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Abstract

Pancreatic cancer is currently one of the most lethal diseases. In recent years, increasing evidence has shown that

reprogrammed metabolism may play a critical role in the carcinogenesis, progression, treatment and prognosis of

pancreatic cancer. Affected by internal or external factors, pancreatic cancer cells adopt extensively distinct

metabolic processes to meet their demand for growth. Rewired glucose, amino acid and lipid metabolism and

metabolic crosstalk within the tumor microenvironment contribute to unlimited pancreatic tumor progression. In

addition, the metabolic reprogramming involved in pancreatic cancer resistance is also closely related to

chemotherapy, radiotherapy and immunotherapy, and results in a poor prognosis. Reflective of the key role of

metabolism, the number of preclinical and clinical trials about metabolism-targeted therapies for pancreatic cancer

is increasing. The poor prognosis of pancreatic cancer patients might be largely improved after employing

therapies that regulate metabolism. Thus, investigations of metabolism not only benefit the understanding of

carcinogenesis and cancer progression but also provide new insights for treatments against pancreatic cancer.
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Background
Pancreatic cancer is one of the most aggressive diseases;

it has a poor prognosis, and its five-year survival rate re-

mains lower than 9% despite decades of continuous ef-

forts. According to recent data, pancreatic cancer is the

fourth and sixth leading cause of cancer-related mortal-

ity in the U.S. and China, respectively [1, 2]. Further-

more, it is predicted to be the second leading cause of

cancer-related deaths in the U.S. in 2030 [3]. Surgery re-

mains the only way to cure pancreatic cancer. However,

because most patients are diagnosed with a nonresect-

able disease due to the lack of symptoms in the early

stage, only up to 20% of patients have the opportunity to

receive initial surgical resection [4]. Even for patients

who undergo a successful operation, over 80% of them

still eventually develop local recurrence or metastases

[5]. Therefore, in addition to surgery, comprehensive

treatment following multidisciplinary management

should be given more attention. Indeed, there remain

many challenging problems. Chemotherapy is still rec-

ommended as the primary treatment for patients who

have nonresectable pancreatic cancer and patients who

undergo resection. Depending on different patient sta-

tuses, there are several distinct recommended chemo-

therapy regimens, which mainly include gemcitabine,

FOLFIRINOX, and albumin-bound paclitaxel. However,

the rapid and common development of chemoresistance

usually leads to poor prognosis [6]. Although radiation is

another relatively well-established anticancer method, it

is currently regarded as a palliative way to relieve pain

caused by advanced pancreatic cancer [7]. In addition to
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chemotherapy and radiotherapy, immunotherapy and

targeted therapy are emerging as remarkable anticancer

strategies [8–10]. Nevertheless, many successful im-

munotherapies against other cancer types are not as ef-

fective in pancreatic cancer treatment [11, 12], and most

clinical trials focusing on targeted therapy fail to show

satisfying outcomes [13]. Therefore, breakthroughs in

pancreatic cancer treatment are needed.

In pancreatic cancer cells, several genetic alterations

are considered to be the basis for pancreatic cancer pro-

gression and its dismal prognosis; these alterations in-

clude oncogenic KRAS mutations, which occur in over

90% of cases, and inactivating mutations in suppressor

genes such as TP53, SMAD4, and CDKN2A [14]. More-

over, the aforementioned dilemma in comprehensive

treatments is also largely determined by other biological

features, such as extensive dense desmoplasia, hypoper-

fusion and an immunosuppressive microenvironment

[15]. Additionally, many recent reports have indicated

that distinct cancer metabolism is important for restrict-

ing the therapeutic effect.

Reprogrammed cellular energy metabolism, one of the

emerging hallmarks of cancer [16], has been refocused

over the past decade [17]. Cancer cells rewire many

metabolic pathways to facilitate their survival, unlimited

cell growth, and division. In addition, they also rely on

extensive metabolic interactions with other nonmalig-

nant cells and with the extracellular matrix (ECM)

within the tumor microenvironment [18, 19]. Beyond

the tissue level, the local tumor can affect host metabol-

ism via cachexia, impairing antitumor immunity [20].

Interestingly, several recent studies also demonstrated

that metabolic alterations can promote pancreatic

tumorigenesis and metastasis through epigenetic regula-

tion [21, 22], emphasizing the vital role of metabolism in

pancreatic cancer development. Furthermore, many

studies clearly showed that pancreatic tumor metabolism

is closely associated with chemoresistance [23], radiore-

sistance [24] and immunosuppression [25]. Recently,

pancreatic cancer was also stratified into different meta-

bolic subgroups (quiescent, glycolytic, cholesterogenic

and mixed), which could predict different prognoses and

responses to therapy [26, 27]. Therefore, the metabolic

features of pancreatic cancer provide attractive thera-

peutic opportunities for novel and personalized treat-

ments [27, 28].

Metabolic features of pancreatic cancer
Although reprogrammed metabolism is a general char-

acteristic of cancer, different cancers show distinct meta-

bolic addictions, which are mainly determined by their

specific genetic mutations, tissue of origin or tumor

microenvironment [29, 30]. Even in the same pancreatic

cancer patient, the primary tumor and metastatic lesions

exhibit relatively different metabolic gene expression

[31]. Therefore, metabolic alteration of pancreatic cancer

is a collective scenario mediated by multiple factors. In

addition to the genomic characterization of pancreatic

cancer cells [32], there is a complex and harsh micro-

environment within the pancreatic tumor. The dense

stroma results in elevated solid stress and interstitial

fluid pressure that compress the vasculature, leading to

hypoperfusion [33]. However, cancer cells exhibit extra-

ordinary growth advantages in relatively hypoxic and

nutrient-poor niches. They survive and thrive mainly in

three ways: (1) Reprogramming intracellular energy me-

tabolism of nutrients, including glucose, amino acids,

and lipids. (2) Improving nutrient acquisition by scaven-

ging and recycling. (3) Conducting metabolic crosstalk

with other components within the microenvironment

[34].

Intracellular metabolism

In the 1920s, Otto Warburg’s pioneering work demon-

strated that tumor cells consume more glucose than

normal cells. They subsequently turn most glucose-

derived carbon into lactate even in the presence of suffi-

cient oxygen. This process is named aerobic glycolysis or

the Warburg effect [35]. It indeed provides some tan-

gible advantages to cancer cells. First, compared with

oxidative phosphorylation (OXPHOS), ample glycolytic

flux achieves a higher rate of ATP production [36]. Sec-

ond, it provides tumor cells with plenty of intermediates

required for rapid and vast biosynthesis with a proper

ATP/ADP ratio. Third, it plays an important role in

maintaining redox balance and modulating chromatin

state. Fourth, it creates a low immunity microenviron-

ment and enhances cancer cell invasion [37]. Since War-

burg’s initial publications, many studies have been

conducted to uncover the metabolism of tumors. Can-

cers with different tissue origins exhibit distinct meta-

bolic changes, even driven by the same oncogenes [38].

For pancreatic cancer cells, genetic mutations and stro-

mal cues are thought to drive heterogeneous metabolic

phenotypes [39–43], which mainly include the Warburg,

reverse Warburg, lipid-dependence, and glutaminolysis

phenotypes [44]. Therefore, pancreatic cancer cells ex-

hibit complex and heterogeneous reprogramming of glu-

cose, amino acid and lipid metabolism (Fig. 1).

Glucose

Glucose metabolism is relatively well documented in the

rewired metabolic network. In the process of elevated

aerobic glycolysis in pancreatic cancer cells, the expres-

sion of glucose transporter 1 (GLUT1) and its transloca-

tion to the cancer cell membrane are promoted,

increasing glucose uptake [39, 45]. In addition to absorp-

tion, pancreatic cancer also shows upregulated
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expression of many genes encoding rate-limiting glyco-

lytic enzymes, such as hexokinase 1/2, phosphofructoki-

nase 1 and lactate dehydrogenase A (LDHA, the subunit

of LDH), enhancing the Warburg effect and glycolytic

flux to lactate [39]. In contrast to glycolysis, phosphory-

lated pyruvate dehydrogenase kinase 1 (PDHK1) inhibits

the pyruvate dehydrogenase (PDH) complex, suppress-

ing mitochondrial OXPHOS in pancreatic cancer cells

[46]. To address the excess of acid products, such as lac-

tate, from aerobic glycolysis, pancreatic cancer cells ro-

bustly express monocarboxylate transporter 1 (MCT1),

MCT4 and CD147 on the plasma membrane to acceler-

ate lactate flux [47–49]. The nonoxidative pentose phos-

phate pathway (PPP) originating from glycolysis offers

materials for anabolism, including DNA synthesis. In

this enhanced metabolic pathway, pancreatic cancer cells

display increased ribulose 5-phosphate isomerase (RPIA)

and ribulose-5-phosphate-3-epimerase (RPE) expression

[50, 51]. The hexosamine biosynthesis pathway (HBP),

another branch of glucose metabolism, provides the sub-

strate for protein and lipid glycosylation, which is con-

sidered to be critical for tumor progression [52]. In

addition, the rate-limiting enzyme of HBP, glutamine:

fructose-6-phosphate amidotransferase-1 (GFPT1), is

upregulated in pancreatic cancer cells [39]. In addition

to those enhanced glycolytic enzymes, pancreatic cancer

cells also overexpress more Nampt than adjacent normal

tissues. Nampt is an essential enzyme that recycles

Fig. 1 The landscape of metabolic pathways in pancreatic cancer cells. The metabolism of glucose, amino acids and lipids is largely

reprogrammed, which is mainly due to changes in key enzymes and transporters. Furthermore, some of them are closely regulated by oncogenic

KRAS. Additionally, micropinocytosis and autophagy are also promoted by mutant KRAS, but they are controlled by other regulatory mechanisms

within pancreatic cancer cells as well. Long solid arrows imply shifts or bioconversions. The dotted arrow means positive regulation, whereas the

blunt end means negative regulation. Red arrowheads following the enzymes, transporters, and processes represent the effects induced by

mutant KRAS: upward means upregulation; downward means downregulation. The black symbols represent the changes induced by other or

unknown reasons. In addition, those following tildes indicate that they are dually regulated under different conditions. ACLY, ATP citrate lyase;

ASNS, asparagine synthetase; CARM1, coactivator-associated arginine methyltransferase 1; CS, citrate synthetase; F-6P, fructose 6-phosphate; F-

1,6BP, fructose 1,6-bisphosphate; F-2,6BP, fructose 2,6-bisphosphate; GFPT1, glutamine:fructose 6-phosphate amidotransferase 1; G-6P, glucose 6-

phosphate; HK1/2, hexokinase 1/2; HMGCR, 3-hydroxy-3-methylglutaryl coenzyme A reductase; HMG-CoA, 3-hydroxy-3-methylglutaryl coenzyme

A; ME1, malic enzyme; MUFA, monounsaturated fatty acid; PFK1, phosphofructokinase 1; PRODH1, proline oxidase; PUFA, polyunsaturated fatty

acid; RPE, ribulose-5-phosphate epimerase; SCD1, stearoyl-CoA desaturase; SFA, saturated fatty acid; TCA, tricarboxylic acid
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nicotinamide adenine dinucleotide (NAD), a vital cofac-

tor in many redox reactions, to sustain the high level of

glycolytic flux within cancer cells [53]

Such distinct metabolic features are regulated by vari-

ous factors. KRAS, a kind of small GTPase, is persist-

ently activated upon mutation in pancreatic cancer and

continuously stimulates downstream effectors (e.g., PI3K

and RAF) [54]. As a result, the expression of GLUT1

and the key enzymes in glucose metabolism mentioned

before are promoted (Fig. 1). Regarding the underlying

mechanisms, the KRAS-driven MAPK pathway and tran-

scription factor MYC might be prominent mediators,

but the refined regulation of the respective enzymes re-

mains to be further studied [39, 54]. In addition to the

regulation of glycolysis, mutant KRAS signaling stimu-

lates mitochondrial translocation of phosphoglycerate

kinase 1 (PGK1), leading to phosphorylated PDHK1 and

restricted OXPHOS in pancreatic cancer cells [46]. Glu-

cose deprivation also promotes KRAS mutations in turn,

suggesting the complex interaction between metabolism

and the oncogene [55]. Furthermore, some KRAS-driven

overexpressed enzymes, such as RPIA, are still preserved

in some pancreatic cancer cell lines with KRAS ablation,

sustaining nonoxidative PPP and cancer cell survival in a

KRAS-independent manner [50]. Therefore, the relation-

ship between KRAS and reprogrammed metabolism

needs further study. Additionally, mutant TP53 is a key

player in enhancing the Warburg effect and reducing

mitochondrial activity [45, 56]. In pancreatic cancer

cells, TP53 can increase glucose uptake by increasing

paraoxonase 2 expression and impairing the expression

of TP53-induced glycolysis and apoptosis regulator

(TIGAR), which degrades fructose-2,6-bisphosphate, an

effective enhancer of glycolysis, to fructose-6-phosphate

[40, 57, 58]. Moreover, mutant TP53 in pancreatic can-

cer cells also maintains the cytoplasmic stabilization of

glyceraldehyde-3-phosphate dehydrogenase, a key en-

zyme in glycolysis, to support the Warburg effect and

confer sensitivity to glycolysis inhibitors (2-deoxyglu-

cose, also known as 2-DG) [59]. However, pancreatic

cancer cells with normal TP53 status are resistant to

LDHA inhibition due to decreased dependence on gly-

colysis [57].In addition to KRAS and TP53 signaling in

pancreatic cancer cells, LDHA could also be comprehen-

sively regulated by deacetylation modification and other

oncogenic transcription factors, such as Forkhead box

protein M1 (FOXM1) [60, 61]. Additionally, there are

many other mechanisms regulating glucose metabolism

in pancreatic cancer cells. For example, hypoxia-

inducible factor-1 (HIF-1) mainly induced by hypoxia

contributes to strengthened glycolysis and the upregu-

lated expression of HBP-related enzyme (GFPT2, the

isoform of GFPT1) [62]. HIF-1 also inhibits PDH, lead-

ing to compromised mitochondrial oxidation [63].

Pyruvate kinase muscle isozyme 2 (PKM2) expression in

pancreatic cancer cells is largely determined by nutrient

conditions, and PKM2 is overexpressed under normal

conditions. However, low glucose levels decrease PKM2

expression, which maintains cell survival by promoting

autophagy and biomacromolecule accumulation and re-

ducing oxidative stress [64].

Amino acids

Amino acid metabolism is also widely rewired in pancre-

atic cancer cells. Several amino acid transporters are

highly expressed in pancreatic cancer cells to satisfy the

increased need [65, 66]. Among various amino acids,

glutamine (Gln) metabolism is critical for cancer cell

survival as the main source of nitrogen and carbon, con-

tributing to macromolecular synthesis and redox balance

[67, 68]. Initially, Gln entering mitochondria is deamin-

ated to glutamate (Glu) by glutaminase 1 (GLS1). In

many cancer cell lines, aminotransferase or glutamate

dehydrogenase (GDH) usually catalyzes the conversion

from Gln-derived Glu to α-ketoglutarate (α-KG), which

depends on different situations [67]. However, in pan-

creatic cancer cells, GDH is repressed, but the expres-

sion of cytoplasmic aspartate transaminase (GOT1) is

promoted [69]. In this process, mitochondrial aspartate

transaminase (GOT2) converts Gln-derived Glu and ox-

aloacetate (OAA) to aspartate (Asp) and α-KG in mito-

chondria. After that, Asp enters the cytoplasm and is

turned into OAA by upregulated GOT1. Then, cytoplas-

mic OAA is converted to malate through malate de-

hydrogenase 1 (MDH1) and subsequently oxidized to

pyruvate by malic enzyme. In addition, sufficient redu-

cing power is generated to resist reactive oxygen species

(ROS) and achieve redox control in pancreatic cancer

cells [69]. Consistently, pancreatic cancer cells upregu-

late the expression of GOT1 in the acidic microenviron-

ment to deal with increased ROS generation and

support cancer cell survival [70].

This pathway in pancreatic cancer cells is primarily

dominated by mutant KRAS, which results in GDH re-

pression and GOT1 promotion. Therefore, it is named

KRAS-driven noncanonical Gln metabolism [69]. Add-

itionally, the regulation of some other processes is also

involved in this process. For example, arginine methyla-

tion of MDH1 induced by coactivator-associated argin-

ine methyltransferase 1 (CARM1) suppresses tumor

growth, but KRAS activation and oxidative stress relieve

such inhibition [71]. Furthermore, a recent report re-

vealed that pancreatic cancer cells have compensatory

metabolic networks of Gln, exhibiting recovered Gln-

derived metabolic intermediates and tumor growth after

long-term GLS1 inhibition [72]. In particular, Gln me-

tabolism is vital for the viability and proliferation of hyp-

oxic pancreatic cancer cells, which is mainly mediated
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by upregulated GLS2, the isoform of GLS1 [62]. Thus,

the shift of Gln metabolism in pancreatic cancer is

worth further study.

In addition to Gln, other amino acids are also key

players in pancreatic cancer progression. Pancreatic can-

cer cells show overexpressed proline (Pro) oxidase

(PRODH1), which contributes to Pro-derived Glu and

promotes the survival and proliferation of pancreatic

cancer cells, especially under glucose- or Gln-limited

conditions [19]. Additionally, many pancreatic tumors

from clinical cases display negative or low asparagine

(Asn) synthetase expression, indicating the dependence

of exogenous Asn. Therefore, plasma Asn depletion me-

diated by erythrocyte-entrapped L-asparaginase (ERY-

ASP) might be a novel therapeutic strategy [73]. More-

over, increased circulating and intracellular branched-

chain amino acids are also related to pancreatic cancer

progression, which might be the result of enhanced tis-

sue protein breakdown and decreased tumor use medi-

ated by mutant TP53 [38, 56, 74].

Pancreatic cancer also has an extraordinary amino acid

degradation ability, possessing urea cycle pathways com-

parable to those in the liver, which are critical for cancer

as well. Obesity or constitutively active AKT, a kinase

known to accelerate cancer growth, can induce high ex-

pression of arginase 2 that catabolizes arginine into urea

and ornithine within the mitochondria of pancreatic

cancer cells [75].

Lipids

Lipid metabolism is also essential for cancer progression

[76]. It not only provides ample building blocks for rapid

membrane formation but also produces signaling mole-

cules and substrates for the posttranslational modifica-

tion of proteins. Lipids can be acquired via biosynthesis

and diet. In contrast to normal cells relying on dietary

fat, approximately 93% of triacylglycerol fatty acids in

tumor cells are de novo synthesized from mitochondrial

citrate [77], which is the intermediate between mito-

chondria and cytosolic acetyl coenzyme A (CoA) [78]. In

pancreatic cancer, many enzymes participating in de

novo fatty acids and cholesterol synthesis are obviously

upregulated, including citrate synthase (CS), ATP citrate

lyase (ACLY), fatty acid synthase (FASN), stearoyl-CoA

desaturase (SCD1) and 3-hydroxy-3-methylglutaryl co-

enzyme A reductase (HMGCR) [78, 79] (Fig. 1). Add-

itionally, hypoxia or oncogenic KRAS could also induce

the uptake of monounsaturated fatty acids from extracel-

lular lysophospholipids [80]. In de novo cholesterol syn-

thesis, in addition to the elevated canonical pathway,

overexpressed aldo-keto reductase 1B10 (AKR1B10)

could metabolize farnesal and geranylgeranyl in pancre-

atic cancer, providing intermediates for cholesterol syn-

thesis [81]. Additionally, those intermediates are also

significant for protein prenylation, which activates KRAS

and its downstream carcinogenic signaling pathways [81,

82]. Cholesterol acquisition also highly relies on en-

hanced extracellular uptake in pancreatic cancer cells.

Compared with the modestly increased cholesterol syn-

thesis pathway, overactive low-density lipoprotein recep-

tor (LDLR)-mediated uptake of cholesterol-rich

lipoproteins is predominant in murine pancreatic cancer

cells [79]. After that, excessive free cholesterol is stored

as cholesteryl ester within pancreatic cancer cells after

esterification, which is mediated by highly expressed

acyl-CoA cholesterol acyl-transferase-1 (ACAT-1) [83].

Among different fatty acids, saturated and monoun-

saturated fatty acids are considered to promote the

growth of pancreatic cancer cells [84]. Polyunsaturated

fatty acids, mainly containing the ω3 and ω6 families,

dually affect pancreatic cancer. ω3 fatty acids inhibit

cancer cell proliferation via reducing AKT phosphoryl-

ation, but ω6 fatty acids increase AKT phosphorylation

[85]. However, a transcriptomics and metabolomics

study revealed that lipase and a panel of fatty acids are

significantly decreased in pancreatic tumors, and two

saturated fatty acids, palmitate, and stearate, showed an

obvious ability to inhibit the proliferation of pancreatic

cancer cells [86]. Therefore, the role of fatty acids in

pancreatic cancer is complicated and still not very clear.

Cholesterol also participates in pancreatic cancer pro-

gression. Statins, inhibitors of cholesterol de novo syn-

thesis, contribute to improved survival in pancreatic

cancer patients in some clinical studies, but the under-

lying mechanism is still under debate [87]. However, a

finished phase II clinical trial combining simvastatin

with gemcitabine in advanced pancreatic cancer treat-

ment failed to show clinical benefit (NCT00944463)

[88]. Nevertheless, several clinical trials combining sta-

tins with other agents in pancreatic cancer treatments

are still ongoing (NCT03889795) (NCT03889795). In

contrast to the positive role of cholesterol in pancreatic

cancer progression, high-level free cholesterol with

ACAT-1 inhibition results in severe endoplasmic

reticulum (ER) stress and cancer cell apoptosis [83].

Improving nutrient acquisition by scavenging and

recycling

In addition to reprogramming the metabolism of glu-

cose, amino acids and lipids within cells, pancreatic can-

cer cells have multiple other mechanisms by which they

acquire enough fuels for survival and growth.

Macropinocytosis is a process located in the cell mem-

brane that represents bulk extracellular fluid uptake

through large endocytic vacuoles, which is crucial for

maintaining the amino acid supply of pancreatic cancer

cells after subsequent intracellular digestion and degen-

eration [89, 90]. Oncogenic KRAS plays a key role in
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promoting macropinocytosis with the help of αvβ3 and

galectin-3 on the surface of tumor cells. Moreover, the

mutant KRAS/galectin-3/αvβ3 complex also maintains

the redox balance of pancreatic cancer cells [91, 92]. Au-

tophagy is another critical cellular process that degrades

cellular macromolecules and organelles, affording the re-

cycling of intracellular bioenergetic components. There-

fore, it plays a key role in maintaining energy

homeostasis and metabolic fuel sources in the tumor

[93]. Furthermore, autophagy also enables pancreatic

cancer progression via controlling ROS production and

sustaining OXPHOS [94]. In turn, elevated ROS pro-

motes autophagy in pancreatic cancer cells [94]. This

process is also under the regulation of KRAS. