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Weedy plant species that have evolved resistance to herbicides due to enhanced metabolic capacity to detoxify herbicides
(metabolic resistance) are a major issue. Metabolic herbicide resistance in weedy plant species first became evident in the 1980s in
Australia (in Lolium rigidum) and the United Kingdom (in Alopecurus myosuroides) and is now increasingly recognized in several
crop-weed species as a looming threat to herbicide sustainability and thus world crop production. Metabolic resistance often
confers resistance to herbicides of different chemical groups and sites of action and can extend to new herbicide(s). Cytochrome
P450 monooxygenase, glycosyl transferase, and glutathione S-transferase are often implicated in herbicide metabolic resistance.
However, precise biochemical and molecular genetic elucidation of metabolic resistance had been stalled until recently. Complex
cytochrome P450 superfamilies, high genetic diversity in metabolic resistant weedy plant species (especially cross-pollinated
species), and the complexity of genetic control of metabolic resistance have all been barriers to advances in understanding
metabolic herbicide resistance. However, next-generation sequencing technologies and transcriptome-wide gene expression
profiling are now revealing the genes endowing metabolic herbicide resistance in plants. This Update presents an historical
review to current understanding of metabolic herbicide resistance evolution in weedy plant species.

Antibiotics and agricultural chemicals (herbicides,
fungicides, insecticides, etc.) are of immense value in
controlling pest organisms plaguing human health and
agricultural production. These chemicals greatly contrib-
ute to human health and the abundant food production
evident in many but not all parts of the world. However,
there is a major threat looming for their continued effi-
cacy posed by the evolution of resistant pest populations.
The widespread evolution of resistant pest populations is
a salutary example of evolution in action. Strong selection
pressure on large, genetically diverse pest populations
initially causes high mortality, but there are initially rare
resistance genes present in populations that are selected,
enriched, and result in resistance evolution.

Herbicide resistance in the grass weed Lolium rigidum
in Australian cropping is one of the world’s most dra-
matic examples of resistance evolution. Genetically di-
verse L. rigidum, often at high densities, infests much of
the vast Australian grain belt and is combated with her-
bicides. There has been a pattern of initial herbicide suc-
cess on L. rigidum, followed by herbicide failure due
to rapid resistance evolution. Particularly worrisome
is the fact that resistant populations often exhibit cross-
resistance to different herbicides, and this can even ex-
tend to resistance to experimental herbicides not yet
commercialized.

Over the past 25 years, we have studied the bio-
chemical and genetic bases of herbicide resistance and

cross-resistance in L. rigidum and have established that
resistant individuals can exhibit from one to several
coexisting resistance mechanisms. There is both target-
site and non-target-site resistance. Target-site resistance
occurs by mutation within a gene coding for an herbi-
cide target-site enzyme (limiting the herbicide binding)
or by overproduction of the target enzyme (gene over-
expression or amplification). Non-target-site resistance
involves mechanisms that minimize the amount of active
herbicide reaching the target site (e.g. reduced herbicide
uptake or translocation, increased herbicide sequestra-
tion, or enhanced herbicide metabolism). It is essential
to understand that the accumulation of several resis-
tance mechanisms within resistant individuals is now
the normal situation for L. rigidum across vast areas of
Australia (Powles and Matthews, 1992; Hall et al., 1994;
Powles and Yu, 2010; Han et al., 2014a). Herbicide target-
site enzymes/molecules (Heap, 2014) and their genes are
mostly well known, and target-site resistance is often
documented in resistant weed populations (Tranel and
Wright, 2002; Délye, 2005; Powles and Yu, 2010; Yu and
Powles, 2014). As target-site resistance is relatively easy
to study, then, when identified, researchers often fail to
examine for other coexisting resistance mechanisms.
This is unfortunate, as the evolutionary reality is that
any and all gene traits that can endow survival to an
herbicide will be selected (Powles and Matthews, 1992).
Insufficiently appreciated is that the intensity of the
herbicide selection (herbicide rate used) is an important
factor determining the resistance mechanism(s) selected,
especially in genetically diverse, cross-pollinated species
like L. rigidum. A very effective (high) herbicide dose re-
sults in very high mortality, and among the few survivors
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in large treated populations there may be resistant individ-
uals carrying an initially rare target-site gene mutation(s).
However, herbicides frequently do not achieve very high
mortality, due to a lower effective dose resulting from
low herbicide application rate, poor application, large
plants, adverse environmental factors, or plant stress,
etc. Unfortunately, herbicides often have been used at
low doses in Australia. When there is a low herbicide
dose there is lower plant mortality, and some survive
because they possess gene traits that confer survival
at the prevailing low herbicide dose. Principal among
the possible mechanisms enabling plant survival from a
low herbicide dose is the capacity to metabolize (degrade
or detoxify) enough herbicide for the plant to survive.
Many herbicides can be metabolized by plants. Thus,
especially where metabolizable herbicides are at low
doses (low rate, suboptimal conditions, poor timing, etc.),
individual plants survive because they possess sufficient
capacity to metabolize the herbicide. Therefore, the genes
coding for the enzymes conferring herbicide metabolism
are selected at low herbicide doses and can be enriched
(e.g. through cross-pollination) in the population, result-
ing in high levels of resistance within a few generations.
In research on herbicide resistance, too few studies
examine for enhanced herbicide metabolism capacity;
thus, this topic is underresearched and underappreci-
ated, yet it is very important. Here, we focus on herbicide
resistance conferred by an enhanced capacity to me-
tabolize herbicides (hereinafter defined as metabolic
resistance). Metabolic herbicide resistance and cross-
resistance are widespread in the grass weeds L. rigidum,
Alopecurus myosuroides, and Echinochloa phyllopogon and
increasingly prevalent in some other weed species.
Metabolic resistance can be endowed by increased

