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Abstract Phenazines constitute a large group of nitrogen-
containing heterocyclic compounds produced by a diverse
range of bacteria. Both natural and synthetic phenazine
derivatives are studied due their impacts on bacterial
interactions and biotechnological processes. Phenazines
serve as electron shuttles to alternate terminal acceptors,
modify cellular redox states, act as cell signals that regulate
patterns of gene expression, contribute to biofilm formation
and architecture, and enhance bacterial survival. Phenazines
have diverse effects on eukaryotic hosts and host tissues,
including the modification of multiple host cellular re-
sponses. In plants, phenazines also may influence growth
and elicit induced systemic resistance. Here, we discuss
emerging evidence that phenazines play multiple roles for
the producing organism and contribute to their behavior and
ecological fitness.
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Introduction

Phenazines comprise a large group of nitrogen-containing
heterocyclic compounds that differ in their chemical and

physical properties based on the type and position of func-
tional groups present. More than 100 different phenazine
structural derivatives have been identified in nature, and
over 6,000 compounds that contain phenazine as a central
moiety have been synthesized (Mavrodi et al. 2006).
Bacteria are the only known source of natural phenazines.
However, natural and synthetic phenazines are of signifi-
cant interest because of their potential impact on bacterial
interactions and biotechnological processes.

Phenazines have been researched longer than most other
bacterial secondary metabolites, with over 5,000 published
reports dating from 1954 reported in the National Center for
Biotechnology Information (PubMed). These secondary
metabolites are produced by a variety of bacteria, especially
pseudomonads, and have been studied intensively because
of their broad spectrum antibiotic properties and roles in
virulence. From a biotechnological perspective, the continu-
ing interest in phenazines is due largely to their physico-
chemical properties, including their oxidation–reduction
(redox) properties and their bright pigmentation and ability
to change color with pH and redox state. Phenazines
continue to be used for many diverse applications, including
as electron acceptors and donors, as components of fuel cells,
as environmental sensors and biosensors, and as central
components of antitumor compounds.

In this mini-review, we discuss emerging evidence that
phenazines play multiple roles and contribute to the
behavior and ecological fitness of the producing bacterium.
For example, phenazines modify cellular redox state, act as
electron shuttles altering electron flow patterns, contribute
to biofilm formation and architecture, act as cell signals that
regulate patterns of gene expression, and contribute to the
survival of the producer. In eukaryotic hosts and host tissues,
phenazines modify numerous host cellular responses. In
plants, phenazines also influence growth and elicit induced
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systemic resistance. Of particular interest in defining their
functional impact are the observations that bacterial species
may produce different and often multiple phenazine deriv-
atives, that the phenazine derivatives are produced in
different proportions, and the question of whether the
amount or proportion of each derivative produced change
during growth or in response to environmental factors. We
also will discuss how the properties of phenazines have and
continue to be of interest for biological and biotechnological
applications.

Phenazines and phenazine producers

Many phenazine-producing bacteria are commonly found
associated with host organisms (Table 1). Perhaps the most
studied phenazine is pyocyanin (5-N-methyl-1-hydroxy-
phenazine), which is blue when oxidized. It is produced by
Pseudomonas aeruginosa, a common soil inhabitant and
opportunistic human pathogen. Pyocyanin (PYO) was
isolated originally from patient wounds and subsequently
demonstrated to be associated with infections caused by P.
aeruginosa. Its presence is associated with high morbidity
and mortality in immuno-compromized patients, such as
cystic fibrosis patients (Courtney et al. 2007; Murray et al.
2007). Phenazines produced by fluorescent pseudomonads
also are studied extensively for their application in plant
disease management. The bias in research toward pseudo-
monads often leads to the perception that phenazines are
produced primarily by this group. However, phenazines are
produced by a wide variety of Eubacteria including both
Gram-negative and Gram-positive species. Phenazine pro-
ducers include Nocardia, Sorangium, Brevibacterium,
Burkholderia, Erwinia, Pantoea agglomerans, Vibrio,
Pelagiobacter (see Mavrodi et al. 2006; Mavrodi et al.

2010; Mentel et al. 2009), and members of the Actino-
mycetes, especially Streptomyces (Turner and Messenger
1986). Additionally, Methanosarcina, a member of the
Archaea, was shown to contain a phenazine derivative
(Abken et al. 1998). This microbe is known to utilize
acetate, methylamines, and methanol. New phenazine
producers continue to be identified, such as Brevibacterium
sp. KMD 003 isolated from a marine purple sponge (Choi
et al. 2009).

