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A Rhodococcus sp. (strain C1) was isolated by elective culture with 1,8-cineole as sole carbon 
source. 6-endo-Hydroxycineole and 6-oxocineole accumulated transiently during the latter part 
of the exponential growth phase and, together with 1,8-cineole, were oxidized rapidly by 1,8- 
cineole-grown cells. Although a putative 1,8-cineole monooxygenase was not detected in cell- 
free systems an induced 6-endo-hydroxycineole dehydrogenase and an induced NADPH-linked 
6-oxocineole oxygenase were readily demonstrated. The lactone 5,5-dimethyl-4-(3’-oxobutyl)- 
4,5-dihydrofuran-2(3H)-one was isolated from oxygenation reactions with 6-oxocineole as 
substrate. This was not the immediate product of oxygenation but resulted from non-enzymic 
lactonization of the ring cleavage intermediate 34 l-hydroxy-l-methylethyl)-6-oxoheptanoic 
acid during extraction procedures. 2,5-Diketocamphane 1,2-rnonooxygenase purified from ( +)- 

camphor-grown Pseudomonas putida ATCC 17453 was also able to utilize 6-oxocineole as a 
substrate with formation of the same isolated product. The established oxygen-insertion 
specificity of this enzyme coupled with an unequivocal absence of esterase activity allowed the 
nature of the oxygen insertion into 6-oxocineole by the enzyme from Rhodococcus C1 to be 
inferred and a reaction sequence for cleavage of both rings of 1,8-cineole to be proposed. It 
provides an explanation for the reported isolation of (R)-5,5-dimethyl-4-(3’-oxobutyl)-4,5- 
dihydrofuran-2(3H)-one from culture media of Pseudomonas Jlava grown with 1 ,8-cineole. 

I N T R O D U C T I O N  

Although the degradation of cyclic monoterpenes by bacteria growing with them as sole 
carbon sources has been studied for more than 25 years the ring cleavage reactions are 
understood for a very limited number of compounds and in no instance has the complete 
pathway to central metabolites been fully documented. Degradation of naturally occurring ( +)- 

camphor is the most thoroughly understood and involves an initial hydroxylation at carbon-5 by 
Pseudomonasputida ATCC 17453 (Katagiri et al., 1968) or at carbon-6 by a Rhodococcus sp. 
(Chapman et al., 1966). In the case of P. putida cleavage of the two carbocyclic rings is catalysed 
by discrete ‘Baeyer-Villiger’ monooxygenases (Ougham et al., 1983 ; Taylor & Trudgill, 1986). 
Although the ring cleavage product formed by the Rhodococcus sp. has been unequivocally 
identified the cleavage reactions have not been investigated in detail. In neither case have the 
post-cleavage reactions, leading to central metabolites, been established. 

Degradation of the bicyclic hydrocarbon a-pinene has also attracted significant attention and 
at least two distinct cleavage pathways have been described. One of these almost certainly 
involves initial cleavage of the four-membered carbon ring with the formation of the monocyclic 
monoterpene skeleton and integration of this into a proposed pathway for limonene degradation 
(Shukla et al., 1968) while the other is quite novel. Initial monooxygenation forms a-pinene 
epoxide (Best et al., 1987) and ring cleavage in both Nocardia and some Pseudomonas spp. is 
mediated by a-pinene oxide lyase (EC 4.99. -. -) which catalyses the concerted cleavage of all 
three rings without the requirement for any additional non-protein components (Griffiths et al., 
1987a,b). 
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Fig. 1. The structure of 1,8-cineole and relevant reported metabolites. A, 1,8-cineole; B, 2-endo- 
hydroxycineole; C, 2-oxocineole ; G, (R)-5,5-dimethyl-4-(3'-oxobutyl)-4,5-dihydrofuran-2(3H)-one. 

There is good evidence that Pseudomonas spp., capable of utilizing the monocyclic 
monoterpene limonene as sole carbon source, degrade it by initial oxidation of a methyl group 
(carbon-7) to carboxyl followed by a P-oxidation cycle which achieves ring cleavage (Dhavalikar 
& Bhattacharyya, 1966; Dhavalikar et al., 1966) although, once again, the route to central 
metabolites is obscure. 

