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Mitochondria are master regulators of metabolism and have emerged as key signalling

organelles of the innate immune system. Each mitochondrion harbours potent agonists

of inflammation, including mitochondrial DNA (mtDNA), which are normally shielded

from the rest of the cell and extracellular environment and therefore do not elicit

detrimental inflammatory cascades. Mitochondrial damage and dysfunction can lead

to the cytosolic and extracellular exposure of mtDNA, which triggers inflammation in

a number of diseases including autoimmune neurodegenerative disorders. However,

recent research has revealed that the extra-mitochondrial exposure of mtDNA is not

solely a negative consequence of mitochondrial damage and pointed to an active

role of mitochondria in innate immunity. Metabolic cues including nucleotide imbalance

can stimulate the release of mtDNA from mitochondria in order to drive a type I

interferon response. Moreover, important effectors of the innate immune response to

pathogen infection, such as the mitochondrial antiviral signalling protein (MAVS), are

located at the mitochondrial surface and modulated by the cellular metabolic status and

mitochondrial dynamics. In this review, we explore how and why metabolism and innate

immunity converge at the mitochondria and describe how mitochondria orchestrate

innate immune signalling pathways in different metabolic scenarios. Understanding

how cellular metabolism and metabolic programming of mitochondria are translated

into innate immune responses bears relevance to a broad range of human diseases

including cancer.

Keywords: mitochondria, metabolism, innate immunity, mitochondrial DNA, MAVS, CGAS, STING

INTRODUCTION

Mitochondria are dynamic double-membrane organelles responsible for ATP production, the
biosynthesis of macromolecules including lipids, proteins, and nucleotides and for cellular redox
status. They serve as metabolic hubs and respond to intrinsic cues and environmental stressors
with an incredible degree of plasticity, which enables them to participate in key signalling pathways
such as programmed cell death and redox homoeostasis (Bahat and Gross, 2019; Chakrabarty and
Chandel, 2021). Apoptotic signals trigger the oligomerisation of pro-apoptotic effector proteins
BAX and BAK on the mitochondrial surface, leading to mitochondrial outer membrane (OM)
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permeabilisation and the release of pro-apoptotic signals into the
cytosol to activate caspases and trigger cell death (Flores-Romero
et al., 2020).Mitochondria thus play a central role in programmed
cell death and this places them as important regulators of
cellular responses to pathogen infection.Mitochondrial cell death
pathways are directly and indirectly manipulated by viruses
to combat innate immune responses and promote infection
(Imre, 2020). However, the interplay between mitochondria and
innate immunity goes well beyond the control of host cell death
or survival. Recent work identified numerous innate immune
responses that are controlled by mitochondria and revealed
reciprocal relationships that exist between innate immunity and
cellular metabolism.

The innate immune system is poised on the front line of
defence against infection. Invading pathogens are recognised
by a number of pattern recognition receptors (PRRs) that have
evolved to sense a wide array of pathogen-associated molecular
patterns (PAMPs) such as bacterial lipopolysaccharide (LPS)
and viral nucleic acids (Brubaker et al., 2015). The majority of
PRRs belong to four protein families: Toll-like receptors (TLRs),
C-type lectin receptors (CLRs), NOD-like receptors (NLRs),
and retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs).
PRR activation triggers a variety of innate immune responses
such as the type I interferon (IFN) pathway and expression
of pro-inflammatory cytokines and interferon stimulated genes
(ISGs), in order to concoct an anti-microbial environment and
prime the adaptive immune system (Brubaker et al., 2015).
A well described way by which mitochondria support the
transduction of innate immune signals occurs downstream of
RLR activation during RNA virus infection (Rehwinkel and Gack,
2020). Detection of cytosolic dsRNA by the RLR proteins, RIG-I,
or melanoma differentiation-associated gene 5 (MDA5), causes
a conformational change in these proteins, which leads them to
the RLR adaptor protein called mitochondrial antiviral signalling
protein (MAVS) (Kawai et al., 2005;Meylan et al., 2005; Seth et al.,
2005; Xu et al., 2005). RIG-I andMDA5 utilise homotypic caspase
activation and recruitment domain (CARD)-binding to interact
with MAVS, which is anchored on the OM surface (Seth et al.,
2005) as well as mitochondrial associated membranes (Horner
et al., 2011) and peroxisomes (Dixit et al., 2010). This interaction
leads to MAVS aggregation and subsequent activation of NF-
kB and interferon regulatory factor (IRF) signalling pathways
(Hou et al., 2011).