It is increasingly evident that bacteria produce a wide
variety of phenazines, and that many bacteria produce mul-
tiple phenazine derivatives (Fig. 1). Bioinformatic compar-
isons of the phenazine biosynthetic genes among several
bacteria demonstrate a high degree of conservation of five
genes (Mavrodi et al. 2006; Mentel et al. 2009; Gross and
Loper 2009). These are considered the ‘core’ biosynthetic
genes as each is required for the synthesis of the basic
three-ringed phenazine structure. Recent evidence suggests
that these ‘core’ biosynthetic genes moved among diverse
bacterial genera via horizontal transmission (Mavrodi et al.
2010). In most phenazine-producing bacteria, the core
biosynthetic genes are flanked by one or more accessory
genes that encode different terminal-modifying enzymes
that result in the production of additional phenazine
derivatives. For example, Pseudomonas chlororaphis 30-
84, a root-associated beneficial bacterium produces three
phenazines, phenazine-1-carboxylic acid (PCA), 2-hydroxy-
phenazine-1-carboxylic acid (2OHPCA), and 2-hydroxy-
phenazine (2OHPZ) (Pierson and Thomashow 1992). This
Pseudomonas species is unique in that it contains phzO, a
gene that encodes a monooxygenase, located immediately
downstream of the core genes (Delaney et al. 2001). The
presence of phzO converts a small amount (∼10%) of the
yellow PCA into the bright orange 2OHPCA. Additionally,
a third minor derivative, 2OHPZ, is generated spontane-

Bacterium Human Animal Plant Insect

Brevibacterium linens + (skin)

Brevibacterium sp. KMD 003 + (marine sponge)a

Burkholderia cepacia + + +

Methanosarcina mazei + (intestine) + (rumen)

Mycobacterium abscessus + (skin, soft tissues)

Pantoea agglomerans + + +

Pectobacterium atrosepticumb +

Pelagio variabilis + (macroalgae)

Pseudomonas aeruginosa + + + +

Pseudomonas chlororaphis +

Pseudomonas fluorescens +

Streptomyces anulatus +c

Streptomyces cinnamonensis +

Table 1 Examples of
phenazine-producing microbes
commonly associated with hosts

a Callysongia (Choi et al. 2009).
b Formerly Erwinia carotovora
subsp atroseptica.
c Arthropod endosymbiont
(Gebhardt et al. 2002).
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ously from 2OHPCA. P. chlororaphis PCL1391 and P.
aeruginosa PAO1 contain phzH, a putative transamidase that
converts a portion of PCA into phenazine-1-carboxamide
(PCN), enabling these strains to produce both PCA and PCN
(Chin-A-Woeng et al. 2001). Two additional genes in P.
aeruginosa PAO1, phzM, a methyltransferase (Parsons et al.
2007), and phzS, a flavin-containing monooxygenase,
together are responsible for the conversion of PCA to
pyocyanin (Mavrodi et al. 2001; Greenhagen et al. 2008).
PhzS alone can facilitate conversion of PCA to 1-hydroxy-
phenazine (1OHPZ). P. aeruginosa PAO1 has two phenazine
core biosynthetic gene clusters, separated from each other by
ca. 2.6 Mb. One phenazine core region is flanked upstream
by phzM and downstream by phzS. In contrast, the trans-
amidase phzH is not closely linked to either biosynthetic
locus. It is interesting that one or a few terminal modifying
enzymes are responsible for the chemical modifications that
result in the majority of natural phenazine derivatives. Since
these structural modifications account for many of the
biological functions of phenazines, the expression of these
individual genes greatly affects the ecological fitness and
activities of the producing bacterium.

Recent biochemical work has led to important insights
into the mechanisms of phenazine biosynthesis, and several
excellent reviews are available (Mavrodi et al. 2006;
Mavrodi et al. 2010; Gross and Loper 2009). Some
phenazine biosynthetic enzymes have been crystallized,
and studies of these structures have led to a greater
appreciation of the complexities of phenazine synthesis
(Mentel et al. 2009; Mavrodi et al. 2010). A brief overview
of phenazine biosynthesis is given below. Phenazines are
derived from the shikimic acid pathway, using the interme-

diate chorismic acid as the branch point for biosynthesis of
the basic phenazine aromatic structure (Fig. 2). The
shikimic acid biosynthetic pathway is highly conserved
and is involved in the production of numerous metabolites
necessary for primary growth, including the three aromatic
amino acids, and para-aminobenzoic acid. In bacteria, this
pathway is under stringent regulation, occurring primarily
at the first step involving the condensation of erythrose-4-
phosphate and phosphoenolpyruvic acid by a type I-3-deoxy-
D-arabinoheptulosonate-7-phosphate (DAHP) synthase. In
many bacteria, isozymes of type I-DAHP synthase exist.
Each is subject to feedback inhibition by one of the end
products of the pathway. Interestingly, in many phenazine
producers, the third gene in the biosynthetic operon (phzC)
encodes a type II-3-DAHP synthase that is more similar to
DAHP synthases of solanaceous plants than that of pro-
karyotes (Pierson et al. 1995). In plants, type II-3-DHAP
synthase enzyme lacks a loop region required for allosteric
control (Webby et al. 2005). The activity of this enzyme is
not modulated by the three aromatic amino acid products,
but its activity is enhanced during specific aspects of plant
growth such as during seed germination and shoot formation
and by glyphosate exposure (Pinto et al. 1988). Expression
of phzC may enhance the first condensation step, ensuring
sufficient substrate levels for phenazine production. Howev-
er, unregulated expression of phzC may deplete the cell of
metabolites required for primary growth and may lead to
reduced overall fitness in the rhizosphere (Mavrodi et al.
2006). This need for controlled expression may explain, at
least in part, the complex regulation of phenazine production.