1,3,3-Trimethyl-2-oxabicyclo(2,2,2)octane [ 1,8-cineole] is a component of many essential oils 
and is the dominant component of the oil from leaves of Eucalyptus radiata var. Australiana 
(Nishimura et af . ,  1982). It is of particular interest in that while its carbocyclic skeleton is that of 
the monocylic monoterpenes the additional structural complication of a 1 ,&ether linkage turns 
it into a bicyclic compound. Reports of 1,8-cineole metabolism are rudimentary, although 
analytically thorough, and include the isolation of (1 S,4R,6R)- 1,3,3-trimethyl-2-oxabicyclo- 
(2,2,2)octan-6-01 [ 2-endo-hydroxycineole], (1 S,4R,6S)- 1,3,3-trimethyl-2-oxabicyclo(2,2,2)octan- 
6-01 [2-exo-hydroxycineole], (1 S,4R)-1,3,3-trimethyl-2-oxabicyclo(2,2,2)octan-6-one [2-oxocin- 
eole] and the lactone (R)-5,5-dimethyl-4-(3'-oxobutyl)-4,5-dihydrofuran-2(3H)-one from the 
culture medium of a strain of Pseudomonasflava isolated by elective culture with, and grown 
upon, 1,8-cineole as sole carbon source (MacRae et al., 1979; Carman et al., 1986) (Fig. 1) and 
the formation of the analogous C-3-substituted 1,8-cineole derivatives by broth-grown 
Aspergilfus niger (Nishimura et al., 1982). It should be noted that strict application of chemical 
nomenclature rules does not allow the use of endo and exo in the (2,2,2)bicyclo system. In 
common with other authors in this field (MacRae et al., 1979) we have designated compound B 
as the endo isomer because the hydroxyl substitution is on the opposite side of the reference plane 
from the lowest priority bridge. We have also made use of the ring numbering system consistent 
with the trivial name 1,8-cineole. In this paper we describe the isolation of a Rhodococcus sp. 
capable of growth with 1,8-cineole as sole carbon source, identify two enzymes involved in the 
initial stages of oxidation, and propose a reaction sequence for the concerted cleavage of the 
carbocyclic ring and the ether linkage. 

A preliminary report of a section of this work has already appeared (Taylor & Trudgill, 1988). 

METHODS 

Bacterial strains and culture conditions. Pseudomonasputida ATCC 17453 was obtained from the American Type 
Culture Collection. Rhodococcus sp. strain C1 was isolated from soil obtained from beneath a Eucalyptus sp. 
growing on the College campus at Aberystwyth. Stock cultures were grown on nutrient agar (Oxoid) at 30 "C, 

stored at 3 "C and subcultured at regular intervals. For experimental purposes P .  putida was grown on (+)- 

camphor as previously described (Taylor & Trudgill, 1986) and Rhodococcus C1 was grown at 30 "C in a medium 

that contained (g l-l):KH,PO,, 2; Na2HP04, 4; (NH4),S04, 1. Trace element solution (Rosenberger & Elsden, 

1960) was added at 0.4% (v/v) before the medium was sterilized by autoclaving. When required sodium succinate 

hexahydrate (4.6 g 1-l) was added prior to autoclaving. Sterile 1,8-cineole (1 g 1-l) was added aseptically to the 
autoclaved basal medium. For growth with 1 ,&cineole a 20 ml starter culture, with succinate as carbon source, was 

inoculated from a slope and grown on a gyratory shaker at 150 r.p.m. and 30 "C for 48 h. Subsequently 10% (v/v) 
inocula were transferred to 100 ml and 900 ml volumes of media, with 1,8-cineole as substrate, in 250 ml and 2 1 
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Erlenmeyer flasks respectively and grown for 18-24 h. Cells were then either harvested for experimental purposes 

(1 0000 g, 30 min, 4 "C) or used to inoculate 9 1 of 1,8-cineole medium in a New Brunswick Microferm laboratory 

fermenter which was stirred at 500 r.p.m. and aerated by the passage of sterile air at the rate of 1 1 min-l. After 15- 
18 h growth the culture was either harvested in a continuous flow centrifuge (Alfa Laval) at a rate of 0.4- 

0.5 1 min-' or used to inoculate 30 I of medium in a 50 1 plastic vessel adapted to fit the fermenter which was stirred 

at 600 r.p.m., aerated by the passage of sterile air at 6 1 min-', and the culture harvested after z 10 h growth. Cell 
pellets were routinely resuspended in an equal volume of 42 ~ M - K H ~ P O , / N ~ ~ H P O ,  buffer (PH 7.1) and either 

used immediately or stored at - 20 "C until required. 
Preparation of cell extracts. Washed resuspended cells were disrupted by either (a) passage through a French 

pressure cell with a pressure difference at the orifice of 138 MPa, (b) passage of the frozen cell paste through a 

Hughes press at - I5 "C or (c) by sonication of 10 ml samples in an ice-bath for two 30 s periods, with a 1 min 
cooling interval, at an amplitude of 18-20 pm (MSE Soniprep). Broken cell suspensions were incubated with 

approximately 0.5 mg of DNAase (EC 3.1 .21.1) per 10 ml for 15 min at 4 "C and then centrifuged at 27000gand 
4 "C for 45 min to remove cell debris. The crude cell extract was decanted and stored at - 20 "C until required. 

Membrane preparations were obtained by centrifugation of crude cell extract at 100OOO g and 4 "C for 60 min. The 

pink gelatinous pellet was resuspended in 42 ~ M - K H ~ P O ~ / N ~ ~ H P O ,  buffer (pH 7.1), centrifuged as above for a 

further 60 min and again resuspended in the same phosphate buffer before use. 
Protein measurement. The biuret assay, as modified by Gornall et al. (1949), was used routinely for the estimation 

of protein in solution. A crude estimate of the protein content of column fractions was made by measuring 

absorbance at 280 nm. 

