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Abstract

Organisms adapt to changing environments by adjusting their development, metabolism, and behavior to improve their 

chances of survival and reproduction. To achieve such flexibility, organisms must be able to sense and respond to changes in 

external environmental conditions and their internal state. Metabolic adaptation in response to altered nutrient availability 

is key to maintaining energy homeostasis and sustaining developmental growth. Furthermore, environmental variables exert 

major influences on growth and final adult body size in animals. This developmental plasticity depends on adaptive responses 

to internal state and external cues that are essential for developmental processes. Genetic studies have shown that the fruit fly 

Drosophila, similarly to mammals, regulates its metabolism, growth, and behavior in response to the environment through 

several key hormones including insulin, peptides with glucagon-like function, and steroid hormones. Here we review emerg-

ing evidence showing that various environmental cues and internal conditions are sensed in different organs that, via inter-

organ communication, relay information to neuroendocrine centers that control insulin and steroid signaling. This review 

focuses on endocrine regulation of development, metabolism, and behavior in Drosophila, highlighting recent advances in 

the role of the neuroendocrine system as a signaling hub that integrates environmental inputs and drives adaptive responses.
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Introduction

Organisms must adapt to changing environments by adjust-

ing their developmental growth, metabolism, and behavior 

to promote survival and reproduction. This adaptation relies 

on the ability to sense and respond to changes in internal 

and external environmental conditions. This involves com-

plex sensing of nutritional conditions, temperature, oxygen, 

and light. Animals at all developmental stages integrate this 

information and adjust their metabolism and behavior to take 

advantage of available resources and to maintain homeosta-

sis. Furthermore, juvenile animals—those that are still in 

the non-reproductive growth phase of their development—

adjust their growth and development to meet resource avail-

ability in such a way that the final adult animal is most likely 

to be reproductively successful. The mechanisms that govern 

developmental, metabolic, and behavioral adaptations fre-

quently make use of systemic endocrine signals to adjust 

the parameters of underlying genetic programs that control 

growth, developmental transitions, and physiology. This 

review explores endocrine mechanisms of environmental 

adaptation in the fruit fly Drosophila melanogaster, first 

investigating the modulation of growth and maturation dur-

ing juvenile larval life and then investigating adult behav-

ioral and metabolic adaptation. Environmental and internal 

inputs reflecting temperature, light, nutritional stores, food 

qualities (composition, odor, taste), and oxygen are covered, 

although others exist beyond the scope of this review such 

as humidity,  CO2, and gut microbiota.

Drosophila has become an attractive model for under-

standing the endocrine regulation of growth and metabolic 

adaptation. Nutrients are digested and absorbed through the 

intestine, which is also a key endocrine organ that plays a 

central role in sensing nutritional information and relaying it 

to other tissues to maintain systemic metabolic homeostasis 

[1]. The Drosophila fat body and peripheral oenocytes serve 

the functions of the mammalian hepatic and adipose tissues 
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[2, 3], both of which store energy (as glycogen and lipid, 

respectively) but also have endocrine function. In Drosoph-

ila, growth is restricted to larval stages called instars, and 

maturation is induced by reaching a critical size that triggers 

the onset of metamorphosis, which transforms the juvenile 

growing larva into the reproductive adult and largely limits 

any further growth [4, 5]. The larva can alter its growth rate 

and the duration of its growth period (determined by the 

timing of metamorphosis) to reach a final adult size that 

maximizes fitness and survival in variable environments. 

In nutrient-rich conditions, animals grow quickly and soon 

develop into adults. On the other hand, when nutrients are 

limited, the larval growth period is extended to allow addi-

tional growth and to ensure an appropriate final adult size 

under unfavorable growth conditions.

The main factors regulating growth and development 

according to the environment in animals are the conserved 

insulin and insulin-like growth factors (IGFs) and steroid 

hormones [6–8]. Work has shown that the Drosophila 

insulin-like peptides (DILPs) are the main regulators of tis-

sue growth, whereas the steroid hormone ecdysone is the 

main factor that controls the duration of the growth period, 

although it also affects growth rate [9, 10]. The primary 

source of systemically acting growth-regulating DILPs is 

the population of so-called insulin-producing cells (IPCs) 

in the brain [11], thought to be equivalent to the mammalian 

pancreatic β cells [12]. The DILPs act in peripheral target 

tissues through a single insulin receptor (InR). Ecdysone is 

produced and released from the prothoracic gland (PG), a 

major endocrine organ, in response to DILPs and prothoraci-

cotropic hormone (PTTH), another brain-derived neuropep-

tide [5, 13]. Developmental and environmental cues are inte-

grated in the IPCs and PTTH-producing neurons (PTTHn) 

as well as by the PG itself to adjust insulin and ecdysone 

signaling according to intrinsic and extrinsic conditions, in 

order to adapt growth and development. These systems are 

all discussed in detail below.

Insulin/IGF signaling has two important roles: to regulate 

overall growth during development and to control metabolic 

homeostasis [14, 15]. As in mammals, circulating sugar lev-

els and energy storage versus mobilization are regulated by 

the opposing effects of two hormones in Drosophila, insulin 

and Adipokinetic hormone (Akh, in some ways functionally 

analogous to mammalian glucagon). Following the intake of 

dietary sugar, insulin secretion promotes its tissue uptake 

from the hemolymph (insect circulatory fluid), whereas 

Akh induces mobilization of lipids and breakdown of gly-

cogen to maintain hemolymph levels of lipids and sugars 

in response to starvation or exertion. In addition to these 

metabolic homeostatic circuits, regulation of food intake 

by modulation of appetite, odor and taste sensation, for-

aging, and food palatability is a major factor required for 

adaptation to nutritional conditions. Following prolonged 

deprivation of protein in their diet, flies preferentially select 

amino acid-rich food, based on certain taste neurons whose 

activity is regulated by the internal nutritional state [16]. 

On the other hand, deprivation of dietary sugars specifically 

increases feeding on sugar-rich foods. Feeding decisions are 

controlled by neuromodulators such as neuropeptides and 

hormones that change the motivational state according to the 

nutritional demand of the animal. In flies, these include the 

neuropeptide Diuretic hormone 44 (Dh44), an orthologue 

of the mammalian corticotropin-releasing hormone (CRH), 

which is involved in detecting the nutritional value of con-

sumed sugars [17] and amino acids [18].

The mammalian hormone leptin provides an example of 

the useful parallels between fly and mammalian develop-

mental endocrinology. Leptin, released from adipose cells 

in response to their lipid content (a reflection of nutritional 

state), modulates appetite and metabolism by signaling to the 

brain [19]. It furthermore regulates the activity of the neu-

roendocrine/steroid system that controls the onset of sexual 

maturation [20], which may explain the link between child-

hood obesity and early puberty. Flies possess a structurally 

and functionally similar hormone named Unpaired-2 (Upd2). 

Like leptin, Drosophila Upd2 is a nutrient-dependent adi-

pokine that relays nutritional information to the brain [21]. 

Upd2 stimulates insulin secretion, which promotes growth 

and maturation onset through its effect on the production of 

the steroid hormone ecdysone [9, 22]. Thus, during develop-

ment in both insects and mammals, endocrine signals related 

to the amount of body fat provide nutrient-status informa-

tion to the neuroendocrine signaling system that initiates 

maturation. Here we will review some of the recent advance 

to highlight how inter-organ signaling networks allow Dros-

ophila to adjust larval growth and development to variable 

environments, and we also examine endocrine mechanisms 

underlying metabolic and behavioral adaptations.

Adaptation of larval growth 
and development

Animals reared in environments differing in temperature, 

oxygen level, and the availability of food develop at differ-

ent rates into adults of different sizes. In nutritionally poor 

or low-oxygen (hypoxic) environments, Drosophila larvae 

grow slowly and attain a smaller adult body size, whereas 

in nutrient- and oxygen-rich environments, larvae develop 

more quickly into larger adults [23–27]. In contrast, low 

temperature also slows the growth of larvae and prolongs 

their development but results in increased adult body size 

[28], suggesting that temperature affects developmental 

growth by different mechanisms than oxygen and nutrients. 

Furthermore, changes in these environmental conditions 

affect the proportions of different body parts relative to the 
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whole body [26, 29]. This developmental flexibility involves 

adaptive responses within the boundaries of species-specific 

genetic developmental frameworks to produce adults of sizes 

and proportions that suit prevailing environmental condi-

tions. This developmental plasticity is regulated by nutri-

tion-dependent hormonal signaling pathways that control 

tissue growth and feed into the endocrine system that deter-

mines the timing of metamorphosis and thus the length of 

the growth period.

Steroid-hormone and insulin-like signaling pathways 

form the core axes of environmentally adaptive systemic 

regulation of growth and development in metazoans, and 

these pathways are thus evolutionarily ancient and have 

been conserved since before the divergence of flies and 

humans [6–8]. In Drosophila, DILPs (or insulin for sim-

plicity), the steroid molting hormone 20-hydroxyecdysone 

(or "ecdysone" hereafter) and the sesquiterpenoid juvenile 

hormone (JH), as well as the intracellular nutrient-sensing 

Target of Rapamycin (TOR) pathway, are the principal regu-

lators of growth rate and duration (Fig. 1). In this section, 

we review recent findings elucidating mechanisms by which 

larval signaling hubs integrate internal and external informa-

tion and transduce it into growth-regulatory signals (insulin 

and ecdysone) that systemically control growth. In addition, 

we also discuss one of the most important environmentally 

sensitive checkpoints, named “critical weight,” which allows 

Fig. 1  Growth-regulating environmental and internal cues are inte-

grated through inter-organ communication in the Drosophila larva. 

In the main panel, larval organs communicate with one another via 

diffusible factors to govern growth and development. The upper right 

panel shows a magnified view of the larval central nervous system 

including the insulin-producing cells (IPCs) and PTTH-producing 

neurons (PTTHn) and the ring gland, which comprises the ecdysone-

synthesizing prothoracic gland (PG), the Akh-producing cells 

(APCs) of the corpora cardiaca (CC), and the JH-producing corpora 

allata (between the lobes of the PG). Factors that act on growth and 

development via these various cells are indicated. The bottom-right 

schematic illustrates the relationships between size, growth rate, and 

growth duration
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animals to adapt their growth period to different nutritional 

conditions, to reach an appropriate final body size. Finally, 

we propose a hypothesis that may explain how studying this 

checkpoint mechanism can potentially contribute to our 

understanding of human size regulation.

Linking growth to nutrition, oxygen, 
and temperature through the DILP signaling 
pathway

Nutritional availability is a major environmental factor gov-

erning growth and development [30, 31]. Systemic DILP 

signaling and the cell-autonomous TOR pathway are the 

main mechanisms that regulate growth in response to nutri-

tion. Because these pathways intersect with each other and 

share many downstream components, these pathways are 

often referred to jointly as insulin/TOR signaling. In Dros-

ophila, high internal energy levels induces the activation 

of TOR in the fat body, which releases humoral factors to 

cause the IPCs to express and release various DILPs [11, 

32]. Although the DILPs are differentially regulated by vari-

ous stimuli, they act through the single InR. The primary 

systemically acting DILPs are DILP2, DILP3, and DILP5, 

expressed and released independently in response to nutri-

tional conditions [11]. These DILPs are produced in bilat-

eral clusters of neurosecretory cells—the IPCs—within the 

larval and adult medial protocerebrum [11], thought to be 

equivalent to the mammalian pancreatic β cells [12]. These 

cells send projections to neurohemal release sites near the 

esophageal foramen and, in the larva, to the PG, where they 

contribute to the regulation of ecdysone synthesis [9, 22]. 