Almost all studies on phenazine regulation to date have
focused on pseudomonads. These studies show that

Fig. 1 Representative phenazine
structural derivatives. Phenazine
methosulfate and neutral red are
commonly used phenazine deriv-
atives. Phenazine-1-carboxylic
acid, 2-hydroxy-phenazine-1-
carboxylic acid and 2-hydroxy-
phenazine are produced by P.
chlororaphis strain 30-84. Pyo-
cyanin is produced by P.
aeruginosa. MLN944 is a DNA-
binding agent inhibitory to ma-
rine and human tumors (Sappal
et al. 2004). Methanophenazine
is produced by the Archaea
Methanosarcina spp. Descrip-
tions are provided in the text
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different pseudomonads utilize combinations of conserved
regulatory systems integrated into sensory networks to
control phenazine production in response to environmental,
nutritional, population, and metabolic inputs (reviewed in
Mavrodi et al. 2006; Mentel et al. 2009; Gross and Loper
2009). For example, phenazine production by the plant-
associated bacteria P. chlororaphis strain 30-84 and P.
fluorescens strain 2-79 is regulated at multiple levels. These
include transcriptional regulation via quorum sensing (QS)
(PhzR/PhzI), two component positive (GacS/GacA) and two
component negative (RpeA/RpeB) regulation. Yet additional
regulatory genes have been implicated in P. chlororaphis
phenazine control, including pip, and post-transcriptional
control by rsmA and rsmZ (Pierson et al. unpub.).

The opportunistic pathogen P. aeruginosa also regulates
PYO production by multiple regulatory systems. However,
there are distinct differences in the types of regulatory
systems and the linkage(s) between regulatory modules. For
example, P. aeruginosa utilizes the hierarchical LasR/LasI
and RhlR/RhlI QS systems to activate PYO production, as
well as a third signaling system based on production of 2-
heptyl-3-hydroxyl-4-quinoline, known as the Pseudomonas
quinoline system (PQS) (Dubern and Diggle 2008). P.
aeruginosa contains the gene mvfR involved in the regu-
lation of the MexGHI-opmD operon believed to be respon-
sible for secretion of the QS signals required for PYO
production. Recently, PA1196 was identified as a regulator
of the RhlR/RhlI and PQS systems in that mutation of the

Fig. 2 Phenazine biosynthesis
[Figure modified from Mentel
et al. (2009)]. Phenazines are
derived from the shikimic acid
pathway that is highly con-
served in most organisms. Cho-
rismic acid serves as the
phenazine branch point once the
phenazine biosynthetic genes
(phzABCDEFG) are expressed
(note phzB, phzD, phzE, phzF
and phzG are considered the five
core genes). PhzC, the third
enzyme in the phenazine oper-
on, is a type II-3-deoxy-D-arabi-
noheptulosonate-7-phosphate
that probably ensures sufficient
substrate flow through the shi-
kimic acid pathway for phena-
zine biosynthesis. The early
steps of phenazine biosynthesis
are becoming well elucidated
while several of the later steps
are not yet completely under-
stood and differences may re-
flect variation in the final
biosynthetic steps among
microorganisms. From PCA a
number of derivatives are
formed by additional terminal
modifying genes (not shown).
For a thorough discussion of the
pathway please see Mentel et al.
(2009). Abbreviations: DAHP:
3-deoxy-D-arabinoheptulosonate
7-phosphate, Gln: glutamine,
Glu: glutamic acid, ADIC: 2-
amino-2-desoxyisochorismic
acid, DHHA: trans-2,3-dihydro-
3-hydroxyanthranilic acid, PCA:
phenazine-1-carboxylic acid
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open reading frame PA1196 resulted in significant decrease
in rhlI and pqsA expression as compared to the wild type
(Liang et al. 2009). Additional regulatory inputs affecting
PYO production are likely to be identified. In contrast to P.
aeruginosa, hierarchical QS systems and analogs of the
PQS system have not been identified in P. chlororaphis or
P. fluorescens.

Pseudomonas sp. strain M18, a biological control strain
isolated from the melon rhizosphere, has a phenazine
biosynthetic locus organization similar to P. aeruginosa,
including two separate phenazine core gene clusters and the
presence of both the methyltransferase phzM and the
monooxygenase phzS genes. However, it produces predom-
inantly PCA, whereas P. aeruginosa produces primarily
PYO. In strain M18, the expression of phzM and lasI (and a
third gene ptsP) is under temperature-dependent regulation
such that they are transcribed at 28°C but not at 37°C
(Huang et al. 2009). In P. aeruginosa strain PAO1, phzM
expression is not affected by temperature, perhaps reflect-
ing its need for expression when associated with a human
host.