Innate immune responses are also triggered in the absence
of pathogen infection, commonly referred to as sterile
inflammation, whereby PRRs and non-PRR receptors sense
damage-associated molecular patterns (DAMPs) that originate
from within the cell itself (Gong et al., 2020). Besides harbouring
pro-apoptotic signals, mitochondria contain numerous potent
immunostimulatory DAMPs, including their own genome,
that engage the innate immune system upon exposure to
the cytosol or release into the extracellular environment.
Mitochondria house circular molecules of mitochondrial DNA
(mtDNA) within the matrix, which encode 13 subunits of the
respiratory chain, 22 transfer RNAs (tRNA), and 2 ribosomal
RNAs (rRNA). The exposure of mtDNA has long been known
to be immunostimulatory likely owing to its bacterial origin

and the release of mtDNA into the cytosol can activate a
number of PRRs to trigger a variety of innate immune responses
(Collins et al., 2004).

The DNA sensor cyclic GMP-AMP (cGAMP) synthase
(cGAS) is one such PRR and binds cytosolic double-stranded
DNA (dsDNA) derived from micronuclei, mitochondria, or
invading pathogens. dsDNA binding to cGAS leads to its
enzymatic activation and the generation of the second messenger
cGAMP. cGAMP activates stimulator of interferon genes
(STING) at the endoplasmic reticulum (ER), resulting in the
recruitment of the tank binding kinase 1 (TBK1) and activation
of the IFN signalling pathway (Rongvaux et al., 2014; White et al.,
2014; West et al., 2015). While the release of mtDNA can support
the antiviral response orchestrated by PRRs, it can also cause
chronic inflammation in disease. Notably, exposed mtDNA is
also recognised by endosomal TLR9 (Zhang et al., 2010; Shepard,
2020) or, if oxidised, can stimulate the NOD-like receptor family
pyrin domain containing 3 (NLRP3) inflammasome (Nakahira
et al., 2011; Shimada et al., 2012). It is often unclear what
determines the recognition of mtDNA by different PRRs leading
to different immune responses. The same mitochondrial DAMPs
can even trigger different PRRs in a tissue and cell-type specific
manner (Rai et al., 2021).

Recent comprehensive reviews dissect the plethora of
scenarios, in which mtDNA release has been observed and
linked to mechanisms of immune activation (West and Shadel,
2017; Riley and Tait, 2020). Here, we explore how mitochondria
provide a metabolic platform during innate immune signalling
and how mtDNA release and innate immunity are coupled
to metabolism. Firstly, we look at how mitochondria integrate
metabolic regulation within effective innate immune responses
to viral infection. We then go on to summarise the machinery
and mechanisms that govern the release of mtDNA and discuss
the emerging evidence that mtDNA localisation is controlled by
cellular metabolism. Finally, we explore the metabolic outcomes
of mtDNA release and touch upon the plethora of metabolic
consequences of innate immune signalling.

MITOCHONDRIAL INNATE IMMUNE
SIGNALLING DURING INFECTION

MAVS Regulation by Glucose
Metabolism
During viral infection, metabolic signals converge on the innate
immune regulatory protein MAVS at the mitochondrial surface
(Jacobs and Coyne, 2013). The multi-layered crosstalk between
metabolism and MAVS at the OM drives innate immune
responses to viral infection. The metabolic control of MAVS is
dictated by direct metabolite and metabolic enzyme interactions
and coupled to the dynamic behaviour of mitochondria.

The metabolic control of MAVS was described by
Zhang et al. (2019), who identified lactate as a regulator
of MAVS and RIG-I signalling. MAVS associates with the
glycolytic enzyme hexokinase 2 (HK2) at the mitochondrial
surface, where HK2 activity is regulated (John et al., 2011;
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Roberts and Miyamoto, 2015). Lactate binds to MAVS and
prevents its aggregation, which is required for the activation
of TBK1 and IFN production (Zhang et al., 2019; Figure 1).
Limiting lactate production, for instance at low glucose levels or
upon inhibition of lactate dehydrogenase A (LDHA), increases
the IFN response to viral infection. Furthermore, MAVS
activation leads to the dissociation and inactivation of HK2,
which further decreases lactate levels (Zhang et al., 2019).
Interestingly, similar to many cancer cells, virally infected cells
shift their metabolism to aerobic glycolysis (DeBerardinis and
Chandel, 2020; Zhou et al., 2021) and increase the production
of lactate, which may be considered as an evolving mechanism
employed by viruses to evade immune surveillance.