Beyond the central IPCs, other tissues also produce DILPs 

for local or systemic signaling. For example, neuroblast 

growth within the nervous system is driven by local DILP 

production in glia, not from the IPCs [33, 34]. Furthermore, 

after the onset of metamorphosis, when larvae stop feeding, 

tissue growth is sustained through the secretion of DILP6 by 

the fat body [35, 36]. Thus, the pool of DILPs that mediate 

tissue growth is diverse in spatial and temporal expression.

Activation of InR by DILP binding results in a series 

of signaling events mediated by insulin receptor substrate 

(IRS; Chico in the fly) [37], phosphatidylinositide 3-kinase 

(PI3K or Dp110), and Akt (protein kinase B) [38]. One of 

the primary Akt targets is the transcription factor Forkhead 

Box class O (FoxO), which negatively regulates cellular 

growth through transcriptional effects on downstream tar-

gets, including the translational repressor 4E-binding protein 

(4EBP, Thor) [39, 40]. In well-fed animals, in which insulin 

signaling and thus Akt are active, phosphorylated FoxO is 

excluded from the nucleus, thereby allowing growth to pro-

ceed, whereas under nutrient-restricted conditions, deacti-

vation of Akt allows FoxO to enter the nucleus and act on 

its target genes, including 4EBP, to suppress cell growth. 

Thus, the insulin/TOR pathway promotes nutrition-depend-

ent growth partly through the inactivation of FoxO. Akt also 

mediates crosstalk with the TOR pathway through inhibi-

tion of  the Tuberous sclerosis complex 1 and 2 (Tsc1/2) 

proteins, which are negative regulators of TOR signaling. 

Therefore, TOR signaling senses internal nutritional status 

by two routes: via its diverse cell-autonomous nutrient-sens-

ing mechanisms and through inputs from the insulin pathway 

via Akt [41, 42]. Although TOR has been known mainly for 

sensing free amino acids, recent work has shown that TOR 

activity is dependent on internal oxygen concentration as 

well [27, 43], indicating that TOR integrates both amino-

acid and oxygen sensing to regulate cell growth in adaptation 

to changing environmental conditions. When TOR is active, 

it phosphorylates 4EBP, suppressing its inhibitory activity, 

which results in enhanced binding of mRNAs to ribosomes 

and thus in increased translation [44]. TOR signaling also 

promotes translation through the phosphorylation of ribo-

somal protein S6, mediated by S6 kinase (S6K), to enhance 

ribosomal activity [44].

Although the insulin/TOR signaling pathway directly 

regulates cellular and systemic growth rates, this pathway 

also controls the duration of the growth period by affect-

ing ecdysone biosynthesis in the PG, which determines the 

onset of metamorphosis. Activating insulin/TOR signal-

ing in the PG upregulates the expression of the Halloween 

genes phantom (phm) and disembodied (dib), which mediate 

ecdysone biosynthesis, leading to increased ecdysone pro-

duction and thus to accelerated metamorphosis [9, 22, 45, 

46]. Increased ecdysone signaling under these conditions 

results in the development of small adults not only due to 

the shortening of the larval growth period but also due to 

reduced growth rate, since ecdysone negatively regulates 

systemic growth. On the other hand, downregulation of the 

insulin/TOR pathway in the PG delays pupariation (the onset 

of metamorphosis), thereby increasing the growth period, 

which leads to overgrowth. Furthermore, overexpression of 

DILPs in the IPCs results in similar upregulation of phm and 

dib [47], indicating that ecdysone-mediated development 

can also be considered to be nutrition-dependent through 

the insulin pathway.

The TOR signaling pathway itself regulates the produc-

tion of DILPs in Drosophila in response to amino-acid 

intake. Amino-acid sensing in the fat body via the TOR 

pathway controls DILP synthesis and secretion in the IPCs 

via inter-organ signaling [25, 48]. Recent studies have shown 

that a number of humoral factors are secreted from the fat 

body in an amino-acid-sensitive, TOR-dependent manner 

to regulate DILP expression in and secretion from the IPCs 

in the brain (Fig. 1); these factors include Growth-blocking 

peptide 1 (GBP1) and GBP2 [49], Stunted [50], Eiger [51], 

and Female-specific independent of transformer (Fit) [52] 

(Table 1). In addition to these  amino-acid-sensitive signals, 
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a few dietary- sugar- and lipid-sensitive fat-body factors such 

as the type-I cytokine Upd2 [21], the Activin-like ligand 

Dawdle [53], and the small peptide CCHamide-2 [54] also 

regulate DILP secretion from the IPCs (Table 1). Thus, the 

fat body regulates DILP secretion in response to a number of 

dietary macronutrients, thereby coupling growth to nutrient 

intake, which is an important adaptive growth response of 

the organism to environmental conditions. In addition to its 

role in nutrition sensing, the fat body is also the main sensor 

of internal oxygen levels, which allows organisms to adapt 

their growth to environmental oxygen conditions through 

the regulation of DILP secretion [27]. Similar to low-amino-

acid conditions that reduce growth via down-regulation of 

TOR, tissue hypoxia induced either by low environmental 

oxygen levels or by undergrowth of the tracheal airways 

also slows larval growth and development. This adaptive 

response requires oxygen sensing via the transcription factor 

Hypoxia-inducible factor 1 alpha (HIF-1a) in the fat body 

[27]. Fat-body hypoxia disinhibits HIF-1a activity, which 

in turn leads to the release of one or more unidentified fat-

derived humoral factors that act on the IPCs to inhibit DILP 

expression and secretion. This HIF-1a-dependent fat-body 

oxygen-sensing mechanism strongly inhibits systemic insu-

lin-dependent growth in response to tissue-hypoxia condi-

tions. These conditions, at the same time, increase fibroblast 

growth factor (FGF)-like signaling, promoting the growth of 

Table 1  Factors that regulate the IPCs in the larva, the adult, or both (some not discussed in the review)

IPC-influencing factors Larval data Adult data

Autonomous sugar sensing No: sensing occurs via Akh relay [139] Yes [140]

Autonomous amino-acid sensing Via Minidiscs leucine transporter [137] No adult data

Akh From CC [139] No adult data

AstA Source undefined; via AstA-R2 [78] Source undefined; via AstA-R2 [78]

CCHa2 From gut [180]; from fat [54] CCHa2 null affects insulin expression in the pupa via 

unspecified route [180]

Dawdle Source undefined; unknown route to IPC effects [53] No adult data

DILPs No larval data From IPCs and fat body; via InR [133, 149]

Eiger From fat body; via Grindelwald receptor [51] No adult IPC data

FIT Not present in larvae [52] From fat body; affects IPCs through unknown route 

[52]

GBPs From fat body; via intermediating EGFR-expressing 

neurons [49, 179]

No adult data

Hugin Neuronal source [272] No adult data

Leucokinin No larval data Neuronal source [185]

Limostatin No larval data From CC [184]

PDF No larval data From clock neurons [188, 189]

sNPF Reports differ: appears to operate in larvae [220]; 

appears not to operate in larvae [221]

From sugar-sensitive upstream neurons activates IPCs 

via sNPF-R [224]; from clock neurons [188]; also 

[219–221, 223]

Stunted From fat body; via Methuselah receptor [50] No adult data

Tachykinin TkR99D likely present [206] Source undefined but brain suggested; via dTkr 

(TkR99D) [206]

Upd2 From fat body; via Domeless receptor in presynaptic 

GABAergic neurons [21]

From fat body; via Domeless receptor in presynaptic 

GABAergic neurons [21]

Unknown ligand Ligand and source unknown; via AdipoR [289] Ligand and source unknown; via AdipoR [289]

Unknown hypoxia-induced ligand From fat body [27] No adult data

Dopamine No larval data Via DopR1 [290]

Ecdysone E → 20E in fat body; EcR in IPCs [86] No adult data

GABA GABA-B-R2 present in IPCs but no further findings 

[291]

[291]

Serotonin 5-HT1A-GAL4 is not expressed in feeding third-

instar larval IPCs [292]

Via 5-HT1A [290, 292]

Lipid particles Via accumulation of lipid particles on neurons 

presynaptic to IPCs [293]

No adult data

Taotie neurons No larval data Neurons upstream of IPCs [294]

Temperature Cold-sensing neurons presynaptic to IPCs [28] No adult data



 T. Koyama et al.

1 3

the tracheal airway system to permit greater oxygen deliv-

ery to tissues. This adaptive growth and metabolic response 

promotes survival under environmental conditions with low 

oxygen. Furthermore, DILP secretion is also regulated by 

temperature, through a neuronal circuit involving a group of 

larval cold-sensing neurons that sense temperature fluctua-

tion [28]. These neurons directly synapse upon the IPCs to 

activate the synthesis and secretion of DILPs in a tempera-

ture-sensitive manner. Taken together, the IIS/TOR pathway 

thus integrates amino acids, sugars, lipids, tissue oxygen, 

and temperature to control growth in response to changes in 

environment cues.

Integrating photoperiod, organ growth status, 
and nutritional information through PTTH signaling

It is critical for animals such as insects to synchronize their 

developmental transitions to daily environmental cycles, 

and therefore  the systems controlling developmental tim-

ing are under photoperiod control. Furthermore, developing 

organisms also need enough time to complete the growth of 

their organs, as well as the adaptive plasticity to adjust their 

growth to compensate for impaired tissue growth or injury, 

to ensure developmental stability. These adaptive responses, 

which maximize survival and reproductive success, require 

the integration of photoperiod and organ-growth status with 

developmental programs. Photoperiodic inputs and tissue-

damage signals are integrated by the PTTHn, two pairs of 

neurosecretory cells in the larval brain that produce PTTH 

and directly innervate the PG [55]. PTTH controls develop-

mental timing through its effects on the PG, where it acti-

vates its receptor tyrosine kinase Torso, leading to the pulse 

of ecdysone production that initiates metamorphosis [56]. 

Activated Torso stimulates the phosphorylation of extracel-

lular signal-regulated kinase (ERK) through the canonical 

MAPK pathway including Ras, Raf, and MEK. Ablation of 

the PTTHn, loss of PTTH in these cells, or loss of Torso or 

ERK in the PG delays larval development in Drosophila 

due to delayed production of ecdysone in the PG. Thus, 

PTTH is an important neuropeptide that regulates growth 

duration in Drosophila [55, 56]. The PG undergoes apop-

tosis during metamorphosis; in adults, ecdysone has non-

developmental functions and is thought to be produced in 

the gonads [57–61].

The PTTHn integrate developmental and environmental 

cues to adjust the length of the growth period during larval 

development by changing the timing of PTTH secretion. For 

instance, photoperiod strongly affects PTTH secretion in a 

broad range of insect species, although Drosophila shows 

weak responses compared to other insects [62, 63]. Dur-

ing larval development, the PTTHn are regulated by neu-

rons producing the neuropeptide Pigment-dispersing factor 

(PDF), which are known to be associated with the circadian 

clock and to receive input from photoreceptors in Bolwig’s 

organ, the larval light-sensing tissue [55, 64]. Furthermore, 

beyond controlling the developmental growth period by 

determining the timing of metamorphosis, PTTH also coor-

dinates larval behavior with this developmental transition 

to maximize survival. PTTH acts via Torso on two light 

sensors, the Bolwig’s organ and the peripheral class-IV den-

dritic arborization neurons, in developing Drosophila larvae 

to control light-avoidance behavior, ensuring that the ani-

mals stay in dark environments that minimize the risk of des-

iccation and predation [63]. The PTTH neurons themselves 

may be regulated by transitions in light intensity, forming a 

feedback loop between development, environment, and the 

nervous system [65].