Although much is known about the regulation of the
core phenazine biosynthetic genes, especially in Pseudo-
monas spp., little is known about the fine tuning of the
timing of expression and the relative amounts of the
different phenazines produced. For example, fine tuning
in P. aeruginosa occurs by control of QS signals required
for PYO production. P. aeruginosa produces two major QS
signals, C4-HSL and 3-oxo-C12-HSL, with short and long
acyl chains, respectively (reviewed in Williams and Cámara
2009). P. aeruginosa also contains an AHL acylase specific
for long acyl chain signals. The presence of this enzyme
appears to act as a quorum quencher by turning off the las
QS system by degradation of the longer acyl chain signal
(Sio et al. 2006). The removal of this QS signal results in
loss of PYO production. This acylase, also known as
qsc112 or pvdQ, is up-regulated during iron deprivation and
may repress PYO production during periods of low iron
availability. However, it is not produced at high levels at
37°C, the temperature which P. aeruginosa would encoun-
ter upon infection of a human host. Although more work is
required, this may represent a mechanism by which the
bacterium modulates PYO production in response to iron
and host availability.

The regulatory complexity governing phenazine produc-
tion likely reflects the complexity of the roles phenazines
play for the producing bacterium (Pierson and Pierson
1996). This observation is consistent with evolutionary
theory that metabolically costly metabolites are more likely
to be maintained if they serve multiple functions (Wink
2003). Wang et al. (2009) hypothesized that phenazine
biosynthesis evolved originally during a period of low
oxygen availability, and that some of the effects on bacterial

behavior today may not reflect the conditions that drove
their early evolution. Evolutionary pressure on bacteria may
have selected for different phenazines to serve different
roles, and this is reflected by the diversity in the linkage
and types of regulatory pathways controlling their expres-
sion. Further, since the roles phenazines play for different
producers may not be the same, analysis of more than one
or two experimental systems may be required to gain a
more complete picture of their functions and importance.

Roles in pathogenesis and competition

Most of the described effects of phenazines during path-
ogenesis and competition are attributed primarily to their
ability to generate reactive oxygen species (ROS) in other
organisms and tissues. In some cases, this may result in
host beneficial effects, such as the inhibition of pathogenic
organisms. In other cases, bacterial virulence is enhanced
by phenazine production as it interferes with normal host
cell functions. Both of these outcomes are due ultimately to
the ability of phenazines to accept or donate electrons
because of their aromatic structure. Whether they accept or
donate electrons is dependent on their redox potential
relative to that of other electron transfer molecules in the
cell or in the environment. Early studies on cellular respi-
ratory chains demonstrated the ability of phenazines to
uncouple oxidative phosphorylation by shunting electrons
from the endogenous pathway in mammalian cells (Stewart-
Tull and Armstrong 1971) and in B. subtilis (Bisschop et al.
1979).

Several recent reviews discuss the formation of ROS and
oxidative stress by phenazines (Laursen and Nielsen 2004;
Mavrodi et al. 2006). For example, PYO production by P.
aeruginosa plays important roles in pathogenesis during
lung infection (Lau et al. 2004a, b; Winstanley and
Fothergill 2009). When growing on airway epithelial cells,
PYO (and PCA) produced by P. aeruginosa can be reduced
via the oxidation of glutathione and NADH resulting in
increased oxidation levels. The reduced PYO reacts with
free oxygen in the lungs, generating ROS. Airway epithelial
cells produce lactoperoxidase and related dual oxidases that
produce mild oxidants as a defense effective against a
number of bacterial intruders, including Staphylococcus
aureus, Burkholderia cepacia and P. aeruginosa. However,
PYO production by P. aeruginosa negates this host defense
mechanism by competing with epithelial cell Duox activity
for NADPH (Rada and Leto 2009). The generation of these
ROS contributes to the virulence of the infection. ROS also
may contribute to successful host invasion and disease due
to their negative effects on a range of host cell functions,
including respiration, ciliary beating, epidermal cell growth,
calcium homeostasis, prostaglandin release, neutrophil
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apoptosis, interleukin-2 release, Immunoglobulin G secre-
tion, and a protease–antiprotease activity (Hassan and
Fridovich 1980; Ran et al. 2003; Laursen and Nielsen
2004).

PYO production may inhibit the growth of competing
microorganisms during mixed lung infections (Machan et
al. 2001). In fact, the effects of phenazines can be
simultaneously positive and negative within the same host.
For example, while PYO production by P. aeruginosa
during lung infection of cystic fibrosis patients is correlated
with a poor prognosis, it is also highly correlated with a
lower incidence of yeast infections (Lau et al. 2004a, b;
Cogen et al. 2008). However, a more fundamental role for
PYO in the producing bacterium is suggested by the
observation that PYO production is important for persis-
tence even in the absence of competitors (Hassett et al.
2009; Kobayashi et al. 2009; Price-Whelan et al. 2006).
PYO-producing cells protect themselves by the production
of high levels of superoxide dismutase activity (SOD).
Mutants of P. aeruginosa in sodA or sodB are defective in
SOD production and produced half or no PYO, respective-
ly, as compared to the wild type (Hassett et al. 1995).
Recent work with P. aeruginosa and Bacillus subtilis
further supports the role of ROS in growth inhibition and
bacterial competition. B. subtilis cells containing intact nos
genes that produce nitric oxide (NO) that stimulates SOD
expression were more resistant to PYO in competition
studies compared to isogenic nos mutants (Gusarov et al.
2009). Although the multiple roles of PYO in virulence are
being recognized, it should be noted that in addition to PYO,
P. aeruginosa produces several other phenazine derivatives
including 1-hydroxyphenazine, PCA, PCN, aeruginosin A,
and aeruginosin B (see Mavrodi et al. 2006) for which the
impacts on virulence are less well understood.