NLRX1 and Mitochondrial Immune
Signalling
Another innate immune regulatory protein that localises to
mitochondria and is regulated by metabolic cues, is the
nucleotide binding oligomerisation domain (NOD)-like receptor
1 (NLRX1). It negatively regulates the IFN response after
viral infection via several mechanisms (Nagai-Singer et al.,
2019; Pickering and Booty, 2021). During infection, NLRX1
interacts with MAVS to promote its ubiquitination and
subsequent degradation (Qin et al., 2017), while the depletion of
NLRX1 stabilises the MAVS-RIG-1 interaction and constitutively
activates MAVS (Allen et al., 2011). Glucose depletion leads to
decreased levels of NLRX1, which under these conditions will
further unleash MAVS activation (Soares et al., 2014).

These studies thus further support the notion that the
suppression of glucose metabolism activates MAVS. It should be
noted, however, that NLRX1 inhibition of MAVS activity at the
OM remains controversial. Studies performed in primary murine
fibroblasts and mice lacking NLRX1 did not show any deficiency
in elucidating an IFN response after viral infection (Rebsamen
et al., 2011; Soares et al., 2013). Moreover, NLRX1 harbours a
mitochondrial targetting sequence and was shown to translocate
to the mitochondrial matrix (Arnoult et al., 2009).

MAVS Signalling and Mitochondrial
Dynamics
Mitochondrial antiviral signalling protein signalling is linked
to mitochondrial fission and fusion, which drive the dynamic
adaptation of the mitochondrial network to metabolic cues
(Mishra and Chan, 2016; Wai and Langer, 2016). Mitochondrial
fusion is controlled at the OM by the mitochondrial fusion
proteins mitofusins 1 and 2 (MFN1/2), which regulate MAVS
activity (Figure 1). Inhibition of fusion in response to
viral infection decreases MAVS activity and IFN production
(Koshiba et al., 2011; Pourcelot and Arnoult, 2014). On the
other hand, increased mitochondrial fusion upon chemical
inhibition of dihydroorotate dehydrogenase (DHODH), a
mitochondrial inner membrane (IM) enzyme involved in de
novo pyrimidine synthesis, prevents viral replication (Miret-
Casals et al., 2018; Coelho and Oliveira, 2020; Xiong et al.,
2020). Thus, mitochondrial fusion appears to be required for
innate immune signalling. In line with this concept, the nitric

oxide (NO) producer dimethylarginine dimethylaminohydrolase
2 (DDAH2) inhibits MAVS activity during viral infection by
promoting mitochondrial fission (Huang et al., 2021). NO
produced by DDAH2 in response to viral infection stimulates
the phosphorylation of the dynamin-related protein-1 (DRP-
1) and promotes mitochondrial fission. Cells lacking DDAH2
maintained an elongated mitochondrial network and MAVS-
dependent IFN production after infection. Moreover, viral
infection induces the expression of numerous miRNAs, amongst
them miR-302b and miR-372, which target MAVS and limit
the IFN response by promoting DRP-1 phosphorylation and
mitochondrial fission (Yasukawa et al., 2020).

Together, these studies highlight the importance of a tubular
mitochondrial network for mounting a MAVS dependent IFN
response during infection. This agrees with the metabolic
regulation of MAVS, since increased mitochondrial tubulation
is usually associated with OXPHOS dependent cell growth,
while glycolytic cells harbour a more fragmented mitochondrial
network (Chen and Chan, 2017). Although it remains to be
determined how mitochondrial dynamics and the shape of
mitochondria affect immune signalling, an intricate interplay
between antiviral signalling, mitochondrial dynamics and
metabolism appears to exist. Further work will undoubtedly
reveal other mechanisms by which MAVS translate metabolic
changes initiated during viral infection into an effective IFN
response. For the remainder of this review, we turn our attention
to another metabolically sensitive regulator of innate immunity
that normally resides in mitochondria: mtDNA.

METABOLIC CONTROL OF
MTDNA-DEPENDENT INNATE
IMMUNITY

The Release of mtDNA to the Cytosol
Mitochondria exhibit a pivotal role in mediating the IFN
response upon infection by releasing mtDNA (or other
DAMPs) to the cytosol, further boosting IFN production and
immunosurveillance toward pathogens (Rongvaux et al., 2014;
White et al., 2014; West et al., 2015; Sun et al., 2017). However,
the presence of cytosolic or circulating mtDNA is also associated
with chronic inflammation in a plethora of metabolic diseases
and with ageing independent of bacterial or viral infection.