When insect larvae face abnormality in tissue develop-

ment, such as injury, accidental asymmetric growth of a 

paired organ, tissue overgrowth, or tumorigenesis, they slow 

their development to allow time for healing or regeneration 

[66–68]. In response to abnormal growth, the tissue primor-

dia that give rise to adult appendages—the imaginal discs—

secrete DILP8 [69, 70], which delays metamorphosis by 

changing the timing of ecdysone peaks. DILP8 secreted by 

abnormally growing organs is sensed by the receptor Lgr3 

in a pair of neurons that synapse upon the PTTHn [71–73], 

suggesting that abnormal organ growth delays developmen-

tal timing primarily by affecting the timing of PTTH secre-

tion. DILP8 also affects the growth-controlling DILPs via 

contact between Lgr3 neurons and the IPCs [73], suggesting 

that it coordinates growth (through regulation of DILPs) and 

maturation (through regulation of PTTH).

Developmental coordination between growth and matu-

ration is also mediated by the neuropeptide Allatostatin A 

(AstA) and its receptor AstA receptor 1 (AstA-R1), which 

regulate developmental timing by controlling PTTH and 

insulin signaling [74, commentary in 75]. RNAi-medi-

ated knockdown of AstA-R1 in the PTTH-producing cells 

impairs PTTH secretion. Moreover, AstA-R1 also stimulates 

DILP secretion from the IPCs [74]. Interestingly, AstA and 

AstA-R1 are homologous to human kisspeptin (KISS) and 

its receptor GPR54 [76], which are known to be required 

for human puberty through their control of gonadotropin-

releasing hormone (GnRH) secretion from the brain, which 

initiates maturation by inducing sex-steroid production [77]. 

This suggests that the neuroendocrine architecture that con-

trols the initiation of maturation has been evolutionarily 

conserved and that this system in Drosophila coordinates 

developmental growth with the juvenile-to-adult transition 

to achieve an appropriate size under different environmen-

tal conditions to maximize adult fitness. AstA is regulated 

by nutrition, at least in adults [78], suggesting that in addi-

tion to photoperiod and organ-growth status, nutrition may 

modulate PTTH secretion. This is in line with a recent report 
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showing that PTTH secretion is regulated by amino-acid 

levels [79].

Furthermore, studies in lepidopterans have indicated 

that PTTH secretion is gated not only by the photoperiod 

but also by JH, which represses ecdysone biosynthesis and 

metamorphic development [30]. One of the functions of JH 

is to change the duration of the growth period by modulating 

the timing of PTTH and ecdysone release [62]. Although 

it is not clear whether JH regulates PTTH in Drosophila, 

removing the corpora allata (CA), which comprises the JH-

producing cells, induces developmental delay [80], suggest-

ing a potential interaction with ecdysone production. This 

may occur through PTTH signaling, as seen in other spe-

cies. The transcription factor Krüppel homolog 1 (Kr-h1), 

which mediates JH signaling, has been shown to attenuate 

ecdysone biosynthesis in the PG by directly inhibiting the 

expression of the “Halloween” biosynthetic enzymes [81]. 

Since the mechanism by which JH might affect PTTH is 

unknown in Drosophila, future studies should determine 

whether JH signaling through Kr-h1 regulates PTTH.

Taken together, recent advances have shown that the 

PTTHn integrate several intrinsic and extrinsic cues to mod-

ulate the timing of steroid-hormone production and secre-

tion, and thus developmental maturation, by modulating the 

timing of PTTH secretion. PTTH, therefore, seems to be the 

key factor in the adaptive plasticity that allows animals to 

adjust development to variable environmental conditions. To 

achieve such flexibility, the neuroendocrine network control-

ling PTTH, the principal regulator of maturation in Dros-

ophila, likely integrates a wide range of inputs to control 

PTTH secretion. Understanding how internal and external 

cues are integrated via PTTH signaling will be a key direc-

tion for future research.

The larval prothoracic gland is a center 
for the integration of signals

PTTH is the primary factor stimulating ecdysone produc-

tion in the PG, according to the classical model of the insect 

neuroendocrine system. However, it has become evident 

in recent years that the PG itself functions as a decision-

making center that integrates a broad array of cues. Dur-

ing Drosophila larval stages, the PG is part of the major 

endocrine organ called the ring gland that also comprises 

the JH-producing CA and the Akh-producing cells (APCs) 

of the corpora cardiaca (CC). Ecdysone is synthesized 

from sterols in the PG in a series of reactions mediated by 

enzymes encoded by the so-called Halloween genes [82, 83]. 

Ecdysone produced and released into circulation by the PG 

is converted to a more biologically potent form, 20-hydrox-

yecdysone (20E; ecdysone is used here interchangeably 

with 20E for simplicity), by another Halloween enzyme, 

Shade, in peripheral tissues such as the fat body [59, 84, 

85]. Interestingly, Shade-mediated 20E production by the 

fat body is nutrient-dependent, and peripherally produced 

20E itself regulates the IPCs, indicating multidirectional 

linkage between nutrition and steroid-hormone activation 

in peripheral tissues [86].

Ecdysone binds to a heterodimeric nuclear hormone-

receptor complex, consisting of the ecdysone receptor (EcR) 

and its partner Ultraspiracle (Usp) [87–89], that regulates 

transcriptional responses to ecdysone [90]. In response to a 

wide range of signals, the PG generates a pulse of ecdysone 

that induces wandering behavior, which terminates feeding 

in the final larval instar and ultimately leads to pupariation. 

Therefore, ecdysone is considered to be a primary factor for 

ending the juvenile growth period, thereby limiting growth 

duration and determining adult size [13, 31, 91]. In the third 

and final larval instar, three small ecdysone pulses followed 

by a large pulse are believed to drive developmental pro-

gression [92]. The third small pulse is associated with the 

cessation of feeding and the onset of wandering behavior, in 

which animals leave the food to find appropriate pupariation 

sites [13, 92]. Although PTTH plays a key role in stimulating 

ecdysone production in the PG, this tissue itself also senses 

organismal nutritional status. Insulin and TOR signaling in 

the PG works upstream of ecdysone production and adjusts it 

to match nutritional status [9, 22, 46]. Insulin appears to gov-

ern ecdysone biosynthesis through effects on the Warts-Yor-

kie-bantam pathway, which regulates delivery of the steroid 

precursor cholesterol for ecdysone biosynthesis through an 

autophagosomal cholesterol-trafficking mechanism [10, 93]. 

Autophagy is a conserved mechanism for the degradation 

and recycling of intracellular components that is involved 

in cellular adaptation to starvation; autophagy-dependent 

ecdysone regulation controls basal ecdysone levels, which 

regulates the growth rate, rather than the ecdysone peak that 

determines the growth period by triggering the onset of met-

amorphosis. In the PG, this nutrient-dependent mechanism 

allows animals to adapt organismal growth to nutritional 

conditions through regulation of ecdysone synthesis.

In addition to brain-derived signals, the PG also receives 

information from other tissues such as the gut and imagi-

nal discs. In developing Drosophila larvae, the gut senses 

nutrient availability and produces a circulating lipoprotein-

associated form of Hedgehog (lipo-Hh). Circulating lipo-

Hh directly acts on the PG to regulate ecdysone biosyn-

thesis [94]. In addition, a subset of serotonergic neurons 

also affect ecdysone production in a nutrition-dependent 

manner [95]. Larvae raised on a yeast-poor diet with low 

amino-acid content grow more slowly; under this condi-

tion, certain serotonergic neurons sparsely innervate the 

PG, whereas these neurons arborize extensively onto the 

PG when animals grow rapidly on a yeast-rich diet. Moreo-

ver, blocking serotonin signaling from these neurons delays 

larval development, suggesting that they regulate ecdysone 
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production in response to internal nutritional conditions 

[95]. Furthermore, TGF-β signaling via the ligands Activin 

and Decapentaplegic (Dpp) appears to regulate ecdysone 

production in the PG. Blocking the TGF-β/Activin signaling 

pathway in this tissue results in animals that fail to initiate 

metamorphosis and thus persist as feeding, growing larvae, 

eventually attaining a giant size [96], a phenotype typically 

associated with failure of ecdysone production. Consistent 

with such a failure, reducing TGF-β/Activin signaling in the 

PG downregulates expression of both the PTTH receptor 

Torso and the DILP receptor InR, suggesting that TGF-β/

Activin signaling in the PG is necessary to induce its com-

petence to respond to PTTH and insulin signals [96]. Thus, 

TGF-β/Activin signaling appears to be necessary to ensure 

that both developmental and nutritional prerequisites are 

met before metamorphosis is triggered, although the nature 

and source(s) of the TGF-β ligand(s) that act upon the PG 

remains an open question [97]. Conversely, Dpp derived 

mainly from imaginal discs acts on the PG through TGF-β/

BMP pathway to repress ecdysone biosynthesis, at least in 

part by interacting with insulin/Warts/bantam signaling [98]. 

Dpp is more commonly known as a disc morphogen, similar 

to Hh; its signaling from the discs to the PG suggests that 

it might represent an additional mechanism by which the 

endocrine system assesses the patterning and growth status 

of developing organs to make the irreversible "go/no-go" 

maturation decision.

Circadian rhythms also govern insect development; this 

has been generally reviewed elsewhere [99]. Of particular 

interest here is the suggestion that PG physiology is gov-

erned in a circadian fashion. As discussed above, the PTTHn 

receive circadian input; however, the PG also possesses an 

endogenous peripheral clock that drives cyclical changes 

in gene expression, including that of InR, which is down-

regulated at subjective “night,” when feeding is reduced and 

insulin levels fall [100]; in the proposed model, circadian 

downregulation of insulin signaling potentiates PG-acti-

vating Torso signaling [100]. Although the specifics of this 

model are somewhat surprising, one may speculate that, in 

general, matching of the rhythms of (1) feeding behaviors 

and insulin, (2) light-induced rhythmicity of PTTH, and (3) 

the PG-intrinsic clock optimizes the timing of ecdysone 

production.

Neuroendocrine signaling hubs integrate 
developmental and environmental cues

Blocking either PTTH/Torso signaling [55, 56] or DILP/InR/

PI3K signaling [9, 22, 47] alone in the PG induces a delay in 

pupariation, whereas simultaneously blocking both signal-

ing routes into the PG results in a failure to pupariate due 

to the lack of ecdysone production [96]. These observations 

suggest that PTTH and DILPs are the major PG-extrinsic 

signals that regulate ecdysone production. Since the PTTHn 

and IPCs are sensitive to a number of different intrinsic and 

extrinsic stimuli, and the PG itself also senses changes in 

environmental and internal cues, we propose that this neu-

roendocrine network between the PTTHn, IPCs, and the PG 

acts as a cue-integrating hub for environmental and devel-

opmental signals (Fig. 1). Because insulin and ecdysone are 

the key regulators of growth rate and duration, organismal 

adaptation of growth and development to environmental 

conditions is mediated by the integration of signals through 

this neuroendocrine hub.

Under favorable food and oxygen conditions, active 

insulin signaling induces rapid growth and at the same time 

promotes ecdysone production, which accelerates metamor-

phosis. In contrast, when larvae are exposed to unfavorable 

conditions, reduced insulin signaling slows ecdysone pro-

duction, prolonging the growth period by delaying metamor-

phosis (Fig. 1). In addition to nutritional and oxygen inputs, 

a developmental checkpoint for tissue growth and injury is 

processed by the PTTHn and IPCs. Growing and damaged 

discs release DILP8, a signal that regulates insulin signaling 

and suppresses PTTH secretion, which extends the growth 

period by delaying metamorphosis, mediating plasticity that 

promotes developmental stability. Furthermore, photoperi-

odic input is mediated by PTTH signaling, while tempera-

ture is relayed to the neuroendocrine system by the IPCs, 

which receive inputs from cold-sensing neurons. Thus, tem-

perature can affect ecdysone indirectly via DILP-mediated 

regulation of synthesis in the PG of Drosophila. Oxygen and 

temperature may also be integrated by the PG itself, as sug-

gested from studies in other insects [101, 102]. Interestingly, 

ecdysone regulates growth negatively in larval tissues in 

Drosophila through a fat-body relay mechanism that inhib-

its systemic insulin signaling [9, 103]. Reducing ecdysone 

signaling specifically in the fat body results in an increased 

growth rate. In suboptimal nutritional conditions, relatively 

high ecdysone levels seem to suppress growth. Thus, both 

ecdysone and insulin fine-tune growth rate and duration to 

produce a species-specific adult body size in response to 

changes in environmental and internal conditions.