In addition to their involvement in pathogenesis and
virulence, interest in phenazines as beneficial compounds
emerged in the 1980s due to their effectiveness as anti-
microbial compounds in plant disease control. Phenazine
production by a number of soil-borne bacteria was shown
to control a wide range of plant pathogenic fungi (Chin-A-
Woeng et al. 2003; Mavrodi et al. 2006). For example, P.
chlororaphis strain 30-84 produces three PZ derivatives
PCA, 2OHPCA, and 2OHPZ (Pierson and Thomashow
1992). P. fluorescens strain 2-79 produces only PCA
(Thomashow and Weller 1988), whereas P. chlororaphis
strain PCL1391 produces phenazine-1-carboxamide (PCN)
and some PCA (Chin-A-Woeng et al. 1998). PCN was
shown to control Fusarium oxysporum f. sp. radicis
lycopersici, the causative agent of tomato foot and root
rot. Both PCA and PCN are involved in control of Pythium
myriotylum, the causative agent of root rot of cocoyam
(Tambong and Hofte 2001) whereas PYO produced by P.
aeruginosa inhibited Septoria tritici of wheat (Flaishman et

al. 1990). PCA and PCN produced by Pseudomonas strain
PCL1391 induced several ABC transporters in Botrytis
cinerea (Schoonbeek et al. 2002). Additionally, the ability
to produce phenazine was strongly correlated with bacterial
persistence in natural soil in the presence of the indigenous
microbial community (Mazzola et al. 1992).

These results are consistent with the commonly held
belief that the primary role of phenazines produced by these
soil-borne bacteria is as antibiotic compounds that aid in
their competitive survival in natural systems. Yet, despite
the observations that phenazines produced by biological
control agents do inhibit a broad spectrum of target fungal
pathogens, in many cases, the same phenazine derivatives
are ineffective at inhibiting the growth of co-occurring bac-
teria, probably their most immediate competitors (Fernando
and Pierson, unpub.; Beifuss and Tietze 2005). Within
rhizosphere communities, the effects of phenazine produc-
tion on the indigenous rhizosphere community are negligi-
ble, with little effect on the microorganisms that compete
with the producer (Mavrodi et al. 2006: Dwivedi et al.
2009). More recent studies on phenazine function suggest
that, although phenazines may assist the producing bacte-
rium in competitive survival, this is probably not their
primary function. As described below, phenazines also
induce plant defense pathways, play roles in electron
shuttling, iron chelation, biofilm formation, and even serve
as signals that modulate gene expression (Fig. 3).

Induction of plant defense pathways

Phenazines have been shown to activate induced systemic
resistance (ISR) in plants. ISR is widespread and can be
induced by a number of bacterial components, including
outer membrane components, lipopolysaccharide, flagella,
siderophores, and volatile compounds (Van Wees et al.
2008). ISR is dependent on expression of the plant ethylene
and jasmonic acid pathways, leading to a rapid systemic
expression of broad spectrum resistance against numerous
pathogens (Verhagen et al. 2004). Inoculation of P.
aeruginosa onto rice plants elicited ISR, as evidenced by
resistance to the fungal rice blast pathogen Magneporthe
grisea. PYO was shown to be critical for this induction as
loss of PYO production resulted in the loss of ISR against
M. grisea (De Vleesschauwer et al. 2006). However, the
production of PYO resulted in increased susceptibility of
rice to another fungal pathogen, Rhizoctonia solani.

Electron shuttling and iron chelation

Microorganisms often experience environments in which
terminal electron acceptors are limited or may become
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limited under specific conditions. The lack of available
terminal electron acceptors severely limits bacterial growth
and survival due to low energy generation. In most bacteria,
this also results in a highly reduced intracellular redox state
as indicated by a high NADH/NAD+ ratio (de Graef et al.
1999). P. aeruginosa is capable of maintaining a NADH/
NAD+ ratio slightly greater than one due to the production
of PYO, which serves as an alternate electron acceptor that
reoxidizes NADH to NAD+. This enables the cell to
balance intracellular redox in the absence of other electron
acceptors (Price-Whelan et al. 2007). Recently, PYO
production was shown to be important for bacterial
survival, but not growth, under anaerobic conditions (Wang
et al. 2009). In this work, wild type P. aeruginosa PA14 and
a phenazine null derivative were grown as planktonic
cultures to stationary phase and electron flow measured in
anaerobic bioreactors. The pyocyanin-producing wild type
strain remained viable for 7 days, although its population
did not increase from its initial level. In contrast, the non-
pyocyanin-producing mutant population decreased logarith-
mically after 3 days. This effect was specific to pyocyanin,
as several other redox compounds with similar structures
did not support survival. These results demonstrate that
phenazines are essential for long term survival under
anaerobic conditions, for example, as occurs below the
outer surface layer of biofilms (Drago 2009).

