in oxidative radicals’production by 541 

Fenton reactions against the tumor cells (Rehder, 2008). These reactions could also enhance the enzymatic 542 

catalyst reactions of HCH biotransformation by laccases or other fungal enzymes, involved also in the 543 

biodegradation of other xenobiotics. Moreover, V can activate specific enzymes, such as V-dependent 544 

haloperoxidases, that can further enhance the degradation of recalcitrant compounds (Ceci et al., 2015c) 545 

The P. griseofulvum FBL 500 strain was isolated from an environment extensively polluted by 546 

toxic organic and inorganic compounds over several years. Therefore the fungus occurred in an 547 

environment where stress was a constant condition and stimulus for survival. The experiments exposed the 548 

fungus to toxic compounds singly and in combination with the responses of the fungus being varied. On 549 

one hand, the organism showed a generic response which was the same in both the presence of organic 550 

compounds and metals. It is likely that fungus initiated a survival or buffering metabolism generically 551 

directed to cope with immediate extreme environmental conditions, apparently without distinguishing 552 

between metal or organic stressors. It is worth mentioning that the different treatments did not affect the 553 

number of carbon sources used by the fungus, but instead modified their rate of utilization suggesting a 554 

significant systemic effect on fungal metabolism, and not just on a single pathway. P. griseofulvum FBL 555 

500 was able to acidify the medium and the formation of new biominerals was evidence of the occurrence 556 

of metal biotransformation. This suggests that the fungus possesses particular mechanisms of tolerance to 557 

metal toxicity. When exposed to HCH, however, the biotransformation of the xenobiotic by the fungus did 558 

not significantly change the pH of the media, which remained close to neutrality. This could protect the 559 

fungus from toxic effects that occur in acidic conditions due to the production of benzoates from HCH 560 

biodegradation. In fungi, pH plays important roles in other ecological aspects. For example, in postharvest 561 

pathogens, fungal pH modulation of the host environment regulates a multitude of enzymes implied in 562 

fungal pathogenicity (Alkan et al. 2012). Moreover, for Paecilomyces marquandii (Massee) S. Hughes, the 563 

pH of the medium affects the production of reactive oxygen species during biodegradation of the pesticide 564 

alachlor. Neutral pH was favourable both for alachlor biodegradation and for oxidative stress reduction 565 

(Słaba et al. 2015). The effectiveness of mycelial protection by anti-oxidative enzymes from oxidative 566 

stress was observed to be dependent on the environmental pH, exposure time and fungal growth phase 567 

(Słaba et al. 2015). Interestingly, the synthesis of laccase and other extracellular peroxidases by some 568 

filamentous fungi was higher in the presence of intracellular oxidative stress (Chanda et al. 2015). Besides 569 
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a reaction to generic stress, P. griseofulvum FBL 500 was also capable of activating pathways to use 570 

different substrates, tolerating a high concentration of a combination of HCH and V with a supposed co-571 

metabolic mechanism. In fact, P. griseofulvum FBL 500 was able to tolerate high concentrations of a 572 

mixture of HCH isomers, an ability described so far only in a few fungal species.  573 

In this research, we have provided evidence of fungal tolerance to metals and HCH, and its ability 574 

in metal biomineralization, metal mobilization and biotransformation of HCH mixtures of isomers, even in 575 

the presence of vanadium at high concentrations. This could therefore be relevant to bioremediation 576 

treatments (bioaugmentation, biostimulation) of co-contaminated sites through native fungal species 577 

selected for extreme environmental conditions. 578 

  579 
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Figures 787 

Fig. 1 Biomineralization by P. griseofulvum. Biomineral precipitation observed underneath growing fungal 788 

colonies in Czapek-Dox agar amended with combinations of 2.5 mM ammonium metavanadate and 2.5 789 

mM lead carbonate after 3 months incubation of P. griseofulvum at 25°C in the dark. Scale bar = 0.4 mm. 790 

Typical image is shown from several examinations. 791 

Fig. 2 Gas chromatographic analysis of HCH mixture in liquid Czapek-Dox medium after growth of P. 792 

griseofulvum. The HCH mixture was added 26 days after fungal inoculation, and the isomer concentrations 793 

were monitored for 23 days. a α-HCH concentration. b β-HCH concentration. c γ-HCH concentration. d δ-794 

HCH concentration. The bars are the standard errors of HCH concentrations of three replicates. 795 

Fig. 3 Proposed biodegradation pathway for HCH in P. griseofulvum. The initial reaction is the 796 

dehalogenation of HCH to pentachlorocyclohexene, the second is the formation of tetrachlorocyclohexene 797 

(TCCH) (3,4,5,6-TCCH), the third is the formation of trichlorobenzene (TCB) (1,2,3-TCB, 1,3,5-TCB and 798 

1,2,4-TCB were detected), the fourth is the formation of dichlorobenzene (DCB) (1,2-DCB, 1,3-DCB and 799 

1,4 DCB were detected), and the fifth is the formation of chlorobenzene. 800 

Fig. 4 The parameter "A" (=asymptote) namely the maximum cumulative growth of the fungus on each 801 

substrate/in each well, clustered according to the different treatments and visualised as a heat map. The heat 802 

map was obtained using the function heat_map of the opm package. The x-axis corresponds to the 803 

substrates clustered according to the similarity of their values over all treatments; the y-axis corresponds to 804 

the plates clustered according to the similarity of their values over all substrates. The central rectangle is a 805 

substrate × plate matrix in which the colours represent the classes of values. Deep violet to blue indicate 806 

low optical density values and light brown indicates high values. The four treatments were cont=control, 807 

HCH= hexachlorocyclohexane mixture, V= vanadium and HCH+V= combination of vanadium and HCH 808 

for measurements at 750 nm. 809 

 Fig. 5 Growth curves of P. griseofulvum measured at 750 nm (a) and 490 nm (b). Growth curves for the 810 

four treatments (cont=control; HCH= hexachlorocyclohexane mixture; V= vanadium; HCH+V= 811 

combination of vanadium and HCH) for some of the most representative carbon sources among the 95 812 

substrates present in FF arrays were elaborated using the opm package for R. 813 
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