Regulation of the growth period by a nutritional 
checkpoint

In insects, one of the most important environment-sensitive 

checkpoints that ensures an appropriate adult body size 

under different nutritional conditions is called “critical 

weight.” Before this checkpoint is satisfied, developmen-

tal progression is nutrition-dependent [30]. In contrast, 

when critical weight is reached, larvae become committed 

to undergoing metamorphosis into adults on a fixed sched-

ule irrespective of further nutritional inputs. Thus, critical 

weight is a checkpoint-based mechanism that ensures that 
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animals adjust their larval growth period to nutritional con-

ditions, extending its duration under conditions of nutrient 

scarcity, in which critical weight is reached after prolonged 

feeding. However, this raises questions regarding the nature 

of the molecular mechanism by which Drosophila and other 

animals sense their own size and critical-weight attainment 

during development. Drosophila larvae appear to rely on 

nutritional status rather than actual body size, which seems 

to be similar to the mechanism that governs mammalian 

maturation [31, 104]. Insect metamorphosis is the key devel-

opmental event in the juvenile-to-adult transition in holo-

metabolous insects, analogous to mammalian puberty. Both 

metamorphosis and puberty are ultimately orchestrated by 

steroid hormones, which are tightly regulated by the acti-

vation of a neuroendocrine signaling cascade, suggesting 

that the architecture of the system that triggers maturation 

is conserved.

The first clear description of the Drosophila nutritional 

checkpoint based on the relationship between nutritional 

input and the duration of the growth period was made almost 

a century ago [105]. Later, this developmental checkpoint 

was named “critical weight” based on observations in the 

lepidopteran Manduca sexta [30]. Critical weight generally 

occurs early in the final larval instar and triggers a cascade 

of events that ultimately initiates the terminal growth period, 

which is the period between critical-weight attainment and 

the onset of metamorphosis. Thus, while pre-critical-weight 

animals can extend their growth period under nutrient-poor 

conditions to compensate for slow growth, the post-criti-

cal-weight terminal growth period is largely fixed in dura-

tion and cannot be extended even by starvation. However, 

environmental factors do still govern the animal’s growth 

rate during the terminal growth period, and thus adult size 

is largely determined by the conditions prevailing during 

this window.

Wild-type Drosophila larvae developing at 25 °C under 

normal atmospheric oxygen levels (~ 21%) reach critical 

weight 8–12 hours after the molt to the third and final instar 

[22, 55, 106–112], which coincides with a small nutrient-

sensitive pulse of ecdysone [92, 113]. This rise in ecdysone 

is believed to result from nutrient-dependent insulin/TOR 

signaling in the PG and is thought to underlie the critical-

weight transition in Drosophila, since pre-critical-weight 

larvae fed ecdysone pupariate without delay when starved 

[106]. Consistent with this notion, insulin signaling gradu-

ally increases in the PG when newly molted third-instar lar-

vae feed continuously [106]. Furthermore, activating insulin/

TOR signaling in the PG induces precocious critical-weight 

attainment, whereas reducing it delays this [9, 22, 45, 46, 

106, 114]. One hypothesis proposes that this small nutri-

ent-sensitive ecdysone peak is caused by increased insu-

lin signaling [106]; another holds that nutrient-dependent 

TOR-mediated progression of endocycles of chromosomal 

replication in the cells of the PG leads to an irreversible 

activation of ecdysone biosynthesis that triggers the critical-

weight transition [110, 115]. Notably, these hypotheses are 

not mutually exclusive, and perhaps rising insulin signal-

ing is able to activate an ecdysone pulse only after enough 

chromosomal duplication has occurred to induce a transcrip-

tional state that commits the PG to synthesize ecdysone. In 

any case, taken together, these observations suggest that crit-

ical weight depends on insulin/TOR signaling in the PG that 

is correlated with the nutritional condition of the animal, 

rather than its body size per se. In addition to nutrients, other 

intrinsic and extrinsic factors also affect critical weight. In 

hypoxic conditions, Drosophila larvae reach critical weight 

at a smaller size, which results in reduced adult size [116]. 

Temperature also affects this developmental checkpoint: at 

lower temperatures, animals including Drosophila reach 

larger adult sizes at least partially because larvae tend to 

reach critical weight later, at a larger size [112]. Further-

more, sex-dependent size differences can also be explained 

partially through effects on critical weight [109].

Once animals reach critical weight, they commit to 

releasing PTTH, which triggers the neuroendocrine signal-

ing cascade leading to the maturation-inducing ecdysone 

pulse that initiates metamorphosis. Since PTTH secretion 

from the PTTHn is an outcome of the critical-weight transi-

tion, modulation of the PTTH receptor Torso in the PG or 

ablation of the PTTH-producing cells induces phenotypes 

similar those observed in animals with altered insulin sign-

aling in the PG [55, 56]. In this scenario, PTTH is required 

for the animal to respond to critical weight, which depends 

on an insulin/TOR-mediated rise in the ecdysone produc-

tion in the PG. Alternatively, signaling through insulin/TOR 

and PTTH collectively is responsible for generating the first 

small ecdysone peak that triggers the critical-weight transi-

tion. Animals lacking PTTH reach critical weight later at 

a larger size, suggesting that PTTH signaling is important 

in setting critical weight [111]. Furthermore, Ptth mutants 

are delayed in the terminal growth period, but eventually 

do pupariate and develop into adults, suggesting that other 

signals are sufficient to drive ecdysone production in the 

PG. During the prolonged feeding period of animals lack-

ing PTTH signaling, the additional accumulation of nutri-

ents and thus increased adiposity may eventually induce 

ecdysone signaling through increased insulin signaling. 

Thus, the PTTH, insulin, and TOR pathways are key to inte-

grating environmental cues and internal nutritional status to 

coordinate growth and developmental transitions.

This evidence suggests that nutritional factors and nutri-

ent sensing, rather than organismal size, are used to assess 

the attainment of critical weight. The Drosophila larval fat 

body is the primary nutrient-storage organ, and it also acts 

as a central nutrition sensor. In response to nutrient intake, 

the fat body secretes a number of insulin-regulatory factors, 
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which couple growth to nutritional conditions by remote 

control of DILP secretion from the IPCs (Table 1). During 

development, the fat body senses adipose storage of nutri-

ents and relays that information to control insulin signaling, 

which promotes the ecdysone production that triggers the 

critical-weight transition. In a similar phenomenon observed 

in humans, body weight strongly correlates with the timing 

of menarche, leading initially to the use of the term “critical 

weight” for humans [117–119]. However, human “critical 

weight” appears to arise from effects due more specifically 

to adiposity, rather than overall body size. Obese children 

tend to undergo puberty earlier than non-obese children of 

similar height, whereas malnourished children who lack 

body fat exhibit delayed puberty [120]. In this model, the 

neuroendocrine pathways controlling maturation onset in 

humans thus likely receive input from hormones produced 

by adipose tissues. Interestingly, in mammals, including 

humans, the adipokine leptin regulates pubertal matura-

tion [121]. Leptin concentrations in the bloodstream reflect 

adiposity, and leptin deficiency causes a failure to undergo 

puberty. In Drosophila, the functional analog of leptin is 

the adipokine Upd2; this factor is released from the fat body 

in a nutrient-dependent manner and from the musculature 

in response to daily activity cycles, and it regulates insulin 

secretion from the IPCs and Akh release from the APCs [21, 

122]. Based on these similarities, one might speculate that in 

the Drosophila larva, the adipose tissue releases one or more 

humoral factors in response to stored nutrient levels and, 

further, that these signals act via the IPCs to promote DILP 

release onto the PG, signaling that larvae have accumulated 

sufficient nutrients to undergo successful metamorphosis 

and to maximize fitness in adulthood.

Metabolic and behavioral adaptation 
to changing environments

Both during and after their development, organisms must 

adapt their metabolism to maintain energetic homeostasis 

under the changing current environment as well as to antici-

pate near- and distant-future conditions. In animals, these 

metabolic adaptations require a balance between energy 

consumption and utilization through regulation of nutrient 

intake, storage, and expenditure. This metabolic flexibility 

relies on endocrine signaling networks that control tissue-

specific adjustment of carbohydrate, amino-acid, and lipid 

metabolism, as well as signals that regulates locomotion, 

feeding, and reproduction, all of which have a large impact 

on energy balance (Fig. 2). The tight linkage between growth 

and metabolic control in Drosophila means that many of the 

systems that regulate larval growth and development also 

play a role in adult metabolic control.

In both mammals and insects, well-fed conditions lead 

to an increase in circulating sugar levels, which induces 

the release of insulin or insulin-like peptides that promote 

cellular energy uptake either for immediate use or for stor-

age as a buffer against future scarcity. Flies, like mammals, 

store excess energy in the form of tri- and diacylglycerides 

(TAGs and DAGs), primarily in the fat body (function-

ally analogous to mammalian liver and adipose tissues [2, 

123]), as well as the branched glucose polymer glycogen, 

largely in the larval and adult musculature [124, 125], fat 

body [125–127], and nervous system [128]. Both groups of 

animals also produce a hormone that counters the actions 

of insulin-like signaling when circulating sugar levels drop 

because of physical activity (high depletion) or starvation 

(insufficient supply) by promoting the breakdown of stored 

energy into circulating species. Glucagon plays this role in 

mammals; in insects, this function is primarily performed 

by Akh.

Drosophila insulin‑like peptides (DILPs) govern 
cellular energy uptake and storage

In mammals, insulin is secreted by the pancreatic β cells in 

response to high blood sugar levels and promotes the cel-

lular uptake and utilization or storage of glucose to prevent 

hyperglycemia. This system is evolutionarily ancient, and 

an orthologous system exists in insects. In the fly, DILPs 

(introduced above) regulate the uptake of metabolic spe-

cies, including sugars. Within the brain, the larval IPCs—

which are genetically homologous to the mammalian β cells 

[12, 129, 130]—persist through metamorphosis into the 

adult and produce a context-dependent mixture of DILP1, 

DILP2, DILP3, and DILP5, as well as the cholecystokinin 

orthologue Drosulfakinin (Dsk) [131]. In addition, larval 

Dh44-producing cells are also recruited into an insulin-

producing role in the adult, secreting DILP2 (in addition to 

Dh44, but not DILP3 or -5) onto or around the foregut/crop 

[132]. DILP6, produced in the fat body of the non-feeding 

pupal stage to promote metamorphic growth [35, 36], is also 

upregulated in the larval and adult fat body during starva-

tion [133].

Cells that produce metabolism-regulating hormones 

such as DILPs and Akh must be able to sense the ani-

mal’s nutritional state, either cell-autonomously or via 

other signals, in order to respond with appropriate hor-

monal cocktails (see Fig. 2 and Table 1). Mammalian 

insulin-producing pancreatic β cells respond directly to 

blood glucose. Imported glucose leads to ATP produc-

tion, increasing the ratio of ATP to ADP, which results in 

the closure of ATP-sensitive  K+ channels and depolariza-

tion of the cells. In turn this leads to opening of voltage-

gated  Ca2+ channels and endocrine secretion of insulin. 

Similarly, mammalian glucagon-producing pancreatic 
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α cells are directly regulated by sugars via ATP as well 

and release glucagon under low sugar levels, although 

some mysteries remain regarding the precise mechanisms 

involved [134–136]. In Drosophila larvae, insulin secre-

tion is tightly linked to amino-acid intake during develop-

ment [25, 48], since DILPs are the major growth factors. 