In soils, water saturation and microbial and root
respiration limit available O2 as a terminal electron
acceptor. The use of alternative electron acceptors such as
ferric (Fe3+) iron allows continued energy generation and
enhanced microbial survival. The root-associated bacterium
P. chlororaphis PCL1391 utilizes phenazine-1-carboxamide
(PCN) to efficiently convert ferric Fe3+ hydroxides to
ferrous Fe2+ under acidic conditions. The dissimilatory
iron-reducing bacterium Shewanella oneidensis MR1 also

is capable of utilizing exogenously added PCN to miner-
alize poorly crystalline Fe3+ hydroxides, enabling it to grow
under conditions with limited electron acceptors (Hernandez
et al. 2004). Different phenazine structural derivatives have
different reactivities to ferrihydrite and hematite (pH 5–8),
suggesting that particular phenazines may react preferen-
tially with specific forms of iron (Wang and Newman
2008). The recent finding that addition of strong iron
chelators inhibited P. aeruginosa biofilms, especially under
anaerobic conditions (O'May et al. 2009), reinforces the
probable role of phenazines as electron shuttles to alterna-
tive electron acceptors.

One benefit of phenazine-mediated iron reduction is the
increased bioavailability of this limited element to the
bacterium. For example, PYO produced by P. aeruginosa
can acquire iron from the human iron chelator transferrin,
and the highest rate of iron acquisition occurs under low O2

conditions (Cox 1986). In soils, PYO production may
increase iron availability to other organisms. PYO itself
was shown recently to act as an iron chelator (Newman
unpub.).

The use of phenazines as electron shuttles is not limited
to Eubacteria. Methanosarcina spp. generate methane using
anaerobic respiration. These Archaea contain a unique
energy-saving electron transport system that utilizes meth-
anophenazine as a membrane-localized component. This
chain is proposed to consist of two systems: reduced coen-
zyme F420 (F420H2: heterodisulfide oxidoreductase) and H2:
heterodisulfide oxidoreductase. The net result of either
system is the sequential transfer of electrons from F420H2 or
H2 to the membrane-localized methanophenazine (MP)
with the concurrent release of two protons outside the cell
membrane. The reduced methanophenazine (MPH2) subse-
quently donates electrons via the enzyme heterodisulfide
reductase (Hdr) to the heterodisulfide of coenzyme M and

Fig. 3 Representative effects of
phenazines on cellular physiol-
ogy, gene expression, host
functions and biotechnological
applications. In the center is the
basic phenazine structure lack-
ing any additional modifica-
tions. Details of the effects of
phenazine derivatives on specif-
ic functions are described in
the text
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coenzyme B (CoM–S–S–CoB), which serves as the
terminal electron acceptor and is involved subsequently in
methane production. The net result of each system is the
translocation of four protons outside the cell for each pair of
electrons. The proton motive force generated is used for
ATP synthesis (Abken et al. 1998; Beifuss and Tietze 2005;
Kulkarni et al. 2009).

Cell adhesion, biofilm development and dispersal

Biofilm formation is important for the persistence and
survival of bacteria (Davies 2002; Balasubramanian and
Mathee 2009; McBain 2009). Many Gram-negative bacte-
ria require functional QS systems in order to form biofilms
(Mavrodi et al. 2006; De Sordi and Mühlschlegel 2009;
Dobretsov et al. 2009). Recent work with P. chlororaphis
30-84 reinforced the importance of QS in biofilm formation
(Maddula et al. 2006). This work also demonstrated that it
was specifically the production of phenazines controlled by
the PhzR/I QS that was critical. Mutants defective in the
PhzR/I QS system failed to establish biofilms even after
6 days, similar to a phenazine structural mutant. Introduc-
tion of functional copies of phzR/phzI in trans failed to
rescue the phenazine structural mutant for adhesion and bio-
film development, whereas constitutive phenazine expres-
sion resulted in earlier biofilm formation after 1–3 days.