activity of endogenous cytochrome P450 monooxyge-
nases (P450s), glucosyl transferases (GTs), glutathione
S-transferases (GSTs), and/or other enzyme systems
such as aryl acylamidase (Carey et al., 1997) that can
metabolize herbicides. P450s, GTs, and GSTs belong to
major enzyme superfamilies with many roles in pri-
mary and secondary metabolism, and, by chance, some
of them achieve herbicide detoxification (Kreuz et al.,
1996; Cole and Edwards, 2000; Edwards and Dixon,
2000; Werck-Reichhart et al., 2000; Morant et al., 2003;
Siminszky, 2006; Yuan et al., 2007). For instance, some
P450s can catalyze herbicide arylhydroxylation or
alkylhydroxylation, which is followed by GT-catalyzed
Glc conjugation (Fig. 1). Certain herbicides can also be di-
rectly inactivated by GST-catalyzed glutathione conjuga-
tion. Conjugated herbicides are subsequently transported
into vacuoles for storage and/or further metabolism
(Fig. 1). An important, potentially devastating character-
istic of metabolic herbicide resistance is that the respon-
sible enzymes can confer cross-resistance (for definitions,
see Hall et al., 1994) to herbicides of different chemical
groups and sites of action. Metabolic cross-resistance is
determined by the ability of P450, GT, or GST to me-
tabolize particular herbicide chemistries, irrespective of
their sites of action. As discussed below, cross-resistance
can be conferred to herbicides to which the plants have

never been exposed. Thus, metabolism-based herbicide
cross-resistance is a major threat, as it can automatically
confer resistance to existing, new, or yet-to-be-discovered
herbicides.

HERBICIDE RESISTANCE AND CROSS-RESISTANCE
IN L. RIGIDUM DUE TO ENHANCED CAPACITY FOR
HERBICIDE METABOLISM

L. rigidum is by far the most widespread weed in
Australian field cropping. Herbicides have long been
employed for L. rigidum control, and resistance evolution
quickly followed. Striking, and initially inexplicable, was
that L. rigidum populations that evolved resistance to one
herbicide (Heap and Knight, 1982) displayed cross-
resistance to dissimilar herbicides (Heap and Knight, 1986).
Subsequently, such cross-resistance became widespread in
L. rigidum in Australia. Similarly, cross-resistance was early
evident in A. myosuroides populations in the United King-
dom (Moss and Cussans, 1985). Since then, metabolic re-
sistance and cross-resistance have been reported in some
other resistant weed species (Coupland et al., 1990;
Anderson and Gronwald, 1991; Gimenez-Espinosa
et al., 1996; Hidayat and Preston, 1997, 2001; Maneechote
et al., 1997; Singh et al., 1998; Fischer et al., 2000b;
Veldhuis et al., 2000; Cocker et al., 2001; Fraga and
Tasende, 2003; Park et al., 2004; Menendez et al., 2006;
Owen et al., 2012; Ahmad-Hamdani et al., 2013; Ma
et al., 2013; Iwakami et al., 2014c; for review, see De Prado
and Franco, 2004; Preston, 2004; Yuan et al., 2007; Powles
and Yu, 2010; Beckie and Tardif, 2012; Yu and Powles,
2014). As most research on metabolic resistance has fo-
cused on L. rigidum,A. myosuroides, and E. phyllopogon, we
review metabolic resistance and cross-resistance in these
three species while recognizing that metabolic resistance
also occurs in other weedy species and is an increasingly
observed phenomenon.

With one of the first multiply resistant L. rigidum
populations identified (termed SLR31), we established
that, as expected, cross-resistance was not target site
based (Matthews et al., 1990; Christopher et al., 1991)
but was due to enhanced rates of in vivo herbicide
metabolism (Christopher et al., 1991, 1992; Holtum et al.,
1991; Cotterman and Saari, 1992). We speculated that this
metabolic resistance was likely due to enhanced activity of
P450 enzymes (Powles et al., 1990), as the HPLC profile of
herbicide metabolism in resistant L. rigidum is qualitatively
similar to that in wheat (Triticum aestivum; Fig. 2) and
wheat is known to metabolize herbicides such as chlor-
sulfuron and diclofop by P450 andGT (Shimabukuro et al.,
1979, 1987; Sweetser et al., 1982; Zimmerlin and Durst,
1990; Fig. 3). P450 involvement was further indicated in
cross-resistant L. rigidum, as the P450 inhibitor malathion
inhibited the enhanced herbicide metabolism and reversed
resistance to some specific herbicides (Christopher et al.,
1994; Preston et al., 1996). Since then, we have established
metabolic resistance in several L. rigidum populations
resistant and cross-resistant to one or many herbicide
chemical groups and sites of action (Table I).
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An extreme example is L. rigidum population VLR69,
with a 21-year field selection history by different her-
bicides resulting in resistance to at least nine herbicide
groups across five different sites of action (Burnet et al.,
1994). We established that metabolic resistance is a major
mechanism in this population that likely involves multi-
ple P450s, including some that can be reversed by certain
P450 inhibitors (Burnet et al., 1993a, 1993b; Preston et al.,
1996).