While the release of mtDNA from mitochondria is well
established, the mechanisms allowing transfer to the cytosol
are less clear. First insight was obtained by analysing the
escape of mtDNA into the cytosol of apoptotic cells upon
mitochondrial damage or various insults to tissue integrity
and cellular homoeostasis. During apoptosis, mtDNA-protein
assemblies termed nucleoids are released by herniation of the
IM through large assemblies of BAX and BAK in the OM and
subsequent IM permeabilisation (McArthur et al., 2018; Riley
et al., 2018; Figure 2). mtDNAmolecules are released under these
conditions in association with the mitochondrial transcription
factor A (TFAM), which serves as an mtDNA packaging
factor. While this form of mtDNA release is predominantly
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FIGURE 1 | Mitochondrial antiviral signalling protein regulation induced by glucose metabolism and mitochondrial dynamics. During viral infection MAVS aggregation

is essential for mounting an IFN response to suppress viral replication. Glucose and lactate levels (together with NLRX1) are negative regulators of MAVS aggregation

(left panel). The right panel illustrates the pivotal role of mitochondrial dynamics in mounting an IFN response during viral infection. Inducing mitochondrial tubulation

by expressing MFN2 or preventing DRP1 mitochondrial localisation mediated by DDHA2, as well as treating cells with the DHODH inhibitor leflunomide (LEF),

supports MAVS aggregation and subsequent IFN response. 1ψ, mitochondrial membrane potential. Created with BioRender.com.

immunologically silent owing to the activation of apoptotic
caspases, a pro-inflammatory role for mtDNA release likely exists
during the sub-lethal engagement of the mitochondrial apoptosis
pathway, termed minority mitochondrial outer membrane
permeabilisation (MOMP) (Ichim et al., 2015). Indeed, various
pathogens were found to trigger minority MOMP and cytokine
secretion from infected cells (Brokatzky et al., 2019).

Another form of mtDNA release occurs in non-apoptotic
cells and does not require the formation of BAX/BAK pores
but oligomerisation of VDAC in the OM instead (Figure 2).
This mechanism, first described in cells lacking mitochondrial
endonuclease G (ENDOG), involves the release of short mtDNA
fragments (100–200 bp) rather than nucleoids and is also
immunologically active, efficiently eliciting IFN response via

cGAS-STING signalling (Kim et al., 2019). Chronic leakage of
mtDNA through VDAC pores is associated with the induction
of autoimmune diseases including Lupus (Kim et al., 2019) and
amyotrophic lateral sclerosis (ALS) (Yu et al., 2020). The release
of mtDNA fragments through VDAC pores in the OM is indeed
emerging as a common pathway for the release of mtDNA to the
cytosol, since treatment of cells with the VDAC oligomerisation
inhibitor, VBIT4, is sufficient to blunt mtDNA-dependent innate
immune responses in a number of contexts (Kim et al., 2019;
Torres-Odio et al., 2020; Yu et al., 2020; Sprenger et al., 2021).

The mechanism(s) by which the IM is permeabilised to
permit mtDNA export remain largely enigmatic. Opening the
mitochondrial permeability transition pore (mPTP) can lead to
mtDNA release (Patrushev et al., 2004; Garcia and Chavez, 2007).
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FIGURE 2 | Release of mtDNA/RNA and the induction of innate immunity. Stressors, genetic, and metabolic perturbations triggering mtDNA/RNA-dependent innate

immune responses. Fragments of mtDNA and mitochondrial nucleoids can be released along different pathways. VDAC oligomerisation at the OM allows the release

of mtDNA fragments, which also requires concurrent opening of the mPTP in the mitochondria of ENDOG-/- cells and neurons expressing mutant mitochondrial

localised TDP-43. Oxidised mtDNA fragments are also released in macrophages undergoing excessive mtDNA replication and trigger the NLRP3 inflammasome.

TFAM-bound mtDNA nucleoids are released from mitochondria in response to cell death signalling upon herniation of the IM through BAX/BAK pores in the OM. If

the cell does not undergo apoptosis, the cytosolic mtDNA triggers innate immune signalling upon recognition by DNA-binding receptors including cGAS and TLR-9.

BAX/BAK pores also facilitate the release of mtRNA from mitochondria that have been exposed to stressors which cause double-stranded breaks in mtDNA.

Cytosolic mtRNA is recognised by RIG-I and triggers a RIG-I-MAVS-dependent innate immune response. Created with BioRender.com.

The pharmacological or genetic inactivation of mPTP is sufficient
to block VDAC-dependent mtDNA release in EndoG−/− cells
and cells expressing a mutant form of TDP-43 associated with
ALS (Kim et al., 2019; Yu et al., 2020). It remains to be seen
whether mPTP opening is a pre-requisite for mtDNA release
through VDAC pores in all cases and to what degree mPTP
opening and VDAC oligomerisation are co-ordinated.