P. chlororaphis strain 30-84 produces primarily phenazine-
1-carboxylic acid (PCA) and only about 10% is converted
into 2-hydroxy-phenazine-1-carboxylic acid (2OHPCA).
Therefore, the effect of altering the ratio of PCA to 2OHPCA
produced by strain 30-84 on biofilm development was ex-
amined (Maddula et al. 2008). A derivative in which phzO
was inactivated was constructed along with a derivative in
which additional copies of phzO were introduced in trans,
resulting in strains that produced only PCA or increased
levels of 2OHPCA. Compared to wild type strain 30-84 or
the PCA-only producer, the 2OHPCA overproducer ad-
hered more quickly and more uniformly to glass surfaces
(44% total coverage as compared to 1% by the wild type or
PCA-only strain after 45 min.). Additionally, the 2OHPCA
overproducer formed thicker biofilms than the wild type,
but had a cell bio-volume similar to the wild type. In
contrast, the PCA-only producer had a thicker biofilm with
four-fold higher bio-volume of cells than either the wild
type or 2OHPCA overproducer. Dispersion from the
biofilm also was reduced in the 2OHPCA overproducer.
These results suggest that 2OHPCA may facilitate cellular
adhesion, whereas PCA may facilitate growth within the
biofilm, possibly as an electron shuttle within the micro-
aerophilic community. The idea that the phenazines
produced by P. chlororaphis 30-84 may play different roles
in biofilm structure and function is intriguing given that

early work showed that 2OHPCA had a greater ability to
inhibit the growth of some microorganisms than PCA
(Toohey et al. 1965). Moreover, P. chlororaphis 30-84 was
found to be more effective against the fungal plant
pathogen Gaeumannomyces graminis var. tritici than
strains that produce PCA alone. These results suggest that
bacteria may produce different phenazine structural deriv-
ative in specific concentrations due to the diverse roles they
serve for the population.

Phenazines as signals

The observation that alterations in the levels of specific
phenazine structures had significant impacts on cell
adhesion and biofilm architecture raises an interesting
question as to the mechanism(s) involved in these effects.
One possibility is that phenazines, regulated by QS signals,
are themselves signals capable of altering patterns of gene
expression. Recently, experimental support for this hypoth-
esis was established using P. aeruginosa PAO1 (Dietrich et
al. 2006). A mutant was constructed in which both sets of
phenazine biosynthetic genes were deleted. Transcriptome
analysis of the mutant strain, grown with or without
0.2 mM purified PYO, revealed altered expression of 51
genes. Of these, 8 of the 22 genes up-regulated by PYO
addition were efflux transporters, while 7 of the 29 genes
down-regulated were involved in ferric iron uptake. This
work demonstrated that PYO was itself a signal that
modulated the physiology of P. aeruginosa.

The effects of PYO were shown subsequently to be
dependent on two mechanisms, one involving a homologue
of E. coli SoxR and a second dependent on another
unknown regulator (Kobayashi and Tagawa 2004). In E.
coli, SoxR regulates the expression of superoxide stress
response regulons in conjunction with a second regulator,
SoxS. Dietrich et al. (2008) used bioinformatic and gene
expression analysis to study the role of SoxR regulons in P.
aeruginosa and Streptomyces coelicolor. In P. aeruginosa
and S. coelicolor, many of the SoxR regulons identified
lacked genes involved in superoxide stress response, but
contained genes involved in the transport of small mole-
cules. One of the products under SoxR control in P.
aeruginosa PA14 is the MexGHI-OpmD efflux system
involved in transport of PCA and a red phenazine.
Interestingly, PYO stimulated the expression of this efflux
system, although it was not dependent on it for release from
the cell. Comparison of wild type PA14, a soxR deletion
mutant, and a PYO-overproducing strain indicated that the
presence of higher levels of PYO resulted in the mainte-
nance of a smooth colony morphology as compared to the
wild type PA14. The higher levels of PYO in the soxR
deletion and PYO-overproducing mutants is presumably
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due to the inability of the soxR mutant to transport
phenazines out of the cell and the overproducing strain
having more phenazine produced as compared to the wild
type. These results suggested that the diffusibility of
phenazines may influence colony phenotype over distance.

In P. chlororaphis, transcriptome analysis was used to
compare a phenazine structural mutant to the wild type
strain. In this experiment, phenazine production occurred
naturally under QS regulation. In preliminary experiments,
63 (1.1%) and 41 (0.8%) P. chlororaphis genes were up- or
down-regulated by phenazine production, respectively
(Pierson et al. unpub). In contrast to P. aeruginosa, many
of the genes that appeared to be activated encode products
associated with cell adhesion and biofilm development,
including fimbrial and LPS genes. Although it is clear that
phenazines can serve as signals in both Pseudomonas
species, the effects of this signaling may not be the same for
each species. Further, in cases where multiple phenazines
are produced, distinct phenazines may effect the expression
of different or overlapping gene sets. These differences may
be useful tools in understanding the evolutionary selection
experienced by each species.

Biotechnological applications

The ability of phenazines to promote electron transfer has
many realized and potential biotechnological applications.
Phenazines long have been used as colorimetric redox
indicators. The pH indicator neutral red is among the best
known. More recently, phenazines have been utilized for
the development of sensors and in nanotechnology. For
example, a phenazine derivative was used to develop a
luminescence-based pH sensor (Ryazanova et al. 2007) and
an amperometric sensor for hydrogen peroxide determina-
tion utilizing neutral red attached to multiwalled carbon
nanotubes was developed (Jeykumari and Narayanan
2007).