Measurement of oxygen uptake. Oxygen consumption by whole cell suspensions or crude cell extracts was 

measured either by conventional W arburg manometry or polarographically using an oxygen monitor (Yellow 

Springs Instrument Co.). 
Extraction of metabolites. Bacteria were removed from culture media either by passage of small volumes 

( < 20 ml) through a membrane filter (0.22 pm) or by continuous flow centrifugation of larger volumes (Alfa 

Laval). Neutral metabolites were extracted by shaking the aqueous medium with an equal volume of redistilled 

diethyl ether which was separated and dried over anhydrous Na2S04. When necessary the diethyl ether was 
removed by rotary evaporation under vacuum. Acidic metabolites were similarly extracted into diethyl ether after 
first acidifying the aqueous medium to z p H  1 with 5 M-HCl. 

GLC analysis of metabolites. Samples (1 pl) of diethyl ether extracts containing not more than 100 pg ml-l of 
individual metabolites were analysed by GLC on a Carlo Erba HRGC 5300 instrument fitted with a WCOT fused 

silica CP-wax-52 CB capillary column (0.32 mm x 25 m) and a flame ionization detector. Hydrogen was used as 
the carrier gas at 1.5 ml min-' . The temperature programme was 45-80 "C at 25 "C min-l ; 80-150 "C at 

3 "C min-I ; 150-245 "C at 35 "C min-'. The final temperature was maintained for 10 min. 
GLC-MS analysis. GLC-mass spectral analyses were done on a 25 m polar BP20 fused silica capillary column 

programmed from 50 "C (3 min) to 250 "C at 10 "C min-'. Helium was used as the carrier gas at a flow rate of 

2 ml min-1. Electron impact spectra were recorded on a VG 12F mass spectrometer (VG Analytical) with a 

beam energy of 70 eV, source temperature of 150 "C, 100 pA emission and scan cycle time of 2.7 s. Chemical 

ionization spectra were obtained with a VG 70 HSE instrument using isobutane as the reagent gas at a source 

housing pressure of 2 Pa and 200 pA emission. 
NMR spectra. Proton nuclear magnetic resonance ('H-NMR) spectra were recorded on a JOEL FX60Q Fourier 

transform spectrometer in CDC13 at 60 MHz with tetramethylsilane as internal standard. 

Measurement of optical rotation. Optical rotations of isolated metabolites were measured in ethanolic solution 
with a 20 mm light-path cell in a Bendix NPL Automatic Polarimeter at 589.5 nm (sodium D line). 

Estimation of lactones. The alkaline hydroxamate procedure of Cain (1961) was used for the detection and assay 

of lactones. 
Measurement of changes in proton concentration. The consumption of protons in enzyme-catalysed reactions was 

followed in near-buffer-free aqueous reaction systems at 20 "C. The pH was maintained at a constant value by the 

controlled addition of 2 mM-HCI from a burette attached to an autotitrator (Pye-Unicam). 

Enzyme units. All enzyme activities are expressed as pmol substrate used or product formed min-l. Unless 
otherwise stated all assays were done at 30 "C. 

Enzyme assays. 2,5-Diketocamphane 1 ,2-monooxygenase was routinely assayed, using (+>camphor as the 

substrate, either by measuring substrate-stimulated NADH oxidation spectrophotometrically or by following 
oxygen consumption polarographically. A typical reaction mixture contained, in ii total volume of 3 ml, 120 pmol 

KH2P0,/Na2HP0, buffer (pH 7.1), 0.4 pmol NADH and 0.025-0.50 units of enzyme. Reactions were initiated 
by the addition of 1 pmol (+)-camphor. 6-endo-Hydroxycineole dehydrogenase was assayed either (a) by 

measuring substrate-stimulated NAD+ reduction spectrophotometrically at 340 nm when 1 pmol b e d o -  
hydroxycineole was added to a reaction mixture that contained, in a total volrme of 1 ml, 80 pmol glycine/NaOH 

buffer or H3P04/Na4P20, buffer (pH 10.5), 2 pmol NAD+ and 0.01-0.25 units of enzyme, or (b) by following the 
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substrate-stimulated oxidation of NADH when 1 pmol hxocineole was added to a cuvette that typically 
contained in 1 ml, 80 pmol H3P04/Na4P207 buffer (pH 7 9 ,  0.15 pmol NADH and 0.01425 units of enzyme. 

6-Oxocineole oxygenase was assayed either by measuring substrate-stimulated NADPH oxidation spectrophoto- 

metrically or oxygen uptake polarographically. A typical reaction mixture contained, in a total volume of 3 ml, 

250 pmol H3P04/Na4P207 buffer (pH 9), 0.5-1 pmol NADPH and 0-07-0.7 units of enzyme. Reactions were 
initiated by the addition of 2 pmol 6-oxocineole. 

Enzyme purijcation. 2,5-Diketocamphane 1,2-monooxygenase was partially purified by (NH4)2S04 fraction- 

ation and anion exchange chromatography essentially as described previously (Taylor & Trudgill, 1986). The final 

preparation was dialysed against 1 ~ M - K H ~ P O ~ / N ~ ~ H P O ,  buffer (pH 7.1) and stored at - 20 "C until required. 