Further evidence for the importance of P450-mediated
metabolic resistance comes from the deliberate selection
of L. rigidum at low, sublethal herbicide rates. We es-
tablished that herbicide-susceptible L. rigidum popula-
tions are capable of a low rate of metabolism of many
herbicides and thus survive a low dose, whereas a
full dose is lethal (Table II). Understandably, herbicide-
susceptible populations of many weedy plant species
have a basal level of herbicide metabolism (Hidayat and
Preston, 1997; Maneechote et al., 1997; Veldhuis et al.,
2000; Park et al., 2004; Yasuor et al., 2010; Ahmad-
Hamdani et al., 2013; Ma et al., 2013). Of course, there
will be genetic variability in this basal endogenous ca-
pacity to metabolize herbicides, and within large pop-
ulations, some individuals will have a higher herbicide
metabolism capacity. Thus, if a metabolizable herbicide
is used at a low dose, some individuals within a pop-
ulation metabolize sufficient herbicide that they survive
and reproduce. If there is continued herbicide selection
at a low dose, the gene traits endowing this enhanced
metabolism survival will be enriched and, especially in
cross-pollinated species (like L. rigidum), the gene traits
will be accumulated and resistance will become evident
in the population. For example, we recurrently selected
a small, herbicide-susceptible L. rigidum population at a
low dose of the metabolizable herbicide diclofop. Sur-
vivors were allowed to cross-pollinate and produce
seed, and the process was repeated for three successive
generations. This resulted in diclofop resistance and,
importantly, cross-resistance to certain other metabo-
lizable but otherwise dissimilar herbicides (Neve and

Powles, 2005a; Fig. 4). This result has since been con-
firmed in several different herbicide-susceptible L. rigidum
populations recurrently selected at a low diclofop dose,
always with the same rapid evolution of dioclofop resis-
tance and cross-resistance evolution to other dissimilar
but metabolizable herbicides (Neve and Powles, 2005b;
Manalil et al., 2011). This low-diclofop-dose selected re-
sistance is due to enhanced rates of diclofop metabolism,
again mimicking that of wheat and thus suggestive of
P450 involvement (Yu et al., 2013b; Fig. 5). Conversely,
we did a reverse study, in which recurrent selection of
herbicide-susceptible L. rigidum for the individuals most
susceptible to diclofop resulted in a rapid shift toward
diclofop supersensitivity (Manalil et al., 2012). Importantly,
these plants also become supersensitive to some other
herbicides metabolizable by P450s (Manalil et al., 2012).

Clearly, the above-mentioned studies establish that
genetically variable, cross-pollinated L. rigidum exposed
to metabolizable herbicides (especially at a low herbicide
dose) results in resistance evolution that involves P450s
and potentially other resistance genes. We emphasize
that herbicides select for all possible resistance traits, so
target-site resistance mutations and any other potential
resistance mechanisms are also selected at low herbicide
doses when populations are large. This is starkly evident
in the L. rigidum populationWLR1, which for 7 years was
selected in large commercial wheat fields at a low chlor-
sulfuron dose (6 g ha21 compared with the Australian
recommended field rate of 20 g ha21; Christopher et al.,
1992). This poor commercial practice resulted in the
selection and enrichment of genes endowing metabolic
resistance to chlorsulfuron (Christopher et al., 1992) as
well as at least six different target-site acetohydroxyacid
synthase (AHAS) gene mutations (Yu et al., 2008).

Recently, we have shown that the auxinic herbicide
2,4-dichlorophenoxyacetic acid (2,4-D), a known P450
inducer (Adele et al., 1981; Hirose et al., 2007), can provide
protection against metabolizable herbicides in susceptible
L. rigidum. With 2,4-D pretreatment followed by diclofop
treatment, there was a 10-fold increase in diclofop herbicide

Figure 1. Major superfamily enzymes involved in
metabolic herbicide resistance (modified from De
Prado and Franco, 2004). GSH, Reduced gluta-
thione; X-R, the electrophile; GS-R, the glutathi-
one conjugated product; HX, the unconjugated
product.
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rates causing 50% plant mortality and herbicide rates
causing 50% reduction in plant growth (Han et al.,
2013). This occurred because the 2,4-D pretreatment
induced a higher capacity for diclofop metabolism, with
the HPLC profile of diclofop metabolites similar to that
observed in wheat (Han et al., 2013), indicative of P450
involvement. These 2,4-D-pretreated susceptible L.
rigidum plants in every way were transiently similar to
field-evolved metabolic resistant L. rigidum. For instance,
the 2,4-D pretreatment also induced cross-protection to
the metabolizable but otherwise dissimilar sulfonylurea
herbicide chlorsulfuron (and other herbicides that can
be metabolized), and the P450 inhibitor malathion could
reverse this effect. Therefore, protection against her-
bicides induced by 2,4-D pretreatment of susceptible
L. rigidum is due to the induction of higher rates of her-
bicide metabolism, mirroring that identified in resistant
L. rigidum populations. We hypothesize that the pretreat-
ment with 2,4-D rapidly induces higher expression of

herbicide-metabolizing genes, hence providing transient
protection (safening) against the subsequently applied
herbicide.