Larval IPCs sense the amino acid leucine via the protein 

Minidiscs and upregulate DILP2 and DILP5 in response 

to higher leucine availability [137]. Although sugar also 

affects larval DILP signaling, the larval IPCs do not appear 

to be competent to respond directly to sugar levels, indi-

cating that they are not directly regulated by intracellular 

Fig. 2  Metabolism and behavior are regulated via the integration of 

environmental and internal cues through inter-organ communica-

tions in Drosophila adults. The top panel shows adult organs and the 

diffusible factors that link them to control metabolism and feeding 

behaviors. Circadian clocks are located within the brain as well as in 

peripheral tissues and regulate tissue physiology. Gustatory and olfac-

tory receptor neurons (GRNs and ORNs) are regulated by DILP and 

Akh signaling (as well as many other factors) and influence feeding 

behavior. The bottom panel schematizes adult organs and interactions 

that govern the level of circulating sugars
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sugar sensing [138]; rather, a relay via Akh appears to 

regulate IPC sugar responses [139]. Isolated adult IPCs, 

however, do appear to be directly sugar-responsive in their 

electrical activity, suggesting that the IPCs of the adult fly 

are regulated via a glucose-sensing mechanism similar to 

that of mammalian insulin-producing β cells [140].

Each of the DILPs is under independent transcriptional 

and secretory regulation. Their relative expression varies 

over developmental time during larval life [141]. Further-

more, in the larva and the adult, each DILP-encoding gene is 

responsive to different nutritional cues [11, 139, 142], ena-

bling the animal to adapt its metabolism to a broad variety 

of nutritional combinations. Indeed, within the nutritional 

space encountered by Drosophila in the wild (i.e., the range 

nutrients associated with rotting fruits), adult Dilp2 expres-

sion appears to be upregulated by high ratios of carbohydrate 

to protein in the diet, whereas in contrast, Dilp3 shows an 

irregular expression profile in adults, with a peak of expres-

sion on a diet of roughly 8% sugar and 1% protein [142], 

which suggestively approximates the composition of natu-

ral fruits. Adult transcription of Dilp5 appears to increase 

with the overall calorie level of the diet [142], whereas adult 

Dilp6 expression does not vary much with food composition 

in fed conditions [142] and appears to be influenced primar-

ily by starvation [133].

Whereas the growth and metabolic functions of mam-

malian insulin-like factors are divided into parallel path-

ways, with insulin and its receptor governing metabolism 

and the IGFs and their cognate receptors (IGFRs) control-

ling growth, the fly expresses only a single insulin receptor, 

which responds to multiple DILPs and regulates both growth 

and metabolism. Thus, to be able to induce alternative down-

stream responses, the DILPs exhibit varying biochemistry. 

These peptides are varied in sequence and structure (e.g., 

DILP2, 3, and 5 are likely processed by cleavage into A and 

B chains, with the removal of the intervening “C peptide,” 

whereas DILP6, like mammalian IGFs, is likely not cleaved 

[32, 35]). These differences allow them to bind with different 

kinetics to the insulin receptor and thereby to bring about 

alternative intracellular responses [143]. In addition, sev-

eral hemolymph proteins—Drosophila Acid-labile subunit 

(dALS), Ecdysone-inducible gene L2 (ImpL2), and Secreted 

decoy of InR (Sdr)—differentially bind circulating DILPs 

and modulate their interaction with InR, thus further func-

tionally differentiating the DILPs from one another. dALS 

appears to be required for efficacious signaling of DILP2 and 

DILP5, but it does not bind DILP3 [144]. ImpL2 is released 

during poor nutritional conditions and sequesters circulating 

DILPs to block their activity [145]—most strongly inter-

acting in ex-vivo pulldown assays with DILPs 1, 2, 5, and 

6 and more weakly with DILPs 3 and 4 [146]—while at 

the same time promoting local DILP2 actions at specific 

anatomical sites [147, 148]. In contrast, Sdr most strongly 

binds DILP3 in pull-down assays, but it also can interact 

with DILPs 1, 2, and 7, and to a lesser degree with DILPs 5 

and 6 [146]. Many of these factors modulating circulating 

DILPs have mainly been studied during development, but 

they likely play similar roles in adults. Thus, even though 

all DILPs act through the same receptor, the DILP system 

offers broad functional flexibility to allow different nutri-

tional stimuli to induce a range of intracellular adaptive 

responses in the face of a range of dietary inputs. Further-

more, complex feedback-regulatory relationships control 

Dilp expression; DILP2, DILP5, and DILP6 act as negative 

regulators of DILP-gene expression, while DILP3 feeds back 

positively via either autocrine action or intermediate signals 

[133, 149]. This dynamic transcriptional interplay further 

fine-tunes expression of DILP genes to produce the complex 

mixtures necessary to homeostatically regulate the internal 

metabolism of the fly.

In addition to the DILPs, the IPCs also produce the pep-

tide hormone Drosulfakinin (Dsk), which is an orthologue 

of mammalian cholecystokinin [131, 150]. This peptide has 

been studied in a variety of insects and has a range of func-

tions in signaling satiety and regulating food intake. Dsk 

transcription is reduced upon starvation, and Dsk-depleted 

animals consume significantly more food, whereas Dsk pep-

tide injection conversely reduces nutrient ingestion [131, 

151–153]. Moreover, Dsk appears to reduce olfactory sen-

sitivity to attractive odors in larvae [154] and to inhibit the 

consumption of unpalatable food in adults [131], consistent 

with a role in not only regulating food intake, but also in the 

neuronal processing that underlies food choice. As demon-

strated for human cholecystokinin [155], Sulfakinin-family 

proteins also regulate critical aspects of gut physiology in a 

variety of insect systems: in the locust, Sulfakinin injection 

reduces secretion of digestive enzymes [156], while there 

is evidence that it may act as a regulator of gut/crop con-

tractions in adult Periplaneta and larval Drosophila [157]. 

Taken together, this pleiotropic peptide thus appears to regu-

late many aspects of feeding behavior, making Dsk a key 

player in the regulation of metabolic stability across a range 

of animal systems.

Adipokinetic hormone (Akh) governs 
the mobilization of energy reserves

Maintaining biological functions under negative energy 

balance depends on the release of a hormone that instructs 

tissues to mobilize stored energy reserves in order to make 

sugars and lipids available to peripheral tissues. Metabolic 

homeostasis in complex animals is thus reliant on constant 

communication between nutrient-storing and nutrient-con-

suming tissues to offset potential deleterious fluctuations in 

circulating energy levels during periods of energy stress. 

In insects, the best-studied nutrient-mobilizing hormone is 
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Akh, which induces glycemia-increasing effects similar to 

those of mammalian glucagon (Fig. 2). It is worth noting 

that although the Akh and its receptor AkhR are functionally 

analogous with glucagon and its receptor, these two sys-

tems are not closely evolutionarily related. Whereas gluca-

gon achieves its glycemic effect by inducing glycogenolysis, 

with possible effects on lipids whose nature and relevance 

are controversial [158], Akh in Drosophila appears to act 

primarily as a lipolysis-inducing factor. Although loss of 

Akh function in larvae does not increase fat stores under 

normal conditions [159, 160], larval Akh overexpression 

does reduce fat stores [160]; disruption of Akh signaling 

in adults partially blocks lipid mobilization under starva-

tion [161] and results in larger fat stores [159, 162]. Reports 

of Akh effect on glycogen, however, vary. Most studies for 

which glycogen levels are reported have found no effect of 

Akh-signaling disruption on larval or adult glycogen levels 

[126, 159, 161]; however, another report finds that AkhR loss 

results in slightly increased adult glycogen levels and that 

AkhR overexpression (driven by AkhR-GAL4) reduces adult 

glycogen levels, both effects becoming more pronounced 

after starvation [162]. Akh-independent mechanisms of 

lipid and glycogen mobilization also exist and are discussed 

below.

In both larval and adult Drosophila, prepro-Akh is 

expressed by the neuroendocrine APCs of the CC [163]. The 

prepropeptide is enzymatically processed [164, 165] into the 

N-terminally phosphorylated, C-terminally amidated Akh 

octapeptide and an Akh precursor-related peptide (APRP). 

Akh peptide has been mass-spectrometrically identified in 

adult [159, 164–166] and larval [164, 167] CC-associated 

tissues, and APRP has recently been observed in adult tis-

sues [159], thus confirming prepropeptide processing and 

production of active peptide.

The release of the bioactive peptide into the hemolymph 

from the APCs appears to be induced cell-autonomously 

by low hemolymph sugar (trehalose) levels, although exog-

enous factors, discussed below, impose additional control 

(Table 2). Extracellular trehalose levels affect APC cytoplas-

mic glucose levels, which in turn govern the ATP-producing 

activity of the mitochondria; low hemolymph sugar thus 

leads to reduced ATP production and a greater ratio of AMP 

to ATP. This ratio is detected by the actions of the AMP-

activated protein kinase (AMPK) complex, which as in 

mammals integrates internal energy cues to modulate APC 

excitability and Akh release [168]. ATP-dependent mem-

brane-associated  K+
ATP channels also regulate cell excitabil-

ity; these channels act as cellular AMP/ATP sensors that 

couple rapid decreases in sugar levels to the activation of 

voltage-sensitive  Ca2+ channels and thus to hormone release 

[138]. These intracellular mechanisms show remarkable 

functional analogy to mammalian glucagon release from 

pancreatic islet α cells [169].

Interestingly, Akh release is also reported to be induced 

by hypertrehalosemia in Drosophila larvae [139], which was 

further supported by a recent study showing that chronic 

exposure to a high-sugar diet induces a prominent Akh-

dependent response in the fat body [170]. These results sug-

gest that Akh secretion is biphasically regulated by both low- 

and high-hemolymph trehalose concentrations, which may 

be interpreted as a mechanism necessary to support the high 

energy demands during rapid larval growth as well as the 

requirement to maintain normoglycemia during the wander-

ing and pupal stages when feeding has ceased. Intriguingly, 

similar paradoxical glucagon stimulation has been described 

from isolated mouse pancreatic islets [171], just as humans 

with severe diabetes often show pronounced hyperglucagon-

emia [172], indicating that biphasic hormone release may be 

an evolutionarily ancient mechanism conserved since the 

divergence of insects and mammals. Whether this biphasic 

release also exists in adult Drosophila—a stage with funda-

mentally different physiological requirements—is unknown 

and represents an exciting question for the future.

The Drosophila genome encodes a single Akh receptor 

(AkhR), which is strongly expressed in fat-body cells, con-

sistent with the energy-mobilizing roles of the Akh signal-

ing system [173, 174]. Ablation of the cells of the CC [138, 

160, 164, 175], prevention of the proteolytic processing 

of prepro-Akh [164], precisely targeted disruption of the 

genomic region encoding the processed Akh peptide [159, 

Table 2  Factors that regulate the APCs in the larva, the adult, or both

APC-influencing factors Larval data Adult data

Autonomous sugar sensing Via  KATP channels [138] and AMPK [168]; 

also [139]

Via AMPK [168]

Akh/AkhR feedback No larval data Negative feedback (at least indirect) [159]

AstA Source unidentified; via AstA-R2 [78] Source unidentified; via AstA-R2 [78]

Bursicon-Alpha No larval data From gut; inhibits CC via unspecified neuronal relay [200]

sNPF No larval data From sugar-sensing neurons presynaptic to CC; inhibits 

via sNPF-R [224]

Upd2 No larval data From muscle to CC; via Domeless [122]
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176], and manipulation of AkhR [139, 161, 162] have been 

used to probe the Akh signaling pathway. The pathway does 

not appear to be necessary for larval survival or growth on 

normal diets, although AkhR mutants develop quite slowly 

on low-protein (low-yeast) food, likely due to effects medi-

ated by effects on DILP3 [139]. Pathway loss by any means 

generally leads to reduced circulating sugar levels in larvae 

and adults, with little or no effect on larval lipid stores, at 

least in feeding larvae; however, starvation induces much 

stronger reduction of circulating sugars in larvae lacking 

CC cells than in controls, suggesting that the Akh deficient 

animals are unable to mobilize stores such as lipids [138]. 