Chemical synthesis. The lac tone 5,5-dime thyl-4-( 3 '~xobu tyl)-4,5-di hydrofuran-2( 3 H)-one was prepared from 
a-terpineol, essentially as described by MacRae et al. (1979) and recrystallized from diethyl ether. 3 4  l-Hydroxy-1- 

methylethyl)-6-oxoheptanoic acid was prepared as a 20 mM buffered solution from the lactone. The lactone 

(20 mg) was dissolved in 2 ml 1 M-NaOH and incubated at 100 "C for 20 min. The solution was cooled on ice, 1 ml 

0.1 M-Tris/HCI buffer (PH 8) added and, after adjustment of the pH to 8 with 2 M-HC~, made up to 5 ml with H 2 0  

and stored at -20 "C. 
Sources of other chemicals. a-Terpineol and magnesium monoperoxjphthalate were supplied by Aldrich. 1,s- 

Cineole and (+)-camphor were supplied by Sigma. NAD+, NADP+, NADH and NADPH were from Park 

Scientific. DEAE-Sephacel was supplied by Pharmacia, DEAE-cellulose (DE52) by Whatman and DNAase by 

Fluka. 2,s-Diketocamphane was a generous gift from Dr I. C. Gunsalus, Department of Biochemistry, University 

of Illinois, Champaign-Urbana, Illinois, USA. All other reagents were of high purity, the majority being of 

AnalaR grade from BDH. 

RESULTS 

Identijication of Rhodococcus sp. strain CI 

Strain C1 is a Gram-positive non-motile rod (average size 4.0 x 1.3 pm) with limited mycelial 
development, rudimentary branching and early (1 5 h) fragmentation into rods and coccobacilli. 
Colonies on nutrient agar and glucose-nutrient agar (72 h) were soft butyrous, 3 mm diameter, 
coral-red, shiny and opaque with a crenate edge. The organism grew at temperatures up to 47 "C, 

was catalase and oxidase positive and an obligate aerobe. In sugar broths there was no acid 
production from glucose, sucrose or lactose. Tests for lecithinase, indole formation, starch 
hydrolysis, H2S formation (cysteine agar) and the Voges-Proskauer and methyl red tests were all 
negative. Nitrate was reduced only to nitrite in peptone water, urease was produced on 
Christiensen's medium and the organism was sensitive to a wide range of antibiotics. These 
properties are consistent with the organism being a Rhodococcus sp. (Goodfellow, 1986). 

Growth of organism and metabolite accumulation 

1,8-Cineole. Rhodococcus C1 grew on 1,8-cineole in shake-flask culture with a doubling time of 
approximately 8 h. GLC analysis of unconcentrated neutral diethyl ether extracts of culture 
media, taken throughout the growth phase, showed the transient accumulation of two 
compounds that reached maximum concentrations after about 16-17 h growth (Fig. 2). Yields 
were quantified (no correction for structure-related variation in flame-ionization detector 
response) by reference to (+)-camphor as the internal standard, added to the cell-free medium at 
a concentration of 40 pg ml-l before diethyl ether extraction. No acidic metabolites were 
detected. 

Sufficient quantities of the two metabolites for unequivocal identification and for use in 
metabolic studies were obtained by extraction of a 40 1 culture. The diethyl ether extract was 
dried, evaporated to a volume of 4 ml under reduced pressure and stored at - 20 "C for 72 h. The 
copious crystalline white solid that had formed was filtered off, washed with cold dry diethyl 
ether, dried under vacuum and recrystallized from saturated solution in boiling diethyl ether. 
GLC analysis gave a single peak, retention time 12.2 min, m.p. 93-95 "C. Mass spectral analysis 
gave a molecular ion at m/e 170 (22%) with associated ions at 126 (93%), 11 1 (48%), 108 (loo%), 
93 (43%),83 (40%), 71 (81 %), 69 (52%) and 43 (77%) - a fragmentation pattern almost identical 
with that reported for the two isomers of 2-hydroxycineole (MacRae et al., 1979). The 'H-NMR 
spectrum (6 3.53, broad multiplet that collapsed to a triplet on adding D20, H6, 
J6,Sedo = J6,5ex0 = 6 Hz; three methyl groups at 6 1-27,1.20 and 1-10) was also identical with that 
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Fig. 2. Transient accumulation of metabolites in the culture medium during growth of Rhodococcus C l  
on 1,8-cineole. H I  Growth (ODsso); 0, 1,8-cineole; 0, 6-endo-hydroxycineole; 0, 6-oxocineole. 

Fig. 3. Oxidation of 1,8-cineole and putative catabolic intermediates by Rhodococcus C1. Warburg 
flasks contained, in a total volume of 2 ml, 5 mg dry wt of 1,8-cineole-grown Rhodococcus C1 and 
80 pmol phosphate buffer, pH 7.1. Reactions, at 30 "C, were started by the addition of substrates 
(3 pmol) from side-arms. Centre wells contained 0.1 ml 20% (w/v) KOH and a roll of filter paper to 
facilitate absorption of C02.  0, 1,8-Cineole; 0, 6-endo-hydroxycineole; , 6-oxocineole; v, 5 5 -  
dime t hyl-4-( 3'-oxobutyl)-4,5-di hydrofuran-2( 3 H)-one ; m, 34 1 -hydroxy- 1 -methylethyl)-6-oxoheptanoic 
acid; A, levulinic acid; A, acetone. Endogenous respiration (----) has not been subtracted. 

previously reported for 2-endo-hydroxycineole (MacRae et al., 1979). However, while MacRae 
et al. (1979) reported that 2-endo-hydroxycineole was laevorotatory, [aID - 26" (c = 0.2 in 
ethanol), the accumulated metabolite was dextrorotatory, [aID + 27.5" (c = 0.2 in ethanol). These 
results are only compatible with the compound being the optical isomer 6-endo-hydroxycineole. 

The mother liquor was greatly enriched in the second, more volatile metabolite which was 
further purified, after removal of solvent, by chromatography on Brockmann activity 111, 
alumina, developed with n-hexane. Removal of the eluting solvent left a soft white crystalline 
solid which was shown by GLC (retention time 11 min) to be contaminated with traces of 6- 
endo-hydroxycineole. The residual impurity was removed from a small sample of the compound 
by sublimation, in a closed vessel maintained at 55 "C, onto a cold finger. This gave 150 mg of 
chromatographically pure material. This compound, m.p. 47-49 "C, reacted with acidic 2,4- 

dinitrophenylhydrazine reagent (Friedemann & Haugen, 1943) to form a bright-orange 
insoluble 2,4-dinitrophenylhydrazone. Mass spectral analysis of the ketonic compound gave a 
spectrum almost identical with that previously reported (Nishimura et al., 1982) for 2-oxocineole 
with a molecular ion at m/e 168 (10%) and major associated ions at 140 (21 %), 11 1 (7%),97 (9%), 
82 (loo%), 69 (17%), 67 (14%) and 43 (22%). The lH-NMR spectrum (6 2.92 and 2.71 triplets, 
H5 exo and endo, J5,5 = 20 Hz, J5,4 = 3 Hz, three methyl groups at 1.40, 1.25 and 1.15) also 
displayed all the diagnostic features attributable to 2-oxocineole (MacRae et al. 1979; 
Nishimura et al., 1982). However, although MacRae et al. (1979) reported that 2-oxwineole was 
dextrorotatory, [a],, -t 70.2", the accumulated ketone was laevorotoatory, [a]D -423" (c = 0.2 in 
ethanol), again suggesting that the compound is predominantly the optical isomer 6-oxwineole. 

Putative catabolic intermediates. In addition to growth with 1 ,8-cineole Rhodococcus C1 was 
also able to utilize 6-endo-hydroxycineole, 6-oxocineole, 3 4  1 -hydroxy- 1 -methylethyl)-6-oxohep- 
tanoic acid, levulinic acid and acetone as sole carbon sources for growth. The synthetic lactone 
5,5-dimethyl-4-(3'-oxobutyl)-4,5-dihydrofuran-2(3H)-one did not support growth. 
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Oxidation of I &cineole and related compounds by whole cells 

Washed cell suspensions of 1,8-cineole-grown Rhodococcus C 1 oxidized 1,8-cineole, 6-endo- 
hydroxycineole and 6-oxocineole rapidly with no significant lag period while levulinic acid, 
acetone and synthetic 3-( 1 -hydroxy- 1 -methylethyl)-6-oxoheptanoic acid were oxidized more 
slowly (Fig. 3). Succinate-grown cells did not oxidize any of these compounds significantly 
during the experimental period (80 min). 

Studies with subcellular systems 

I &Cineole as substrate. No enzyme-mediated transformation of 1,8-cineole was detected with 
subcellular systems obtained from cells disrupted in the Hughes press, in the French press or by 
ultrasonication whether or not reducing agents were included with the cell suspension. Crude 
cell crushes and membrane preparations were all inactive towards 1 ,&cineole, irrespective of 
the buffer system, the electron donor employed, or the analytical method used. 

6-endo-Hydroxycineole dehydrogenase. An NAD+-dependent enzyme, catalysing the dehydro- 
genation of 6-endo-hydroxycineole, was detected spectrophotometrically in extracts of 1 3 -  
cineole-grown cells. The pH optimum of the reaction was 10.5 and the product was identified as 
6-oxocineole by GLC analysis and comparison with the authentic ketone. The reverse reaction, 
pH optimum 7.5 with 6-oxocineole as substrate and NADH as electron donor, yielded 6-endo- 
hydroxycineole exclusively. Some activity (< 10%) was also detected when NADPH was 
substituted as the electron donor but, again, only 6-endo-hydroxycineole was detected. Enzyme 
activity was negligible in extracts of succinate-grown cells (Table 1). 

6-Oxocineole oxygenase. When crude cell extracts were incubated with 6-oxocineole and 
NADPH in the oxygen monitor a substrate-stimulated consumption of oxygen occurred. The 
induced enzyme responsible was distinguished from the low level of NADPH-linked 6-endo- 
hydroxycineole dehydrogenase activity by doing spectrophotometric assays at pH 9 ; under these 
conditions the dehydrogenase activity was almost completely suppressed (Table 1). Oxygen 
monitor assays done in the presence of limited amounts of either 6-oxocineole or NADPH 

Table 1. Properties of 6-endo-hydroxycineole dehydrogenase and 6-oxocineole oxygenase in 
extracts of Rhodococcus CI 

(a) 6-endo-Hydroxycineole dehydrogenase 

Substrate 
Substrate specificity 
Electron acceptor 
pH optimum (01 + one) 
pH optimum (one + 01) 
Specific activity (01 + one) 

1,8-Cineole-grown 
Succinate-grown 

1,8-Cineole-grown 
Specific activity (one -+ 01) 

(b) 6-Oxocineole oxygenase 

Substrate 
Substrate specificity* 
pH optimum 
Specific activity 

lY8-Cineole-grown 
Succinate-grown 

6-endo-H ydrox ycineole 
Not known 
NAD+ (NADP+ ?) 
10.5 
7.5 

6-Oxoc i neole 
Absolute? 
9 

0.03-0.04 
0.00 1 

* No significant activity with (+)-camphor, (R>( -)-carvone, (S)-( +)-cawone, cyclohexanone, 1,3-cyclohex- 
anedione, dihydrocarvone, 2-,3- and 4-methylcyclohexanone, fenchone, menthone, pinan-3-one, pulegone or 
verbenone. 
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allowed a crude substrate stoichiometry (0, : 6-oxocineole : NADPH) of 1 : 0.83 : 0.90 to be 
determined. Assays done in anaerobic Thunberg cuvettes as previously described (Donoghue et 
al., 1976) confirmed that NADPH oxidation was linked to oxygen consumption. GLC analysis 
of diethyl ether extracts of reactions with limited 6-oxocineole that had been allowed to run to 
completion at pH 9 and adjusted to pH 1 with 5 M-HCl before extraction showed that the 
6-oxocineole had been converted into a single more polar metabolite (retention time 29 min). 
GLC-MS analysis gave a spectrum - m/e 166 (37%, M - H20), 11 1 (56%), 98 (85%), 82 (37%), 
55 (30%), 43 (100%) - identical with that of the lactone (R)-5,5-dimethyl-4-(3’-oxobutyl)-4,5- 
dihydrofuran-2(3H)-one isolated by MacRae et al. (1979) from culture medium of P. Java 
growing on 1 ,8-cineole. As the route whereby this lactone might arise from either 2-oxocineole 
(MacRae et al., 1979) or 6-oxocineole was not immediately apparent, attempts were made to 
purify 6-oxocineole oxygenase so that the initial oxygenation product could be isolated and 
identified. 

Stability and attempted pur$cation of 6-oxocineole oxygenase 

Crude extract of 1,8-cineole-grown Rhodococcus C1, diluted to 4 mg protein ml-l in 
42 ~ M - K H , P O ~ / N ~ , H P O ,  buffer (pH 7-1), lost all oxygenase activity when maintained at 4 “C 
for 24 h. Reducing agents were not effective as stabilizers but addition of 5 or 10% (v/v) ethanol 
to the buffer resulted in the loss of < 15% of the activity over the same time-period. 
Chromatography of 800mg of crude extract protein on a 2.5 x 14cm DEAE-Sephacel or 
DEAE-cellulose column, developed with a linear gradient (700 ml, 0 . 5  M-KCl in 42 mM- 
phosphate buffer, pH 7.1, containing 5 %, v/v, ethanol) separated the oxygenase from 6-endo- 
hydroxycineole dehydrogenase activities with 2.5 to %fold increase in specific activity and 
2: 40% recovery. All attempts at additional purification, including taking advantage of the short 
time scale allowed by FPLC, led to extremely poor recovery of enzyme units and a decrease in 
specific activity. When 15 mg of partially purified enzyme (DEAE-cellulose or DEAE-sephacel 
stage), concentrated in an Amicon ultrafiltration cell, was incubated in a Warburg with 60 pmol 
6-oxocineole and an excess of NADPH in H3PO4/Na4P2O7 buffer (pH 9), 50 pmol of oxygen 
were consumed. Direct ferric hydroxamate assay for the presence of lactones (Cain, 1961) 
showed them to be absent. However, when the remainder of the reaction mixture was acidified 
with 5 M-HCl, followed by extraction of the product into diethyl ether, and a sample of this again 
tested (after removal of solvent) the positive response indicated the presence of a lactone. GLC 
analysis confirmed that this was the compound also obtained following the extraction of product 
formed by crude cell extract. GLC-MS analysis again gave a spectrum identical with that 
reported for the lactone (R)-5,5-dimethyl-4-(3’-oxobutyl)-4,5-dihydrofuran-2(3H)-one accumu- 
lated by P.flava (MacRae et al., 1979). 

The cleavage of saturated cyclic ketones by micro-organisms is most frequently accomplished 
by biological Baeyer-Villiger oxygenation, followed by enzyme-mediated hydrolysis of the 
lactone thus formed (Trudgill, 1984, 1986). Since the lactone isolated from incubations of crude 
extract or partially purified 6-oxocineole oxygenase with NADPH and 6-oxocineole is a 
substituted 2-oxodihydrofuran (Fig. 1) and cannot be formed by direct oxygen insertion into the 
substrate it appears to be an artifact of the acidification and extraction procedure. 

An investigation of the substrate specificity of the partially purified oxygenase, in which a 
wide range of cyclic and acyclic ketones was used, failed to reveal a single alternative substrate. 
This, unfortunately, excluded the exploitation of substrate analogues as investigative tools. In 
addition, our failure to purify the 6-oxocineole oxygenase to homogeneity necessitated an 
alternative approach to understanding the reaction sequence. This was sought on the working 
assumption that Baeyer-Villiger oxygenation was, nevertheless, the most likely initial step 
(Trudgill, 1984, 1986). 

Studies with 23-diketocamphane I ,2-monooxygenase from P.  putida 

This Baeyer-Villiger monooxygenase has a broad ketone substrate specificity and initial trials 
with the partially purified enzyme from (+)-camphor-grown P .  putida ATCC 17453 showed 
that oxygen consumption was stimulated by 6-oxocineole in the presence of NADH, the electron 



1964 D.  R .  WILLIAMS, P .  W .  TRUDGILL A N D  D .  G .  TAYLOR 

(ii) 

Spontaneous 

0 0 

(iii) H20 @ 

Spontaneous Spontaneous 

Fig. 4. Reactions catalysed by 2,s-diketocamphane 1,2-monooxygenase from P. puridu with (i) 
(+)-camphor and (ii) 2,5-diketocamphane as substrates. The proposed oxygenation reaction with 
6-oxocineole as substrate (iii) is followed by the spontaneous cleavage of the oxygenation product 
(compound D) 1,6,6-trimethyl-2,7-dioxa(3,2,2)bicyclononan-3-one and the hemiacetal (compound E) 
2,6,6-trimethyl-S-acetyltetrahydropyran-2-01. 

donor for this enzyme. Reactions in which 0.65 units of enzyme were incubated with 10 ymol6- 
oxocineole and 15 ymol NADH in 42 mM-KH,PO,/Na,HPO, buffer (pH 7.1) were used for 
product accumulation and analysis. Direct hydroxamate assay for lactones showed them to be 
absent. However, acidification of the reaction mixture and diethyl ether extraction again 
generated a lactone which was identical with that formed with the crude and partially purified 
oxygenating system from 1,8-cineole-grown Rhodococcus C 1. 

This observation was of particular interest since ( + )-camphor-grown P .  putida does not 
produce a detectable lactone hydrolase (Taylor & Trudgill, 1986). When either crude cell extract 
or the purified enzyme complex is incubated with (+)-camphor as ketonic substrate the stable 
1,2-1actone accumulates. In contrast 2,5-diketocamphane yields an unstable lactone that 
spontaneously cleaves without enzymic assistance (Taylor & Trudgill, 1986). The consequences 
of this, in terms of proton balance during the reaction, can be clearly observed in a pH stat. With 
(+)-camphor as substrate the proton consumed in oxygenation is not regenerated upon lactone 
cleavage and proton consumption can be followed. In contrast, oxygenation of 2,5- 
diketocamphane is followed by spontaneous lactone cleavage, regeneration of a proton, and 
consequent maintenance of neutrality. When 6-oxocineole was used as substrate the 
preservation of near neutrality observed was also indicative of proton regeneration subsequent 
to oxygenation (Figs 4 and 5) .  

Chemical Baeyer- Villiger oxygenation of 6-oxocineole 

6-Oxocineole (1 5 mg) was incubated with 1 10 mg magnesium monoperoxyphthalate in 5 ml 
dimethylformamide for 16 h at 20 "C followed by addition of 5 ml of water and acidification. 
The product, extracted into diethyl ether, co-chromatographed with the detected reaction 
product of the biological Baeyer-Villiger oxygenation of 6-oxocineole and with the authentic 
lactone 5,5-dimethyl-4-( 3'-oxobutyl)-4,5-dihydrofuran-2( 3H)-one formed from a-terpineol as 
described in Methods. 

DISCUSSION 

Other workers have reported that hydroxylation of 1,8-cineole either in preparation for ring 
cleavage (MacRae et al., 1979; Carman et al., 1986) or in non-assimilatory fermentation 
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Fig. 5. A comparison of proton balance in the oxygenation of (+)-camphor, 2,5-diketocamphane and 
6-oxocineole by partially purified 2,5-diketocamphane 1 ,2-monooxygenase from P. putidu ATCC 17453 
by pH-stat assay. The stirred reaction vessel contained, in 1 1 ml of distilled water (adjusted to pH 6.7 by 
the addition of a minimum amount of 42 mM-KH2P04/Na2HP04 buffer), 10 pmol NADH and 0.5 
units of oxygenase. The reaction pH was maintained at 6.7 by the controlled addition of 2 m-HCl .  
After the establishment of endogenous rates (8 min) substrates (10 pmol) were added and proton 
consumption measured by monitoring the controlled 2 m-HC1 additions required to maintain the 
preset pH. I, camphor; 0,  2,5-diketocamphane; 0, 6-oxocineole. 
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Fig. 6. Proposed ring cleavage reactions in the metabolism of 1,8-cineole by Rhodococcus C1. 
Compounds are (A) 1,8-cineole; (B’) 6-endo-hydroxycineole ; (C’) 6-oxocineole; (D) 1,6,6-trimethyl-2,7- 
dioxabicyclo(3,2,2)nonan-3-one ; (E) 2,6,6-trimethy1-5-acetyltetrahydropyran-2-01; (F) 34 1 -hydroxy-1- 
methylethyl)-6-oxoheptanoic acid ; (G) 5,5-dimethyl-4-(3’-oxobutyl)-4,5-dihydrofuran-2(3H)-one. 