Our work on several well-characterized metabolic
resistant L. rigidum populations shows that metabolic
herbicide resistance can be endowed by one or several
nuclear gene loci (Busi et al., 2011, 2013). For example,
metabolic resistance in the L. rigidum population SLR31
was found to be controlled by two loci (Busi et al.,
2011). In another resistant L. rigidum population, at least
three resistance genes were enriched (Busi et al., 2013).
A monogenic resistance trait was reported previously for
metabolic resistance to chlorsulfuron in a multiple resis-
tant L. rigidum population (VLR69; Preston, 2003), but our
recent work indicates more complicated genetic control
patterns (Han et al., 2014). We emphasize that each re-
sistant population is a different evolutionary event, and it

Figure 2. HPLC scans of [14C]chlorsulfuron metabolism in excised seed-
lings of wheat (A) and susceptible (B) and cross-resistant (C) L. rigidum
(SLR31; modified from Christopher et al., 1991). The arrow indicates the
parent herbicide chlorsulfuron. The major metabolites (asterisks) in wheat
and both L. rigidum populations have the same retention time.

Figure 3. Diclofop metabolism in wheat via esterase-mediated hy-
drolysis and P450-based arylhydroxylation followed by GT-catalyzed
Glc conjugation (Shimabukuro et al., 1979, 1987; Zimmerlin and
Durst, 1990).
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is to be expected for metabolic resistance involving P450
and other enzyme superfamilies that individuals and
populations, particularly of genetically variable, cross-
pollinated species such as L. rigidum, differ in the number
of gene loci conferring herbicide resistance. Major influ-
encing factors in the evolution of metabolic resistance are
the herbicide chemistry, herbicide dose, duration of ex-
posure, and environmental conditions, interacting with
genetic diversity. What is unknown and intriguing is
whether the expression of some metabolic resistance
genes under herbicide selection is subject to epigenetic
control. Given the complex genetic nature of metabolic
herbicide resistance in cross-pollinated weed species,
identifying all the P450s and other genes involved re-
mains challenging. However, comprehensive genomic
approaches such as next-generation transcriptome se-
quencing (RNA sequencing [RNA-seq]) opens up new
research opportunities (see below).

In total, these studies with a range of L. rigidum pop-
ulations show that resistance and cross-resistance to dif-
ferent metabolizable herbicides are due to an enhanced
capacity for herbicide metabolism, which can be inhibited
(and resistance thus reversed) in vivo by P450 inhibitors.
However, it must be stated that, until recently, there was

little direct evidence for the involvement of specific P450s
or the identity of other genes responsible for this herbicide
metabolic resistance. Despite much effort, our studies to
isolate P450-active microsomes from L. rigidum have not
been successful (S. Powles and D. Werck-Reichhart, un-
published data). Thus, until recently, progress had stalled
on further characterizing herbicide-metabolizing enzymes
and identifying the specific genes conferring resistance
(see below).

RECENT PROGRESS ON THE IDENTIFICATION OF
SPECIFIC GENES ENDOWING METABOLIC
HERBICIDE RESISTANCE IN L. RIGIDUM

Until now, biochemical and other molecular approaches
for the discovery of herbicide-metabolizing and resistance-
endowing genes in Lolium spp. have been difficult and
have yielded little (Preston and Powles, 1997; Fischer et al.,
2001; Duhoux and Délye, 2013). Recently, utilizing global
differential gene expression profiling (RNA-seq) tech-
nology, we have generated an L. rigidum reference tran-
scriptome library using Roche 454 technology (Gaines
et al., 2014). RNA-seq has been performed using
Illumina HiSeq with resistant and susceptible individuals

Table I. L. rigidum populations with confirmed metabolic herbicide cross-resistance

Population Selecting Herbicides Metabolic Resistance to Major References

Field-evolved populations
SLR31 Trifluralin Dinitroanilines Tardif and Powles (1999)

Diclofop ACCase inhibitors Holtum et al. (1991)
AHAS inhibitors Christopher et al. (1991)

WLR1 Chlorsulfuron AHAS inhibitors Christopher et al. (1992)
WLR2 Amitrole PSII inhibitors (including ureas) Burnet et al. (1993a, 1993b);

Atrazine Preston and Powles (1997)
VLR69 Diuron PSII inhibitors (including ureas) Burnet et al. (1993a, 1993b);

Chlorsulfuron AHAS inhibitors Preston et al. (1996)
Atrazine PSII inhibitors
Diclofop ACCase inhibitors

Low-herbicide-rate recurrent selection
VLR1 subset Diclofop ACCase inhibitors Neve and Powles (2005a)

AHAS inhibitors Yu et al. (2013b)
WALR1 subset Diclofop ACCase inhibitors Manalil et al. (2011)

AHAS inhibitors Yu et al. (2013b)

Table II. Herbicide-susceptible L. rigidum populations with some capacity to metabolize herbicides

Susceptible Population Herbicides with Some Initial Metabolism References

VLR1 Chlorsulfuron Christopher et al. (1991, 1992); Preston et al. (1996)
Diclofop Holtum et al. (1991); Tardif et al. (1996); Preston et al. (1996)
Chlorotoluron Burnet et al. (1993a); Preston et al. (1996)
Simazine Burnet et al. (1993b); Preston et al. (1996)
Sethoxydim Tardif et al. (1993); Tardif and Powles (1994)
Tralkoxydim Preston et al. (1996)
Haloxyfop Tardif et al. (1996)

Low-rate-selected supersensitive
VLR1 subset

Diclofop Han et al. (2013)

VLR2 Chlorotoluron Preston and Powles (1997)
VLR6 Chlorsulfuron Christopher et al. (1991)
WALR1 Diclofop Yu et al. (2013b)
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from a well-characterized, metabolism-based resistant
L. rigidum population (Neve and Powles, 2005a; Yu et al.,
2013b). Differentially expressed contigs (putatively an-
notated as P450s, nitronate monooxygenase [NMO],
GST, and GT) were highly expressed in resistant versus
susceptible plants and cosegregated with diclofop resis-
tance in an F2 herbicide resistance segregating popula-
tion (Table III). Supporting our previous study in which
2,4-D pretreatment induced protection against diclofop
(Han et al., 2013), 2,4-D-treated susceptible L. rigidum in-
dividuals showed overexpression of the same transcripts
(Table III). Furthermore, four of these transcripts (two
P450s, NMO, and GT) were consistently highly expressed
in nine unrelated L. rigidum populations with field-
evolved metabolic resistance from both Europe and
Australia (Table III). This suggests that these four genes
collectively play critical roles in conferring metabolic
herbicide resistance in L. rigidum (Gaines et al., 2014).
While a role in endowing resistance is expected for
the P450 and GT genes, the possible role of NMO in
diclofop metabolic resistance is unknown and remains to
be determined. This enzyme is a flavin-dependent mon-
ooxygenase and catalyzes an oxidative denitrification
reaction (Gadda and Francis, 2010). Current research is
functionally characterizing these four genes. Given the
diversity and complexity of the genetic control of meta-
bolic resistance, variation in the resistance genes involved
is envisaged to differ among populations with distinct
evolutionary selection histories (Table I). For example, the
GST genes may contribute to metabolic resistance in
some L. rigidum populations (Table III).
Our recent success (Gaines et al., 2014) further confirms

that global RNA-seq, when coupled with genetic and
physiological validation (e.g. 2,4-D-induced gene expres-
sion changes), is powerful for metabolic herbicide resis-
tance gene discovery. We are now focused on metabolic
resistance gene discovery in several field-evolved resistant
Lolium spp. populations and in other resistant weed species.

HERBICIDE RESISTANCE/CROSS-RESISTANCE
AND RESISTANCE GENE DISCOVERY IN
A. MYOSUROIDES

Similar to L. rigidum, an herbicide-resistant
A. myosuroides population early reported in the United
Kingdom (Moss and Cussans, 1985) displayed cross-
resistance to herbicides of different chemical groups and
sites of action (Kemp et al., 1990). Subsequent studies
with these resistant A. myosuroides populations demon-
strated that resistance is due to enhanced rates of herbi-
cide metabolism that could be reduced by P450 inhibitors
(Kemp et al., 1990; Hall et al., 1995, 1997; Hyde et al.,
1996). Since then, metabolic herbicide resistance, likely
involving P450s, has been identified in many other Eu-
ropean A. myosuroides populations (Menendez and De
Prado, 1997; Cocker et al., 1999; Letouzé and Gasquez,
2001, 2003; De Prado and Franco, 2004). In addition to
P450s, a GST with glutathione peroxidase activity (spe-
cifically, the Phi class GSTF1 gene product) has been
shown to play a role in resistance to some herbicides in
some resistant A. myosuroides populations (Cummins
et al., 1997, 1999, 2011). Transgenic Arabidopsis (Arabi-
dopsis thaliana) expressing the A. myosuroides GSTF1 gene
(AmGSTF1) has improved tolerance to some herbicides,
which is reversible by the application of a specific GST
inhibitor (Cummins et al., 2013). Resistance is due to in-
creased accumulation of protective compounds (glutathi-
one, anthocyanins, and flavonoids), which is mediated by
the AmGSTF1 gene via a yet-unknown regulating mech-
anism, rather than direct herbicide detoxification activity
by the GST itself (Cummins et al., 2013). In addition,
higher expression of the GSTF1-like genes was recently
found in at least 10 other resistant UK A. myosuroides
populations (R. Edwards, personal communication).
However, a similar GST-based resistance mechanism
seems to be less evident in metabolic resistant Australian
L. rigidum populations (Cummins et al., 2013; Table III;
R. Edwards, personal communication). This likely reflects
genetic diversity and different herbicide selection, as the
resistant UK A. myosuroides populations had been selected
with fenoxaprop, which is known to be detoxified by GST
(Edwards and Cole, 1996), while many of the resistant
Australian L. rigidum populations were selected with
diclofop, which can be P450 detoxified (Zimmerlin and
Durst, 1990).

METABOLIC HERBICIDE RESISTANCE AND
RESISTANCE GENE DISCOVERY IN
ECHINOCHLOA spp.