Microbial fuel cells (MFC) use microorganisms to
catalyze the conversion of chemical energy into electrical
energy (Torres et al. 2010). An ongoing issue with MFCs is
that the slow rate of electron transfer from the microorgan-
ism to the anodic electrode limits MFC efficiency. Early
work demonstrated that phenazine methosulfate or phena-
zine ethosulfate served as good electron acceptors in
photoelectrochemical cells (Sanderson et al. 1987). More
recently, it was observed that other phenazines also
contributed to the rates of electron transfer in MFCs. The
addition of pyocyanin to MFC-containing Brevibacillus sp.
PTH1 doubled the rate of electron transfer (Rabaey et al.
2005). The addition of a PCA-producing P. chlororaphis or
a derivative that produces high levels of PCN to a mixed
MFC also resulted in higher electron transfer rates (Pham et

al. 2008). A strain of P. aeruginosa was isolated from MFC
maintained in a batch mode for over a year that supported
352 mV using 1500 mg/l glucose as fuel (Luo et al. 2009).

Phenazines conjugated to other compounds offer poten-
tial as components of organic light emitting devices
(OLED), such as a phenanthroline-fused phenazine (Chen
and Xiao-Chang 2004). OLEDs are gaining popularity due
to their low voltage requirements, wide color range, and
light weight. OLEDs are organic semiconductors containing
an emissive layer placed between a transparent anode (e.g.,
transparent indium tin oxide) and a metal cathode (e.g., Mg,
Al, Ag). When a bias is applied across the electrodes, the
‘holes’ (areas lacking electrons) and electrons combine in
the emissive layer resulting in light emission (Li et al.
2009).

Phenazines are associated with antitumor activities
(Laursen and Nielsen 2004; Mavrodi et al. 2006). Cells
that are actively respiring, such as tumor cells, appear to be
more susceptible to respiratory interference and ROS
generation caused by phenazine compounds. Additionally,
phenazine derivatives known to interfere with topoisomer-
ase I and II activities in eukaryotic cells have been
identified. Cancer cells, having high levels of both top-
oisomerases, are more susceptible to this interference. For
example, active proliferation of human lymphocytes was
inhibited by pyocyanin (Sorensen et al. 1983). The
development of synthetic anticancer phenazine derivatives
is an ongoing area of research aimed at combining known
phenazine biological activities with increased target speci-
ficity towards cancer cells (Nakaike et al. 2005; Hari et al.
2009).

Concluding remarks

The roles of phenazines in biotechnology appear limitless
based on their ability to shuttle electrons and new
applications based on other properties are likely to be
identified in the future. In natural systems, phenazine-
producing bacteria often produce multiple derivatives and
even individual phenazines appear to play multiple roles in
bacterial interactions and behaviors. Future research needs
to address the importance of the relative quantities of
phenazine derivatives produced and how this balance is
maintained. For example, how does changing the amount of
one phenazine derivative produced relative to another affect
bacterial fitness? Understanding the patterns of gene
expression regulating the timing and levels of phenazines
produced may lead to greater appreciation of the reasons
bacteria produce diverse phenazine structural derivatives at
different levels and perhaps a better understanding of the
complex roles these phenazines serve in the lifestyles and
behavior of bacteria.
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Summary

& Phenazines constitute a large group of nitrogen-
containing heterocyclic compounds that differ in their
chemical and physical properties based on the type and
position of the functional groups present.

& Most studies on phenazines have focused on Gram-
negative bacteria such as Pseudomonas spp. The
recognition that phenazines are produced by a wide
variety of Eubacteria, and some Archaea, indicates a
need for research on the regulation and functions of
phenazines in other classes of bacteria.

& Many phenazine-producing bacteria commonly form
associations with different hosts, although this may
reflect a bias in how phenazine producing bacteria have
been selected.

& Phenazine derivatives with chemical modifications at
one or more positions of the aromatic ring structures
have been identified, and most are due to one or a few
terminal modifying enzymes. These differences in
phenazine structure impact their biological functions,
and therefore these modifications may determine the
ecological niche the bacterium occupies.

& Phenazine production is controlled by regulatory net-
works that are organized differently in each species.
Although phenazines serve multiple roles for the
producing organism, the roles phenazines play for each
producers may not be the same. Therefore, conclusions
based on one or two experimental systems may provide
only partial insights into their importance.

& Phenazines serve as signals, altering patterns of gene ex-
pression in the producing bacterium. However, the spe-
cific genes may be different in each bacterial species.
Future work will determine if different phenazine struc-
tural derivatives affect the expression of a conserved or
overlapping groups of genes, and how these genes affect
bacterial behaviors.

& In order to gain a more complete understanding of the
impacts of phenazines on bacterial behavior and fitness,
future studies should address:

& ∘ why strains produce specific and often more than one
phenazine derivative,

& ∘ why these derivatives are produced in distinct
quantities or ratios, and

& ∘ how these ratios are “fine-tuned.”
& Based on the knowledge gained from these studies,

future biotechnological advances may come from the
use of finely-tuned ratios of phenazines rather than
relying on single derivatives.
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