Inactivation of the Akh pathway in adults, however, induces 

obvious phenotypes: adults with impaired Akh signaling 

exhibit reduced (but not eliminated) lipid mobilization, 

leading to increased lipid stores. Akh/AkhR phenotypes are 

especially marked under starvation—the reduction of the 

lipid mobilization rate allows lipid stores to be maintained 

longer, prolonging survival under starvation, and animals 

eventually succumb with substantial remaining fat stores 

[159–162, 175, 176].

The IPCs and APCs are also regulated by exogenous 
factors

In metazoans, different aspects of the work of life are dis-

tributed among discrete specialized organs. Each organ has 

direct access to only a part of the information available to 

and within the whole animal, and therefore, to maintain 

homeostasis, organs coordinate their activities through the 

interchange of inter-organ signals as well as neuronal net-

works. In particular, the gut, fat, and nervous system release 

many neuropeptides and hormonal signals in response to 

cues that they are specialized to perceive. The gut, as the first 

organ to encounter ingested nutrients, is the source of many 

“phasic” factors that likely reflect recent nutritional intake, 

whereas the fat, as a central organ of metabolite storage 

and processing, produces “tonic” signals reflecting internal 

metabolite levels. The nervous system serves as an integra-

tor and processor of multiple streams of hormonal, sensory, 

and behavioral information. The IPCs make up one key hub 

for the relay and integration of many neuronal and hormonal 

inputs from different tissues (Table 1); these modulate the 

expression and release of DILPs and Dsk. Several excel-

lent comprehensive reviews of the influences that regulate 

DILP production and release have been published [15, 177, 

178], and, therefore, only certain factors will be discussed in 

detail below. Likewise, although the hormonal regulation of 

APC activity has not been systematically investigated, some 

factors that govern Akh expression and release have been 

identified (below and Table 2).

Signals that regulate the IPCs

The DILPs and Dsk are involved in a range of physiological 

and metabolic processes. To coordinate these, the larval and 

adult IPCs integrate a number of different inputs that modu-

late peptide expression and secretion. Many of these factors 

have been investigated in either larvae or adults, but not both 

(see Table 1). IPC regulation is known to differ between 

larvae and adult—e.g., in sugar sensitivity (above), and thus 

factors described here may or may not function similarly in 

adult and larval life. As mentioned above, information about 

the internal nutritional status following ingestion of food is 

sensed by the fat body, which relays this information to the 

IPCs in the brain via signals released into circulation. These 

adipokines include Eiger, the Drosophila Tumor Necrosis 

Factor Alpha (TNF-alpha) orthologue, which is released 

from larval fat-body cells under conditions of low internal 

amino-acid concentrations [51]. This signal acts through its 

receptor Grindelwald in the larval IPCs to activate the Jun 

Kinase cascade, leading to inhibition of DILP-gene expres-

sion. On the other hand, other larval nutrient-dependent fat-

body signals such as CCHa2, Stunted, and GBP1/2 mediate 

positive actions on DILP production and release [49–51, 54, 

179, 180]. The Activin-like factor Dawdle (Daw) is another 

IPC-modulating hormone, secreted by the larval fat body 

in response to the consumption of sugar [181]. Expression 

of daw is under the control of the carbohydrate response 

element binding protein (ChREBP) transcription factor 

Mondo-Mlx [182], and this hormone acts on the midgut to 

downregulate digestive enzymes after a sugary meal, a phe-

nomenon called glucose repression that prevents acute nutri-

tional overload [181]. Daw also promotes (likely indirectly) 

the release of insulin from the larval IPCs and regulates the 

expression of key metabolic enzymes of the tricarboxylic-

acid (TCA) cycle [53]. Furthermore, neuronal populations 

that regulate energy storage are targets of Daw signaling, 

and ablation of these cells leads to starvation susceptibility 

due to lack of reserves [183]. Daw thus regulates energy 

absorption, storage, and use to maintain sugar homeostasis 

after intake. Fat-to-brain signaling via these various adi-

pokines that regulate insulin signaling is, therefore, impor-

tant to couple metabolism to the intake of nutrition. The 

CC is another source of IPC regulation. In the larva, high 

trehalose promotes Akh release, which appears to act on the 

IPCs to promote DILP3 release [139]. In the adult, at least, 

the CC also expresses the unrelated peptide Limostatin (Lst), 

which appears to be induced by sugar starvation [184]. The 

Lst receptor, LstR/PK1-R, is expressed in the adult IPCs and 

acts in these cells to reduce insulin release [184].

Furthermore, the IPCs also receive neuronal inputs 

via neuromodulators such as Leucokinin (Lk) [185]. In 

the adult, Lk is expressed in a set of neurons in the brain 

and nerve cord, and Lk/Lkr signaling appears to reduce 
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adult DILP expression and release [186]. Lk also seems 

to coordinate behavioral responses with metabolic ones, 

since Lk also promotes adult food intake and locomotor 

activity [185] and regulates adult gustatory responses 

associated with the avoidance of bitter foods [187]. Taken 

together, these data fit a model in which Lk is a starvation-

induced factor that acts to block insulin release, enhance 

the palatability of foods, and promote food-seeking and 

consumption behaviors to enhance animal survival under 

nutritionally poor environmental conditions. Pigment-dis-

persing factor (PDF), perhaps released synaptically from 

clock neurons onto IPC projections, also regulates adult 

IPC activity in response to circadian day-length stimuli, 

inhibiting insulin signaling and thus promoting the repro-

ductively dormant diapause state under short-day condi-

tions [188, 189].

Gut hormones also play key roles in metabolic adapta-

tions and signal to a diverse set of target organs. Genetic, 

transcriptomic, and immunohistochemical evidence sug-

gests that larval or adult midgut enteroendocrine cells 

express *AstA, *Allatostatin C (AstC), BursA, *CCHa1, 

*CCHa2, CNMamide (CNMa), Crustacean cardioactive 

peptide (CCAP), *Diuretic hormone 31 (Dh31), Ion-trans-

port peptide (ITP), *Myoinhibitory peptide/Allatostatin 

B (MIP), Neuropeptide F (NPF), Neuropeptide-like pre-

cursor 2 (NPLP2, likely functioning as an apolipoprotein 

rather than, or in addition to, as a prepropeptide [190]), 

Orcokinin, *sNPF, and *Tachykinin (Tk), expressed in ste-

reotyped combinations and anatomical regions [191–197]. 

However, without evidence of proper peptide processing 

and release, prepropeptide expression alone is insufficient 

to prove biological activity. Processed peptides from those 

prepropeptides marked with an asterisk have been iden-

tified in mass-spectrometric assays of the adult midgut 

[198]. Evidence for release of enteroendocrine peptides 

(processed or not) and downstream function has been 

reported for BursA [199–201], Dh31 [202, 203], NPF 

[204], and Tk [205]. Tk, either from neurons terminating 

near or on the IPCs or from the gut, activates its recep-

tor TkR99D in the IPCs, where it is required for proper 

regulation of DILP2 and DILP3 expression [205, 206]. 

In the adult, loss of TkR99D in the IPCs leads to faster 

depletion of sugars under starvation and reduces survival 

under these conditions. Moreover, gut-derived Tk regu-

lates gut lipid metabolism and overall lipid homeostasis in 

response to yeast feeding [205]. Tk also regulates aspects 

of starvation-induced modulation of sensory sensitivity 

[207]. Thus, this peptide is important for sensitivity to 

feeding cues, feeding drive, and proper utilization of the 

consumed materials. Furthermore, animals such as Dros-

ophila need to modulate their metabolism and growth not 

only to nutrient conditions, but also to changing tempera-

tures. Part of this response is mediated by cold-responsive 

thermosensory neurons that synapse directly upon the 

IPCs and regulate DILP expression and release to control 

larval growth according to changing temperatures [28].

Signals that regulate the APCs

Akh expression appears to be tightly controlled, with similar 

peptide levels in animals carrying 1, 2, or 3 copies of the Akh 

genomic region [163]; furthermore, loss of the Akh pep-

tide leads to increased Akh reporter-gene expression [159], 

suggesting that feedback inhibition occurs via AkhR either 

directly in the APCs or via intermediary cells. A handful 

of APC-exogenous hormonal and neuronal influences upon 

the APCs are known (Table 2), although there have been 

no reports of systematic attempts to identify these. Most of 

these influences are reported to act on both the APCs and 

the IPCs, and these are discussed in the next section. Only 

one APC-exogenous factor is reported to act on the APCs 

alone (indirectly): in the adult, gut-derived Bursicon-Alpha 

(BursA) acts via a neuronal relay to reduce Akh signaling 

during starvation [200]. However, several studies have been 

performed in the locust. In this insect, flight activity induces 

Akh expression [208] and peptide release to mobilize energy 

for long-distance travel [209]. Diverse small amines and 

peptides regulate the locust APCs [210–216], and it there-

fore seems likely that the regulation of the Drosophila APCs 

is rich and responsive to many behavioral and environmental 

stimuli as well.

Signals that regulate both the IPCs and APCs 
to mediate nutritional adaptation

Under changing nutritional conditions, linking the regula-

tion of energy uptake and release, mediated by the oppos-

ing effect of DILPs and Akh, through common nutritionally 

regulated mediators is important for maintaining homeo-

static control. Several peptide hormones are known to act 

on both the IPCs and the APCs to promote homeostasis via 

the dual control of this regulatory circuit (see Fig. 2 and 

Tables 1, 2). In Drosophila, like mammals, the coordinated 

regulation of DILPs and Akh is key to adaptive responses 

to ingestion of different ratios of carbohydrate and pro-

teins. While dietary sugar promotes insulin signaling and 

decreases Akh signaling to prevent hyperglycemia, inges-

tion of protein concomitantly increases both insulin and Akh 

to prevent insulin-induced hypoglycemia after protein-rich 

meals [217]. Thus, the coordinated regulation of DILPs and 

Akh maintains sugar homeostasis in response to varying 

dietary intake of sugar and protein. In larvae and adults, the 

neuropeptide receptor AstA-R2 is expressed in both the IPCs 

and APCs, suggesting that it regulates both DILP and Akh 

signaling. AstA and AstA-R2 are differentially regulated by 

consumption of sugars and protein, and this signaling system 
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regulates feeding choices between these nutrients, promoting 

protein intake over sugar [78]. Activation of AstA-express-

ing neurons also inhibits the starvation-induced increase 

in gustatory sensitivity to sugar and blocks feeding [218]. 

Together these observations suggest that AstA is regulated 

by the dietary sugar-to-protein ratio and coordinates adaptive 

metabolic responses through regulation of DILPs and Akh.

Another peptide that has been shown to modulate both 

DILP and Akh signaling is sNPF, which is secreted from 

certain neurons of the brain in larvae and adults. In response 

to starvation, sNPF release upregulates feeding and DILP-

gene expression (in anticipation of new nutrients) through 

the sNPF receptor (sNPF-R) in the IPCs, which is coupled 

to stimulatory G-proteins in these cells [219–224]. In a feed-

back arrangement, sNPF-positive neurons also express InR 

and, in response to DILP signaling, produce more sNPF to 

promote continued feeding. This feedback loop is required 

for the increase in feeding induced by short periods of star-

vation [223]. Other sNPF-expressing neurons of the adult 

brain sense hemolymph sugar and, under higher-sugar con-

ditions, release peptide onto the IPCs and the APCs simul-

taneously [224]. In the IPCs, this is an activating stimulus 

that induces DILP release, while in the APCs, sNPF-R acts 

through inhibitory G-proteins, and, therefore, sNPF signal-

ing blocks Akh release [224]. This peptide also regulates 

adult olfactory sensitivity, described below [225, 226]. 

Thus, in response to consumed sugars, this pleiotropic pep-

tide coordinately raises insulin levels and lowers Akh lev-

els, which promotes tissue uptake of hemolymph sugars and 

downregulates lipid-mobilizing processes [224], while also 

governing food-seeking behavior.

Insulin and Akh are also jointly controlled by Upd2. This 

protein is released by cells of the fat body in both larvae and 

adults in the fed state and acts through the receptor Dome-

less to inhibit certain GABAergic neurons of the brain, 

which synapse on the IPCs [21]. Upd2 signaling thus leads 

to derepression of the IPCs and promotion of insulin release 

in fed conditions. Furthermore, Upd2 is released from the 

adult musculature and acts on the APCs to govern Akh 

secretion and thereby to control lipid mobilization for energy 

use [122]. Thus, this signal is released from energy-storing 

and -consuming tissues and acts through both DILPs and 

Akh to coordinate metabolite storage, mobilization, and use.

Hormonal control of lipid storage and release

Stored energy provides a buffer against times of scarcity or 

exertion. In nutrient-rich conditions, the fly sets aside excess 

energy in the form of TAG, stored within lipid droplets in the 

cells of the fat body. These stored lipids can be degraded and 

mobilized by metabolic enzymes such as lipases [227–229]. 

Among the most important fat-body lipases for metabolic 

adaptation is Brummer (Bmm), the Drosophila orthologue 

of mammalian adipose triglyceride lipase (ATGL) [230]. 

In the fed state, DILP signaling in the fat body via InR 

induces sugar uptake from the hemolymph and represses the 

expression of genes required for lipolysis [231–234]. Insu-

lin signaling prevents FoxO activation of genes important 

for lipolysis, including bmm [234], and low Akh signaling 

allows expression of genes required for lipogenesis, such as 

midway [235]. High DILP activity and low Akh signaling 

thus gear the physiology of the fat body towards storage 

under fed conditions.

In lean times, hormonal influences including Akh/AkhR 

signaling induce the triacylglyceride-lipase-mediated break-

down of stored TAGs into DAGs in Drosophila [236]. The 

DAGs can then be transported in the hemolymph complexed 

with one of several lipid-carrier proteins [237]; alternatively, 

lipid components (fatty acids and glycerol) can be further 

broken down and reformed into trehalose through the pro-

cess of gluconeogenesis (more specifically, trehaloneogen-

esis), reviewed elsewhere [238, 239]. In studied insects of a 

range of species, AkhR signaling passes through stimulatory 

G-proteins and has been shown directly to increase intra-

cellular concentrations of cAMP and calcium [240–242]. 

Reports in Drosophila suggest that binding of Akh to AkhR 

may trigger an intracellular  Ca2+  (iCa2+) second-messenger 

response via the G protein subunits Gαq and Gγ1 and phos-

pholipase 21C (Plc21C) [235, 243]. Genetic experiments 

involving conditional knockdown of these downstream 

signaling components or the store-operated calcium entry 

(SOCE) component Stim lead to a blockage of fat-body  Ca2+ 

entry and subsequent defects in organismal lipid mobiliza-

tion [235, 243]. However, a direct demonstration of AkhR’s 

signaling mechanism in Drosophila through, e.g., ex-vivo 

fat-body calcium or cAMP quantification after Akh exposure 

has not been reported, to our knowledge.

In any case, second-messenger cascades initiated by 

AkhR signaling induce repression of the lipogenic gene 

midway and activate the expression of lipase genes, thereby 

blocking lipid synthesis while activating lipid breakdown 

[161, 232, 235]. This upregulation is aided by relief of 

DILP-induced inhibition [231, 232]. Together, in a fasting 

state, reduced DILP signaling and increased Akh activity 

switch the fat body into lipid-breakdown mode. The main 

intracellular sensor of nutrition (primarily amino acids), 

TOR, is also a component of lipid-metabolism regulation. 

Because insulin signaling and TOR are interlinked via Akt, 

TOR mediates some DILP-induced effects downstream of 

InR and also has effects of its own. Reduction of TOR activ-

ity in the fat body leads to smaller lipid droplets and reduced 

lipid storage [244]. Interestingly, TOR also regulates fat-

body autophagy, a starvation-induced process that cells use 

to release and recycle store nutrients. In starved conditions, 

inactivation of TOR induces autophagy-mediated break-

down of nutrients, which can be released from the fat to 
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sustain overall organismal survival under such conditions 

[245]. Through these mechanisms, fat-body intracellular 

nutritional levels thus also regulate lipid metabolism.

To provide greater control over lipid physiology, signals 

from other tissues modulate the AkhR signaling pathway 

in the fat body to gate lipid release. During development, 

at least, the TGF-β ligand Activin-β (Actβ) is secreted by 

endocrine cells of the gut and acts directly on cells of the 

fat body through its receptor Baboon (isoform A only) 

to regulate lipid metabolism and hemolymph sugar levels 

[170]. Baboon[A] signaling activates the downstream tran-

scription factor dSmad2, which regulates AkhR expression, 

thereby adjusting fat cells’ sensitivity to the starvation-

induced Akh signal. Chronic high-sugar feeding disturbs 

the balance of cell proliferation in the gut and leads to an 

increased number of Actβ-secreting cells; this extra Actβ 

induces abnormally high fat-body expression of AkhR, 

which triggers aberrant lipolysis and gluconeogenesis, 

thereby leading to carbohydrate imbalance and hypergly-

cemia [170].

However, the AkhR pathway, including modulators 

of its activity, is not the sole regulator of fat-body lipid 

mobilization. Additional, unidentified pathways appear to 

participate in the regulation of starvation-induced lipolysis 

in adipose tissue. Expression of Bmm lipase requires Akh 

signaling during short-term starvation (4 h) [232], but not 

over longer-term starvation, since fat-body bmm is upregu-

lated even in AkhR mutants starved for 6 h [161]. Akh 

signaling during early starvation regulates lipases beyond 

Brummer, but Brummer is specifically required for later 

lipolysis [161]. Only in AkhR bmm double mutants is star-

vation-induced lipid mobilization fully suppressed, with 

identical lipid levels between fed flies and flies starved to 

death [161], suggesting the existence of other, uncharac-

terized signal(s) that regulate lipolysis through Bmm.

In addition to Actβ, the gut also secretes a lipid-associ-

ated form of the protein Hedgehog (Hh) under starvation 

conditions. This signal promotes lipid mobilization in the 

fat body in both larvae and adults and supports hemo-

lymph sugar levels, but only in starved animals, indicat-

ing the requirement for other permissive mobilization 

signal(s) [94, 246]. Recent work shows that Hh acts on the 

fat to upregulate bmm expression. Furthermore, the sugar-

induced gut-secreted factor BursA [200] may also act on 

the fat body. Burs dimers activate the transcription factor 

Relish, the Drosophila orthologue of mammalian NF-κB, 

in the fat body. This activates innate-immunity pathways 

to prevent infection during these transitions [247]. Relish 

also antagonizes FoxO-induced bmm expression to limit 

fasting-induced lipolysis [248]. Investigating the emerging 

link between immune response and metabolism will be 

an important direction for future research. Furthermore, 

characterizing the signals that affect the fat will be key to 

the understanding of lipolytic control and the mobilization 

of resources in the face of environmental and nutritional 

challenges.

Mobilization of glycogen stores

As in other multicellular organisms, the polysaccharide gly-

cogen is the main storage form of carbohydrates in Drosoph-

ila [249]. In both the larval and adult stages, glycogen is syn-

thesized and stored in several tissues including the central 

nervous system (CNS), fat body, and skeletal muscles, and 

the dynamic regulation of glycogen metabolism—especially 

during starvation—plays a key role in maintaining metabolic 

homeostasis [124, 126]. For example, glycogen stores in lar-

val body-wall muscles and fat body, but not CNS, are rapidly 

depleted during larval starvation, suggesting that glycogen 

mobilization is differentially regulated between organs, and 

that especially the fat body acts as an important carbohydrate 

reservoir buffering circulating energy levels [126, 250]. Sim-

ilarly, although glycogen appears to be largely dispensable 

for adult fitness under fed conditions, muscle glycogen is a 

crucial factor in maintaining stereotypic locomotor activ-

ity and wing-beat frequency during starvation [250, 251], 

indicating that glycogen metabolism is regulated in both a 

tissue- and stage-specific manner. Glycogen metabolism is 

controlled by two enzymes, glycogen synthase (GlyS) and 

glycogen phosphorylase (GlyP), the latter of which catalyzes 

the rate-limiting step in glycogen breakdown. The control 

of these processes appears to depend largely on hemolymph 

sugar levels, and they are generally regulated organ-auton-

omously rather than by systemic signals such as Akh [126]. 

The systemic stress peptide Corazonin (Crz) and its recep-

tor CrzR—paralogues of Akh and AkhR [173, 252, 253]—

may regulate glycogen content of the adult fat body [254]. 

Knockdown of CrzR using transgenes targeting this tissue 

does not affect lipid metabolism but does increase glyco-

gen stores [254]; however, the authors do not rule out these 

transgenes also target the salivary glands, which also express 

CrzR and are also involved in energy balance via production 

of feeding-related enzymes and fluids [254]. Furthermore, 

glycogen breakdown is also regulated by autophagy-depend-

ent mechanisms, at least in skeletal muscle, and genetic 

experiments reveal that both mechanisms are necessary for 

maximal glycogenolysis. Interestingly, GlyS may be a cen-

tral regulator of both pathways via its direct interaction with 

Atg8, hereby linking glycogenolytic activities with glycogen 

autophagy to homeostatically control glycogen breakdown 

in flies [255].

Circadian rhythms of metabolism

The adult fly is exposed to the daily cycling of the ambi-

ent photic and thermal environment, which brings both 
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opportunity (finding food sources and mates) and danger 

(predation and desiccation). To anticipate these cycles and 

schedule appropriate behavior and physiology, flies possess 

a central neuronal circadian clock that governs rhythmic 

behaviors such as feeding and sleeping (Fig. 2). This review 

focuses on metabolic rhythms; an excellent general review 

of Drosophila circadian rhythm has recently been published 

[256].

The adult IPCs are synchronized with the internal circa-

dian clock via synaptic connections, with greater IPC elec-

trical activity in the subjective morning; however, feeding 

animals at night, when the IPCs are normally quiet, induces 

morning-like electrical activity in these cells [257]. The 

IPCs also express receptors for PDF, the main output factor 

of the clock, and for sNPF, which is co-expressed in certain 

PDF-expressing cells [188]; these inputs also connect cir-

cadian rhythms to the IPCs, and they appear to be part of a 

diapause-antagonizing system as well. Daily activity regu-

lates Akh signaling as well, via the cytokine Upd2 [122]. 

Thus, circadian information is integrated into metabolic 

programming.

Beyond the central-brain clock that drives systemic sign-

aling, scattered peripheral intracellular oscillators regulate 

local processes (Fig. 2). One such peripheral clock governs 

fat-body physiology [258]. Flies lacking this clock eat more 

than controls, especially at night, and are sensitive to starva-

tion, due to low glycogen levels, indicating a loss of proper 

energy storage regulation [258]. The adult gut also exhibits 

endogenous circadian oscillation in gene expression and cell 

proliferation [259, 260]. As a result of circadian rhythm-

driven changes in physiology, metabolite levels also vary 

in a circadian fashion: in a recent study, 14% of metabo-

lites were seen to vary in abundance with a daily rhythm, 

and ~ 64% of these were observed to cycle even under con-

stant darkness [261].

Local oscillators also participate in behavioral govern-

ance. Olfactory receptor neurons (ORNs) express their own 

clock systems, leading to cyclical patterns in the amplitude 

of odor responses [262–264]. These patterns of antennal 

response translate into cyclical odor-driven behavioral pat-

terns [265]. Likewise, gustatory receptor neurons (GRNs) 

display cyclical patterns of electrophysiological responses to 

tastants, and this cyclicity translates into circadian rhythms 

of behavioral response to tasted compounds [266]. Abolish-

ing the clock in these GRNs mimics starvation and leads to 

overeating and increased metabolite stores [266].

Adaptive modulation of feeding behaviors

In changing environmental conditions, the location and 

quality of food sources are dynamic. Flies are attracted by 

certain chemicals in the food while being repelled by other 

cues that represent potential danger. Drosophila sense the 

positive and negative qualities of potential food sources 

through taste and smell and will initially avoid marginal 

sources. When nutritional balance is low, flies exhibit sev-

eral stereotypical behavioral changes that increase their 

ability to find new sources of food, as well as make them 

more amenable to consuming marginal or dangerous food. 

They become more active, they sleep less, and they adjust 

their senses of olfaction (chemosensation of airborne chem-

icals—“smell”) and gustation (chemosensation by contact, 

or “taste”). It is thought that increased locomotor activity 

increases the chances that a fly will encounter a food source, 

and adjustment of sensory sensitivity makes a fly both more 

likely to be attracted to weak food odors and less likely to 

be repelled by noxious ones. Feeding regulation in the fly 

has been intensively researched, identifying a broad array 

of factors governing food-related behaviors. We cover here 

adaptive feeding responses regulated by DILPs and Akh 

(Fig. 2), although many other factors have been character-

ized, including AstA [78, 218, 267], Dh44 [17, 18], Hugin 

[268–272], Lk [185, 186, 273], NPF [274–276], sNPF [220, 

222, 277, 278], and members of the TGF-β family [53, 170, 

181, 183]. The general regulation of feeding is reviewed 

comprehensively elsewhere [178, 279, 280]. Through these 

and other changes, the starved fly becomes more likely to be 

able to survive, although at the risk of toxicity or exhaustion.

Starvation‑induced hyperactivity

Akh signaling is essential for the phenomenon of starva-

tion-induced hyperactivity, thought to represent an adaptive 

food-seeking behavioral response to nutritional deprivation. 

Hypotrehalosemia-induced Akh release triggers starvation-

induced hyperactivity, including during periods normally 

characterized by inactivity or sleep [160, 281]. This response 

is induced by Akh/AkhR signaling in certain octopaminergic 

neurons of the brain [282, 283]. Octopamine is generally 

considered the insect analogue of noradrenaline, and it acts 

through several receptors in many cells to increase arousal. 

Interestingly, these AkhR-expressing octopaminergic neu-

rons also express InR, whose activation by DILPs inhibits 

their signaling [282]. Thus, when sugar is low, Akh acts 

to increase arousal via these octopaminergic cells, which 

promotes wakefulness and locomotor activity as a way to 

find food; then, when food has been consumed, the increase 

in hemolymph sugar induces DILP release, which termi-

nates the excitatory octopamine signal and thus promotes 

quiescence.

Modulation of olfaction by nutritional status

Olfaction, which detects chemical signals from potentially 

remote sources, is an important component of food-seeking 

behavior and adaptation to dynamic environments (Fig. 2). 
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Under fasted situations, animals’ acuity for appetitive odors 

is heightened, and their behavioral response to them is 

increased, enabling them to be drawn towards weaker or 

more distant sources of odor plumes [284], which repre-

sent potential food sources. At the same time, sensitivity 

to, and avoidance of, aversive odors—those that represent 

potential toxicity or danger—is decreased, allowing the ani-

mal to be attracted to riskier food sources. These processes 

are induced by hormonal signals that reflect the nutritional 

status of the animal as well as other signals related to the 

internal and external state.

Olfaction is mediated by olfactory receptors (ORs) ste-

reotypically expressed in identifiable olfactory receptor neu-

rons (ORNs); the neuroanatomy and odor-responsiveness of 

this system has been very well mapped [285]. These recep-

tors and neurons are generally grouped into two behavioral 

classes: appetitive (attractive) and aversive (repellent). The 

appetitive ab1a ORNs, which express the fruit-ester-sensi-

tive OR42b, are required for olfactory-guided food-searching 

behavior [225]. These cells are directly made more active 

under low-nutrient conditions via the action of sNPF sign-

aling [225]. Starvation induces the expression of sNPF-R 

in the ab1a ORNs to increase their sensitivity to attractive 

odors [225]. When fed conditions return, nutritional intake 

induces DILP release, which downregulates sNPF-R expres-

sion in the ab1a ORNs via InR signaling, reducing these sen-

sory neurons’ excitability [225]. About a quarter of ORNs 

express sNPF-R [226]; given the ability of this receptor 

to either activate or inhibit neurons [224], many odorant 

responses may be up- or down-regulated by this mecha-

nism. Thus, low nutrition upregulates appetitive responses 

to increase food-seeking success, and once a food source is 

found and the internal nutritional state returns to normal, 

sensitivity is downregulated again, to prevent unneeded 

attraction to odors.

Another class of adult appetitive ORNs, the ab3A neu-

rons that express the ester-detecting odorant receptor 22a, 

express NPFR and are thus regulated by NPF https ://pubme 

d.ncbi.nlm.nih.gov/28476 120/. In fed conditions, the brain 

produces the satiety signal Unpaired-1 (Upd1), which inhib-

its the NPF-releasing cells of the brain [286]. In poor condi-

tions, these cells are derepressed, leading to the release of 

NPF [286]. Among the many feeding-promoting effects of 

NPF is the increase in sensitivity of the ab3A neurons. While 

heightening the animal’s sensitivity to appetitive odors, fast-

ing simultaneously reduces the fly’s sensitivity to aversive 

odors, allowing fasted flies to be attracted to sites they might 

normally avoid. Tk and one of its receptors, TkR99D, act 

in sensory neurons expressing the aversive receptor OR85a 

to inhibit them under starvation [207]. Through this and 

similar neuromodulators, animals’ sensitivity to noxious 

odors, which represent toxicity or danger and tend to repel 

flies, is reduced, which allows them to be drawn to risky 

food sources. In addition to these characterized pathways 

by which hunger modulates adult olfactory sensitivity, the 

satiety peptide Dsk appears to reduce larval olfactory sensi-

tivity to attractive odors [154]. This means that multiple hor-

monal systems act on sensory neurons to increase animals’ 

attraction to appetitive stimuli and simultaneously function 

to reduce the aversive effects of noxious odors, broadening 

the range of odor concentrations that the fly will be drawn to. 

This allows the starved animal to find less-nutritious food, 

which it otherwise would not find attractive.

Modulation of gustation by nutritional status

Like olfaction, which allows an animal to find a dis-

tant food source, gustation is an integral part of feeding 

behavior. When flies are in a non-starved state, they will 

consume only foods they perceive to be highly nutritious 

(e.g., sweet or protein-rich foods) with low concentrations 

of toxic compounds, which are perceived as aversive. As 

hemolymph sugar drops, flies become more likely to con-

sume foods of poor quality, balancing the risk of death by 

starvation against the risk of being poisoned by low-qual-

ity or toxic food. This change is brought about by modu-

lating the flies’ gustatory sensitivity both to nutritional 

compounds and to potential toxins.

Flies carry gustatory receptor neurons (GRNs) on vari-

ous external surfaces; among these are the tarsi (“feet”) 

and legs, allowing them to taste the surfaces they walk 

on, while GRNs on the proboscis allow tasting of food 

at consumption. GRNs express gustatory receptors (GRs) 

tuned to a variety of chemical classes, including sugars, 

salts, and potentially toxic bitter compounds. Like ORs 

and ORNs, GRs and GRNs have either appetitive or aver-

sive valence, and like those olfactory components, the 

gustatory system is also subject to sensitivity-adjusting 

neuromodulation in response to nutritional sufficiency or 

deficiency (Fig. 2). In low-sugar states, Akh is released 

into the hemolymph from the APCs, and among its func-

tions is the modulation of gustatory sensitivity. Adult 

sweet-sensing  (Gr5a+, appetitive) GRNs express AkhR, 

and Akh signaling under fasting conditions increases the 

excitability of these neurons, thus inducing flies to feed 

on foods that offer low levels of nutrition that would be 

ignored under better nutritional conditions [162]. Starva-

tion also lifts Upd1’s inhibition of NPF signaling, which 

leads to NPFR-induced excitation of dopaminergic neu-

rons contacting the  Gr5a+ GRNs, and increased dopamine 

signaling further enhances the animal’s sugar sensitivity 

[287]. Through these actions, the fly becomes increasingly 

likely to be triggered to feed by low levels of sugar in the 

food source. In parallel, aversive GRNs are inhibited under 

fasting conditions by sNPF and Akh [287] and NPF [288]. 

https://pubmed.ncbi.nlm.nih.gov/28476120/
https://pubmed.ncbi.nlm.nih.gov/28476120/
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This indicates that starvation increases the perceived pal-

atability of food by several routes. Dsk released from the 

IPCs in the fed state is also required for the inhibition 

of consumption of unpalatable food [131], although the 

hierarchical level at which it acts—through regulation of 

gustation, higher-level gustatory processing and integra-

tion, or feeding motivation, for example—is unknown.

Concluding remarks

The developmental and metabolic demands placed on 

Drosophila, and their responses to these, are complex and 

dynamic, as illustrated above. Larvae optimize development 

to produce the most reproductively successful adults that 

conditions will allow. To do this, they adjust their growth 

rate and growth duration by regulating intracellular and 

systemic growth factors such as TOR, insulin, PTTH, and 

ecdysone. We propose that the IPCs, PTTHn, and the PG are 

signaling hubs that integrate environmental cues to coordi-

nate growth rate and duration to adjust final size in response 

to given conditions. Because of the strong conservation 

between mammalian and insect hormonal systems such as 

insulin-like signaling, growth- and steroid-hormone path-

ways, and peptide neuromodulation, studies of these aspects 

of Drosophila can provide important frameworks for under-

standing the link between environmental factors and disor-

ders including diabetes and obesity. The mechanistic bases 

of how animals assess the critical-weight checkpoint is unre-

solved and is a key direction for future research. In Dros-

ophila and mammals, including humans, “critical weight” 

may correspond to a certain amount of adiposity. Insights 

from Drosophila into nutrition-dependent developmental 

checkpoints have the potential to illuminate mammalian size 

regulation, including the molecular mechanisms underlying 

the link between childhood obesity and early puberty.

Drosophila also regulates its metabolism accord-

ing to prevailing conditions, and this includes behavioral 

responses, such as feeding decisions. Central to both these 

metabolic and behavioral changes are the insulin and Akh 

systems, which regulate numerous downstream systems to 

modify metabolic pathways and feeding decisions. Inter-

twined with these and other hormonal systems, gustatory 

and olfactory systems also play important roles in regulating 

the interface between the organism and the environment. 

The inter-organ signaling networks that function upstream of 

insulin and Akh need to be explored systematically to further 

understand how organisms adapt metabolism to environmen-

tal conditions. While much is known about insulin regula-

tion, the mechanisms underlying Akh regulation and energy 

mobilization from adipose tissue are important but largely 

unresolved questions. Regulation imposed by the counter-

regulatory actions of insulin and Akh are key to maintaining 

metabolic homeostasis in variable environments. Studies in 

Drosophila will undoubtedly continue to reveal new mecha-

nistic insights into animal metabolic regulation.
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