The Release of mtDNA From Damaged
Mitochondria
We are only beginning to understand what triggers the escape
of mtDNA from mitochondria. mtDNA release during chronic

inflammation in ageing and disease is mainly considered as the
unwanted consequence of a decline in mitochondrial integrity.
Mitophagy ensures the removal of damaged mitochondria
and was found to counteract the release of mtDNA and
the inflammatory response (Sliter et al., 2018). Mice lacking
the pro-mitophagy protein Parkin, an E3 ubiquitin ligase
mutated in familial cases of Parkinson’s disease, accumulate
dysfunctional mitochondria and contain higher levels of
circulating mtDNA following exhaustive exercise or genetic
induction of mtDNA mutations (Sliter et al., 2018). Loss of
Parkin drives inflammatory phenotypes under these conditions,
which depend on STING. These data indicate that released
mtDNA stimulates inflammation in these mice by activating the
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cGAS-STING pathway and highlights the immunosuppressive
role of Parkin relevant to Parkinson’s disease (Matheoud et al.,
2016; Sliter et al., 2018). Similar observations were made in
tissues and cells derived from mice lacking the autophagy
regulator protein immunity-related GTPase family M protein
1 (IRGM1) (Rai et al., 2021). In Irgm1−/− fibroblasts, the
release of mtDNA from dysfunctional mitochondria triggered
an IFN response via cytosolic cGAS-STING, whereas the IFN
response in Irgm1−/− macrophages required the endosomal
RNA sensor TLR7. This indicates an immunostimulatory role of
extra-mitochondrial mtRNA in Irgm1−/− macrophages, which
may be another consequence of inefficient mitophagy and a
decline in mitochondrial integrity (Rai et al., 2021).

mtDNA Homoeostasis and Nucleotide
Metabolism Control Innate Immunity
Many forms of metabolic perturbations compromise
mitochondrial function and integrity, which lead to the
cytosolic release of mtDNA (Figure 2). First evidence for the
release of mtDNA independent of apparent gross mitochondrial
dysfunction came from studies in cells heterozygous for the
mitochondrial transcription factor and mtDNA packaging
protein TFAM. TFAM-depleted cells exhibit mitochondrial stress
linked to perturbed DNA packaging and constitutively release
mtDNA from mitochondria to trigger cGAS-STING dependent
ISG expression (West et al., 2015). It is unclear what stimulates
the release of mis-packaged mtDNA and whether it is under
metabolic control. Evidence of mtDNA oxidative stress upon
TFAM depletion exists in vivo (Woo et al., 2012), which may
signal its release or exacerbate the immunogenic potential of
mtDNA (Caielli et al., 2016; Lai et al., 2018). The translation of
TFAM mRNA is under control of the master metabolic regulator
mTORC1 (Liu et al., 2017) but it remains to be seen whether
TFAM levels or other factors affecting mtDNA stability or
expression, such as the endonuclease ENDOG (Kim et al., 2019)
or caseinolytic mitochondrial matrix peptidase subunit CLPP
(Torres-Odio et al., 2020), are directly regulated by metabolic
pathways to promote or repress mtDNA release.

An inflammatory response is also mounted against
the accumulation of errors during mtDNA replication.
Mitochondrial polymerase gamma (POLG) mutator mice
harbour excessive mtDNA mutations due to insufficient
proof-reading and exhibit pathologies common in human
mitochondrial diseases and premature ageing (Trifunovic et al.,
2004; Kujoth et al., 2005). New results indicate that mutator
mice exhibit enhanced activation of the cGAS-STING pathway
associated with mtDNA release after LPS challenge and innate
immune stimuli (Lei et al., 2021) or in the absence of mitophagy
(Sliter et al., 2018). Blocking the hyperactive type I IFN response
alleviates the pro-inflammatory metabolic phenotypes of
mutator mice, including oxidative stress and aerobic glycolysis,
and extends lifespan (Lei et al., 2021). Tigano et al. (2021)
recently discovered that excessive mtDNA breaks can cause
BAX/BAK-dependent release of mtRNA to activate a RIG-I-
MAVS-dependent immune response. The cytosolic release of
mtRNA has also been observed upon an excessive accumulation

of double-stranded RNA in mitochondria (Dhir et al., 2018).
Further work is necessary to understand how mtDNA integrity
or replication rates are sensed and translated into immune
responses downstream of different mitochondrial DAMPs.

Mitochondrial genome maintenance is coupled to cellular
nucleotide metabolism and homoeostasis (El-Hattab et al., 2017).
Recent work revealed that nucleotide synthesis and balance
impacts mtDNA stability and regulates its release into the
cytosol (Zhong et al., 2018; Sprenger et al., 2021). Macrophage
priming with LPS causes the cytosolic exposure of mtDNA and
subsequent activation of the NLRP3 inflammasome (Nakahira
et al., 2011; Zhong et al., 2018). LPS-primed macrophages
undergo a surge in mtDNA synthesis upon transcriptional
upregulation of the mitochondrial deoxyribonucleotide kinase
CMPK2 (Zhong et al., 2018). CMPK2 phosphorylates dCMP
to dCDP in the mitochondrial deoxynucleoside triphosphate
(dNTP) salvage pathway and is rate limiting for the accumulation
of newly synthesised oxidised mtDNA in primed macrophages,
which stimulates the inflammasome upon exposure to the cytosol
(Zhong et al., 2018; Figure 2). These findings demonstrate
that mitochondrial nucleotide metabolism is coupled to the
replication and release of mtDNA.

Nucleotides are synthesised de novo from amino acids
and ribose precursors in the cytosol or assembled via the
mitochondrial dNTP salvage pathway from free nucleosides
and bases. Increasing evidence suggests that nucleotide uptake
into mitochondria limits the accumulation of mtDNA in
proliferating cells (Favre et al., 2010; Di Noia et al., 2014;
Sprenger et al., 2021). We recently observed that disturbances
in cellular nucleotide homoeostasis, including deregulated
nucleotide uptake, triggers the release of mtDNA (Sprenger
et al., 2021). Mouse retina and cultured cells lacking the
mitochondrial protease YME1L exhibit a specific innate immune
response that, in cultured cells, depends on mtDNA-dependent
cGAS-STING activation (Sprenger et al., 2021). YME1L is a
multifaceted metabolic regulator in the IM that programmes
the mitochondrial proteome to maintain pyrimidine nucleotide
synthesis via glutaminolysis and to modulate the transport of
pyrimidines across the IM via proteolysis of the pyrimidine
nucleotide carrier SLC25A33 (MacVicar et al., 2019; Sprenger
et al., 2021). Loss of YME1L results in the accumulation of
SLC25A33 and cellular depletion of pyrimidine nucleotides,
which triggers the release of mtDNA into the cytosol (Figure 2).
mtDNA release occurs in a BAX/BAK-independent manner
but depends on VDAC oligomerisation in the OM, which
also governs the release of mtDNA fragments in cells lacking
ENDOG (Kim et al., 2019). Both accumulation of SLC25A33 or
inhibition of pyrimidine synthesis independently are sufficient to
induce mtDNA release from mitochondria. Depletion of cellular
pyrimidines via genetic intervention or treatment with the
pyrimidine nucleoside analogue 5-fluorouracil (5-FU) triggered
mtDNA-dependent cGAS-STING activation, demonstrating that
this mtDNA release pathway may be of relevance in a number
of clinical contexts (Sprenger et al., 2021). For instance, cGAS-
STING dependent type I IFN production is triggered by 5-FU
in cancer cells and supports effective anti-tumour immunity in
colorectal cancer (Tian et al., 2021). Intriguingly, YME1L was
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found to be frequently mutated in colorectal cancer tissue, which
may drive the migration of mtDNA to the nucleus observed in
these cancers (Srinivasainagendra et al., 2017).

It is exciting to consider that pyrimidine depletion is a
common trigger of mtDNA release and innate immunity.
Cytosolic exposure of mtDNA contributes to cellular antiviral
responses since enhanced expression of the specific panel of
ISGs downstream of mtDNA-dependent cGAS-STING signalling
supports antiviral immunity (West et al., 2015). Of note,
pyrimidine analogues are employed as antiviral agents and the
fact that they induce type I IFN responses has been appreciated
for some time (Lucas-Hourani et al., 2013; Shin et al., 2018).
It will be important to ascertain whether mtDNA exposure
supports innate immune responses to nucleoside analogues in
antiviral and anti-tumour signalling. It will also be pertinent to
establish the degree to which mtDNA release synergises with
nuclear DNA damage responses to nucleotide depletion (Hastak
et al., 2008; Hamalainen et al., 2019). Interestingly, some viral
infections such as Dengue virus induce innate immune responses
associated with mtDNA stress and release (Sun et al., 2017; Lai
et al., 2018) and mtDNA has been detected in the blood of
hospitalised COVID-19 patients (Scozzi et al., 2021). While the
presence of circulatingmtDNA in virus infected individuals likely
results mainly from tissue damage and cell death, it remains to
be seen whether infected cells also sense nucleotide imbalance
during viral infection and respond by releasing mtDNA to drive
innate immunity.

Disturbed Lipid Homoeostasis and
mtDNA Release
In addition to nucleotides, the metabolic homoeostasis of
other macromolecules, especially lipids, has also been linked
to mtDNA-dependent innate immunity. Disturbances in the
synthesis of lipids in adipose tissue impair mitochondrial
respiration and enhance ROS production (Bai et al., 2017). This
is associated with the release of mtDNA and the induction
of cGAS-STING-dependent inflammation and insulin resistance
during obesity (Bai et al., 2017). Lipid metabolism also regulates
mtDNA release in immune cells. Regulatory T cells (Tregs)
suppress immune responses by secreting cytokines such as
IL-10 to arrest effector T cell proliferation (Chaudhry et al.,
2011). The suppressive capability of Tregs is enhanced upon
acute inhibition of the fatty acid binding protein FABP5, which
was associated with a decline in fatty acid oxidation (Field
et al., 2020). Pharmacological inhibition of FABP5 triggered the
release of mtDNA and stimulated a type I IFN response in
a cGAS-STING dependent manner. A similar innate immune
response was engaged in Tregs within solid tumours indicating
that mtDNA-dependent signalling may occur upon exposure to
a lipid-depleted microenvironment (Field et al., 2020). While
the presence of cytosolic mtDNA in Tregs correlated with
a decline in OXPHOS and disturbed mitochondrial cristae
morphology, it is unclear how mtDNA is released from these
mitochondria especially since limiting OXPHOS and disturbing
cristae morphogenesis in these cells by other means does not
trigger mtDNA release (Field et al., 2020). Finally, metabolic

dysregulation in renal tubule cells that rely heavily on fatty acid
oxidation is associated with transcriptional repression of the
mtDNA binding protein TFAM and mtDNA-dependent cGAS-
STING activation in kidney disease and fibrosis (Chung et al.,
2019), further indicating a link between disturbed fatty acid
metabolism and mtDNA release.

METABOLIC CONSEQUENCES OF
MTDNA RELEASE AND INNATE IMMUNE
SIGNALLING

Compelling evidence demonstrates that metabolic signals direct
mitochondria-dependent immune responses and ISG expression,
which restrict viral replication. However, only a subset of
ISGs limits viral replication directly and the antiviral function
for the majority of ISGs is unknown. Many ISGs reshape
cellular and mitochondrial metabolism to activate immune
cells and suppress infection indirectly (Figure 3). For instance,
reprogramming host cell nucleotide metabolism in response to
infection can limit the pool of dNTPs available for viral DNA
replication (Lahouassa et al., 2012) and IFN signalling rewires
oxidative metabolism and alters citric acid cycle metabolite
levels to facilitate the reprogramming of dendritic cells and
macrophages (O’Neill and Pearce, 2016; Timblin et al., 2021).
The reciprocal relationship between innate immune response
and metabolism is also illustrated by the metabolic phenotypes
associated with chronic immune activation in disease (Fritsch
and Weichhart, 2016; Raniga and Liang, 2018). While many
intriguing aspects of immunometabolism lie beyond the scope
of this review, understanding more about the function(s) of
individual ISGs specifically expressed during mtDNA-dependent
innate immunity will help us to decipher the metabolic
consequences of mtDNA release and its role in disease.

It is fascinating to consider that mtDNA release to the
cytosol during sterile inflammation serves additional metabolic
purposes besides engaging innate immune signalling pathways.
The loss of the evolutionary conserved mitochondrial protease
YME1L induces mtDNA release and cGAS-STING signalling
in mouse and human cells. The stimulation of mtDNA release
in YME1L deficient cells inherently devoid of inflammation
signalling pathways, such as yme1mutant yeast, argues that extra-
mitochondrial mtDNA could have alternative conserved roles
to play (Thorsness et al., 1993). This includes the migration of
mitochondrial genetic material to the nucleus (Thorsness and
Fox, 1990; Thorsness et al., 1993) but may also fulfil other
signalling duties when triggered by nucleotide depletion. It is
another intriguing possibility that mtDNA also serves as a storage
for nucleotides that can be released into the cytosol under
conditions when cytosolic nucleotide pools are limiting (Sprenger
et al., 2021). Consistently, depletion of the cytosolic three
prime repair exonuclease 1 (TREX1) boosted cGAS-dependent
immune signalling in YME1L−/− cells suggesting competition
between degradation of cytosolic mtDNA and cGAS binding
(Sprenger et al., 2021).

Pools of nucleotides and their metabolic precursors can
also be maintained via the autophagy pathway and lysosomal
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FIGURE 3 | Metabolic consequences of mtDNA release and innate immune signaling. Viral infection, either by DNA or RNA viruses, leads to the activation of TBK1

and subsequent phosphorylation of IRF3/7 to induce their nuclear translocation to activate type I interferons. The interferon stimulated genes (ISGs) prevent viral

growth, either by direct inhibition of viral replication, termed here “effector ISGs,” or indirectly by rewiring mitochondrial and cellular metabolism (“helper ISGs”). The

latter could be achieved by inducing metabolic conditions supporting/favouring the release of mtDNA (left panel). Nucleotide deficiency induced by loss of YME1L

or treatment with thymidylate synthase (TS) inhibitor 5-FU leads to the release of mtDNA. TREX1 competes with cGAS for the binding and degradation of

mitochondrial dsDNA to single nucleotides, replenishing cellular nucleotide pools in the process. cGAS binding of mtDNA generates cGAMP to activate

STING-induced autophagy, independent of TBK1 activation, and innate immunity, by LC3 lipidation and autophagosome formation. The autophagy/lysosome

system further contribute to the replenishment of cytosolic nucleotide pools (right panel). Created with BioRender.com.

recycling (Guo et al., 2016; Liu et al., 2018). Pyrimidine and
purine depletion can induce autophagy via different pathways
(Hoxhaj et al., 2017; Mimura et al., 2021) that may synergise
with the release of mtDNA to replenish nucleotide pools. Gui
et al. (2019) recently described the induction of autophagy as
a primordial function of dsDNA recognition by cGAS-STING,
whereby cGAMP triggers STING translocation to the ER-Golgi
intermediate compartment to trigger autophagosome formation
independent of IFN production. Delineation and functional
analysis of the autophagosome-inducing STING domain revealed
that the autophagy activity exists in ancient STING homologues,
which are otherwise incapable of activating IFNs via TBK1
(Kranzusch et al., 2015; Gui et al., 2019). While autophagy

induction by STING does not appear to be sufficient to
drive an effective STING-mediated antiviral response in mice,
which rather depends on STING-TBK1 signalling (Yum et al.,
2021), autophagy can help defend cells against pathogens by
delivering them to the lysosome for degradation and supports
the clearance of cytosolic DNA (Gui et al., 2019). It is therefore
tempting to speculate that mtDNA release supports autophagy
induction via cGAS-STING signalling in a further attempt to
restore depleted nucleotide levels (Figure 3). In line with this
possibility, yeast autophagy mutants under starvation conditions
were shown to degrade mtDNA, perhaps further releasing
it to replenish cytosolic nucleotides otherwise limiting under
these conditions (Medeiros et al., 2018). Further work will be
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required to investigate the contribution of cytosolic mtDNA
to cellular nucleotide metabolism, which will bear significance
in scenarios where nucleotide balance is disturbed, including
tumour cell responses to chemotherapy and host cell responses
to pathogen infection.

CONCLUDING REMARKS

Mitochondria play essential roles at the crossroads of metabolism
and innate immunity. The dynamic mitochondrial network
integrates MAVS signalling with glucose metabolism during viral
infection and releasesmtDNA to drive inflammatory responses to
distinct metabolic signals. mtDNA release is frequently observed
in pathological scenarios and evidence is accumulating that
metabolic signals can induce it. On the other hand, a sentinel role
played by cytosolic mtDNA in metabolism and innate immune
signalling is emerging.

Many important questions await to be answered, including
how these metabolic signals are relayed to the mitochondria in
order to expel mtDNA and what determines whether mtDNA
is released in fragments via VDAC or as whole nucleoids
via BAX/BAK pores. It will be fascinating to address whether
metabolic signalling programmes control the selective packaging

and extracellular extrusion of mtDNA via exosomes. Recently,
Todkar et al. (2021) reported that mitochondrial derived vesicles
(Sugiura et al., 2014) control the incorporation of mitochondrial
proteins and mtDNA into exosomes in cultured cells. Finally,
what is the physiological role of regulatedmtDNA release and can
it bemanipulated, for example in order to improve chemotherapy
or treat autoimmune diseases? It has become clear that cytosolic
mtDNA can have profound effects on cellular metabolism and it
will be exciting to see if targetting these metabolic pathways prove
beneficial in therapy.
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