(Nishimura et al., 1982) involved attack exclusively at the C-2 and C-3 positions. Indeed, in our 
preliminary report (Taylor & Trudgill, 1988) which was published before we obtained 
information on the optical rotation of the accumulated hydroxycineole and oxocineole we 
assumed, on the basis of ‘H-NMR and mass spectral results, that this organism also attacked the 
terpene at the 2 position. It is of interest, but for no logical reason less likely, that Rhodococcus C1 
initiates attack on 1,8-cineole at carbon-6. The proposed sequence of steps involved in the 
cleavage of 1,8-cineole is shown in Fig. 6. 
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The reaction sequence has both commonplace and novel features. Initial hydroxylation of the 
terpene, although not demonstrated in cell-free systems, was clearly supported by metabolite 
accumulation studies and the induced dehydrogenation of 6-endo-hydroxycineole has been 
established. Our failure to detect this initial step is puzzling but not unique since a number of 
workers have been unable to demonstrate oxygenation steps in the initial activation of other 
terpene hydrocarbons (Griffiths et al., 1987a; Trudgill, 1984, 1986). The majority of identified 
biological Baeyer-Villiger monooxygenases are stable and relatively easy to purify. Unfortuna- 
tely, the instability and apparent absolute specificity of the 6-oxocineole oxygenase made 
investigation of the detailed sequence of ring cleavage steps difficult. The observation that 2,5- 
diketocamphane 1,2-rnonooxygenase from P. putida [a biological Baeyer-Villiger oxygenase 
that inserts a single atom of oxygen into (+)-camphor and related compounds between the 
ketonic carbon and the bridgehead] formed the same detected product provided strong 
circumstantial evidence that the oxygenase from strain C1 catalyses an identical reaction and (i) 
is a monooxygenase, (ii) catalyses a biological Baeyer-Villiger reaction and (iii) inserts an 
oxygen atom between the ketonic carbon and the adjacent carbon carrying a methyl group (Fig. 
6). Other examples of alicyclic ketone metabolism in which biological Baeyer-Villiger 
oxygenation leads to the formation of an unstable lactone without a consequent requirement for 
a lactone hydrolase include 2,5-diketocamphane oxygenation, already mentioned, in which the 
presence of the second keto group initiates ring cleavage through loss of a proton from an 
adjacent carbon atom (Taylor & Trudgill, 1986) and, more directly relevant to 1,8-cineole 
oxidation, hemiacetal formation by oxygenation of 2-hydroxycyclohexanone by an Acinetobacter 
sp. (Davey & Trudgill, 1977). Spontaneous cleavage of the ’lactone 1,6,6-trimethyl-2,7- 
dioxabicyclo(3,2,2)nonan-3-one, which we propose as the immediate product of 6-oxocineole 
oxygenation, is a property of this very highly strained molecule and the spontaneous cleavage of 
the hemiacetal thus formed is a direct parallel to the spontaneous cleavage of other hemiacetals 
formed as intermediates in catabolic pathways (Bernhardt et al., 1973; Davey & Trudgill, 1977), 
and yields the acyclic compound 34 1 -hydroxy- 1 -methylethyl)-6-oxoheptanoic acid. One of the 
characteristics of 4-hydroxy acids is the ease with which they form lactones in acid solution and 
dry solvents. Ring closure of the acid would yield the detected product of 2- or 6-oxocineole 
oxygenation : the respective isomer of 5,5-dimethyl-4-(3’-oxobutyl)-4,5-dihydrofuran-2(3H)-one. 

Indeed, precisely this spontaneous ring closure was exploited by Wallach (1895) in his 
investigation into the structure of a-terpineol. 

MacRae et al. (1979) established the absolute configuration of the lactone and other 
intermediates formed by P.Java and suggested that they were all derived by microbial oxidation 
at the same prochiral carbon of 1,8-cineole. Although we have not established the absolute 
configuration of 5,5-dimethyl-4-(3’-oxobutyl)-4,5-dihydrofuran-2(3H)-one formed by Rhodococ- 
cus C1 we have provided a logical explanation for its production. In principle, this sequence of 
ring cleavage reactions is also applicable to the other, less widely distributed and even more 
strained, natural isomer 1,4-cineole, with the parallel formation of the acyclic 3-hydroxy-( 1 - 
methylethyl)-6-oxoheptanoic acid. In this context the recently reported formation of the 2-endo- 
hydroxy and 2-0x0 derivatives as products of 1,4-cineole fermentation by a variety of bacteria 
and fungi grown in a rich medium is of interest (Rosazza et al., 1987). 

The further metabolism of the acyclic catabolic intermediate of 1,8-cineole metabolism, 34 1- 
hydroxy-1 -methylethyl)-6-oxohexanoic acid is currently under investigation. A mechanistically 
acceptable route for its degradation can be formulated in which levulinic acid and acetone are 
intermediates. In this context the ability of Rhodococcus C1 to grow with acetone as sole carbon 
source is of interest since the ability to utilize the compound is not universally distributed (Taylor 
et al., 1980). 

We thank Dr Muriel Rhodes-Roberts and Dr M. Goodfellow for carrying out the identification of Rhodococcus 

sp. strain C1, Dr D. J .  Hopper for checking the manuscript, Dr P. C. Harries for helpful advice and the Science 
and Engineering Research Council for a postgraduate studentship (D. R. W .). 
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