E. phyllopogon, a predominantly self-pollinated allotet-
raploid species, is a major global weed long selected with
herbicides and prone to resistance evolution. More than
40 years of herbicide use has resulted in the evolution of
resistance to several different herbicides in many popu-
lations of E. phyllopogon (Fischer et al., 2000a; Osuna et al.,
2002; Yasuor et al., 2009). Cross-resistance to dissimilar
herbicides was shown to be non-target-site based (Osuna
et al., 2002; Yasuor et al., 2009), and studies involving in

Figure 4. Dose-response curves for herbicide-susceptible (gray line)
and twice-selected (solid line, black circles) and triple-selected (broken
line, white circles) diclofop-resistant L. rigidum populations. The resis-
tant populations were the result of selection at 0.1- and 0.5-fold (twice
selected) or at 0.1-, 0.5-, and 2-fold (triple selected) of the recommended
dose of 375 g ha21 (adapted from Neve and Powles, 2005a).
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vivo herbicide metabolism, measurement of microsomal
P450 content and activity, and use of P450 inhibitors/
inducers all strongly indicate that resistance is due to
P450-based enhanced herbicide metabolism (Fischer et al.,
2000b; Osuna et al., 2002; Yun et al., 2005; Yasuor et al.,
2009, 2010). With recent advances in P450 gene discovery
in herbicide-tolerant rice (Oryza sativa; Pan et al., 2006;
Saika et al., 2014), progress has been made in the identi-
fication, cloning, and characterization of the P450 genes
responsible for metabolic resistance in E. phyllopogon.
For example, two P450 genes (CYP71AK2 and CYP72A)
were recently found to be highly induced by bispyribac-
sodium in multiple herbicide-resistant plants (Iwakami
et al., 2014b). More recently, the two P450 genes (CYP81A12
and CYP81A21) identified in a resistant E. phyllopogon

population conferred resistance to certain metabolizable
herbicides when expressed in Arabidopsis, and yeast
(Saccharomyces cerevisiae WAT11 strain)-expressed
CYP81A12 and CYP81A21 enzymes metabolized herbi-
cide through O-demethylation (Iwakami et al., 2014a).
These two highly similar P450 genes (likely homologs) are
likely to be up-regulated simultaneously by a single trans-
acting element in the resistant individuals (Iwakami et al.,
2014a). Therefore, based on available studies on metabolic
resistance genetics and P450 gene discovery in weedy
species, a single P450 can confer resistance to a few her-
bicides, as has been reported in herbicide-tolerant crops
(e.g. Pan et al., 2006; Dam et al., 2007). However, it is more
likely that the expression of several existing P450s (and
other genes) contributing to the basal level of herbicide

Figure 5. HPLC scans comparing
diclofop metabolism between wheat
and the unselected susceptible (S)
and low-dose-selected resistant (R)
L. rigidum populations (modified
from Yu et al., 2013b).
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metabolism in a weedy plant could be simultaneously up-
regulated through a regulatory cascade, endowing resis-
tance to a wider range of herbicides.
In addition, it has long been known that metabolic

resistance to the rice-selective herbicide propanil in
Echinochloa crus-galli and Echinochloa colona is due to
rapid propanil hydrolysis catalyzed by the enzyme aryl
acylamidase (Leah et al., 1995; Carey et al., 1997), similar
to that occurring in tolerant rice. Several organophos-
phate insecticides/herbicides can be used as synergists to
combat the aryl acylamidase-endowed resistance (for
review, see Hoagland et al., 2004).
Compared with cross-pollinated diploid species (e.g.

L. rigidum and A. myosuroides), resistance gene enrich-
ment and thus resistance evolution in self-pollinated
polyploid species (e.g. E. phyllopogon and Avena fatua)
are expected to be slower (Yu et al., 2013a). Neverthe-
less, metabolic resistance gene discovery may be made
easier in E. phyllopogon due to the ease of generating
self-pollinated true-breeding lines and the likely fewer
resistance genes involved.

METABOLIC HERBICIDE CROSS-RESISTANCE IN
WEED SPECIES: A VERY IMPORTANT BUT
UNDERSTUDIED THREAT

Metabolic herbicide cross-resistance, ranging from
resistance to a few through many metabolizable her-
bicides, is most evident in the economically important
and damaging grass weeds L. rigidum, A. myosuroides,
and E. phyllopogon. However, such resistance has also
been identified in populations of at least 12 other weed
species (Owen et al., 2012; Ma et al., 2013; Iwakami
et al., 2014c; for review, see Preston, 2004; Powles and
Yu, 2010; Beckie and Tardif, 2012). A very recent de-
velopment is the discovery of metabolic resistance to
atrazine and 4-hydroxyphenylpyruvate dioxygenase-
inhibiting herbicides in Amaranthus tuberculatus (Ma
et al., 2013). Therefore, herbicide resistance (and cross-
resistance) due to an enhanced capacity to metabolize
(detoxify) herbicides is becoming increasingly reported
and should be recognized as a significant threat to
global herbicide efficacy and thus food production
(Preston, 2004; Powles and Yu, 2010; Délye et al., 2011;
Beckie and Tardif, 2012; Délye, 2013; Yu and Powles,
2014). Despite this threat, metabolic resistance has been
severely underinvestigated, likely because it is difficult

to study and can co-occur along with easily identified
target-site mutations that provide higher levels of re-
sistance and mask the presence of metabolic resistance.
For example, a large survey of the target-site acetyl-
coenzyme A carboxylase (ACCase) gene mutations in
A. myosuroides in France (over 10,000 seedlings in 243
populations) established that 75% of the resistant plants
did not have target-site resistance and thus must have
non-target-site resistance, although the mechanistic ba-
sis was not characterized (Délye et al., 2007).

Similarly, in Australia, there is much, albeit indirect,
evidence that L. rigidum across vast areas exhibits both
target-site resistance and metabolic cross-resistance to
many herbicides (Llewellyn and Powles, 2001; Owen
et al., 2007, 2014; Malone et al., 2014). Our most recent
work analyzing the in vivo metabolism of [14C]diclofop
in 33 multiply resistant L. rigidum populations collected
in a random field survey (Owen et al., 2014) provides
direct evidence that metabolic resistance is common (H.P.
Han, Q. Yu, M. Owen, G.R. Cawthray, and S.B. Powles,
unpublished data). This work revealed that nearly 80% of
resistant L. rigidum populations showed metabolic her-
bicide resistance. While target-site resistance co-occurs
(91% of the populations) in these resistant L. rigidum
populations, 70% of the populations exhibit both target-
site resistance (ACCase mutations) and non-target-site
enhanced herbicide metabolism. Direct evidence of met-
abolic resistance in large numbers of resistant plants is
currently being obtained using an automated 14C-labeled
herbicide metabolism screen at Bayer CropScience in
Frankfurt, Germany. This work, conducted with hundreds
of resistant populations from many geographies, has es-
tablished that metabolic resistance in L. rigidum is
widespread. For example, analysis of more than 2,000 in-
dividuals from 301 different resistant L. rigidum popula-
tions from France revealed that 72% of the populations
displayed metabolic resistance (to ACCase-inhibiting her-
bicides), with only 28% of the populations possessing solely
target-site resistance (R. Beffa, personal communication).

CAN METABOLIC HERBICIDE CROSS-RESISTANCE
BE MITIGATED?

The dire threat of metabolic herbicide resistance is
that it can endow resistance across herbicides of different
chemical groups. For example, in many L. rigidum pop-
ulations selected with ACCase-inhibiting herbicides, there

Table III. Candidate enzymes identified in metabolic resistant L. rigidum populations (data from Gaines et al., 2014)

Candidate Enzymes
Highly Induced in Susceptible L. rigidum

by 2,4-D Pretreatment

Higher Expression in Two Australian

Metabolic Resistant L. rigidum Populations

Higher Expression in Eight French Metabolic

Resistant L. rigidum Populations

P450s (two CYP72As) Yes Yes Yes
NMO Yes Yes Yes
GT Yes Yes Yes (seven out of eight)
GST1 (t class) Yes Yes Yes (six out of eight)
GST2a (f class) Yes No Yes (five out of eight)
GST3 (t class) Yes Yes No

aHighly similar to LrGSTF1, a homolog of AmGSTF1 (Cummins et al., 2013).
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is concomitant cross-resistance to AHAS-inhibiting
herbicides (Table I). This has also been reported in
A. myosuroides (Letouzé and Gasquez, 2001) and Digitaria
sanguinalis (Hidayat and Preston, 1997, 2001). Similarly, in
Phalaris minor, selection with a phenylurea herbicide
resulted in cross-resistance to ACCase-inhibiting herbi-
cides (Singh et al., 1998). In addition, selection with the
very-long-chain fatty acid synthesis inhibitor herbicide
pyroxasulfone in L. rigidum resulted in cross-resistance
to the thiocarbamate herbicides prosulfocarb and triallate
(Busi and Powles, 2013). As discussed above, such meta-
bolic cross-resistance occurs because the P450 and/or
other metabolism genes (e.g. GT and GST) responsible
for resistance can serendipitously metabolize a range of
herbicide chemical structures. The degree of metabolic
cross-resistance in a given weed population will be de-
pendent on the particular resistance gene selected and the
substrate specificity of the enzymes encoded by the re-
sistance genes. Environmental conditions also play a role
in metabolic resistance evolution, as the enzymes involved
(e.g. P450s and GSTs) can respond to biotic or abiotic
stresses (Marrs, 1996; Schuler andWerck-Reichhart, 2003).

Resistance management strategies based on herbi-
cide rotation are confounded by the fact that metabolic
resistance can confer resistance across different herbi-
cide groups, and thus the efficacy of herbicide mix-
tures or rotations can be compromised. Therefore, once
metabolic resistance has evolved, how can it be miti-
gated? One possibility is to use chemical synergists to
inhibit the enzymes responsible for resistance. Insec-
ticide synergists have long been successfully used for
combating insecticide metabolic resistance (for review,
see Bernard and Philogène, 1993). As discussed in pre-
vious sections, certain P450 or GST inhibitors can reverse
metabolic resistance in weeds if the resistance is solely
metabolism based. For instance, the P450 inhibitors
malathion, aminobenzotriazole, and piperonyl butoxide
can inhibit the in vivo metabolism of certain AHAS-
inhibiting herbicides, chlorotoluron, and simazine, re-
spectively, thus reversing resistance (Burnet et al., 1993a;
Christopher et al., 1994; Preston et al., 1996; Fig. 6). Sim-
ilarly, a specific inhibitor of AmGSTF1 can enhance the
efficacy of some herbicides in A. myosuroides (Cummins
et al., 2013). The crop selectivity and any other impacts of
these inhibitors are challenges remaining to be addressed.
Alternatively, once key genes endowing metabolic resis-
tance are identified, specific double-stranded RNAs can
be designed and delivered to plants to accurately silence
or suppress the gene(s) conferring resistance. For exam-
ple, silencing of P450 or other metabolic genes in insects
by RNA interference (RNAi) has been shown to increase
insect susceptibility to insecticides or inhibitory plant
metabolites (Mao et al., 2007; Liu et al., 2014). RNAi can
simultaneously target several genes; therefore, it is espe-
cially suitable for studying (and likely combating) meta-
bolic herbicide resistance, as this is often under polygenic
control (Busi et al., 2011). Pioneering work (Sammons
et al., 2011) shows that RNAi plus herbicides has the
potential to achieve a renaissance of important existing
herbicides.

Interestingly, we have shown that metabolism-based
resistant L. rigidum plants have reduced fitness (Vila-
Aiub et al., 2005a, 2005b, 2009). At least in the resis-
tant L. rigidum population examined, for unknown
reasons, the presence of up-regulated metabolic resis-
tance genes may come at a fitness cost. This fitness cost
may be explored by agronomic practices such as crop
competition and pasture phases to moderate resistance
evolution in the field.

CONCLUSION

(1) Metabolic resistance, conferring resistance poten-
tially to many herbicides, is a particular threat to herbi-
cide sustainability and thus global crop production, but
it is underinvestigated.

(2) Metabolic resistance evolution can be rapid, as
the responsible genes can be at high initial frequencies.
Many weedy plant species are genetically diverse, in-
cluding genetic diversity in their capacity to metabolize
herbicides. Under persistent herbicide selection, espe-
cially if at reduced herbicide rates, weed individuals with
higher metabolic capacity will be rapidly selected,
resulting in resistance evolution. High survival frequen-
cies at relatively low herbicide use rates in Australia have
been revealed in many L. rigidum populations (Neve and

Figure 6. Synergistic effects of P450 inhibitors (malathion and piperonyl
butoxide) applied 1 h before herbicide treatment. A, Metabolic herbicide-
resistant L. rigidum plants were treated with 400 g ha21 chlorsulfuron
alone (left) or with chlorsulfuron plus 1 kg ha21 malathion (right).
B, Plants were treated with 500 g ha21 chlorotoluron (left) or with
chlorotoluron plus 2.1 kg ha21 piperonyl butoxide (PBO; right). Appli-
cation of the P450 inhibitor alone had no visual effect on plant growth.

1114 Plant Physiol. Vol. 166, 2014

Yu and Powles

D
ow

nloaded from
 https://academ

ic.oup.com
/plphys/article/166/3/1106/6111190 by guest on 20 August 2022



Powles, 2005b). We emphasize that metabolic resistance
evolution will be much faster in cross-pollinated weed
species, because there is easy pollen-mediated resistance
gene exchange and enrichment, in comparison with self-
pollinated species.
(3) Metabolic resistance is often due to enhancement

of a plant’s existing capacity for herbicide metabo-
lism, mimicking the metabolism occurring in herbicide-
tolerant crops. In most studies, herbicide metabolism
between resistant and susceptible weed plants has been
found to be quantitatively but not qualitatively differ-
ent. The metabolic resistance in the weed mimics that of
tolerant crops in being based on similar (unidentified)
P450 and other metabolic enzyme families (Christopher
et al., 1991; Veldhuis et al., 2000; Park et al., 2004; Yasuor
et al., 2010; Ma et al., 2013; Yu et al., 2013b). Some cereal
crops (e.g. wheat, maize [Zea mays], barley [Hordeum
vulgare], etc.) have a high capacity to metabolize certain
herbicides; thus, these herbicides are used to control
weeds across huge areas. This is a selection pressure for
the evolution in weeds of the same capacity to metabo-
lize herbicides.
(4) Most previous studies on metabolic resistance

have been on grass species; however, metabolic re-
sistance is beginning to be reported in dicot weed
species, such as Amaranthus tuberculatus resistant to
mesotrione and atrazine (Ma et al., 2013). This indi-
cates that herbicide metabolism capacity exists in both
grass and dicot weed species. Therefore, most weedy
plant species and not just grass species are at risk of
evolving metabolic herbicide resistance to selective
herbicides.
(5) Herbicides must be used cautiously and at full

rates. In addition, new crop-selective herbicide discov-
eries should be examined early to ascertain whether
they are active on metabolic resistant weed populations
(e.g. L. rigidum and A. myosuroides), so that the incidence
of metabolic resistance can be managed proactively.
Furthermore, care should be taken when tank mixing or
applying herbicides sequentially, so that herbicides that
can induce metabolic gene expression and hence cause
herbicide antagonism are not used together (e.g. 2,4-D
and ACCase- or AHAS-inhibiting herbicides).
(6) Compared with the high level of biochemical and

molecular understanding of metabolic insecticide re-
sistance (Li et al., 2007; Hoi et al., 2014), there is thus
far limited progress in understanding and tackling
plant metabolic herbicide resistance. Identifying the
genes endowing metabolic resistance in weedy plants,
and their regulation, are challenging but now under-
way in L. rigidum (Gaines et al., 2014), A. myosuroides
(Cummins et al., 2013), and E. phyllopogon (Iwakami
et al., 2014a, 2014b). A collaborative effort across
Australia and Europe is beginning to tackle metabolic
resistance in major crop weeds. Over the next few
years, much should be revealed about the specific
genes endowing metabolic resistance and the regula-
tion of these genes. This information is essential for
strategies to biochemically or genetically overcome
metabolic resistance.
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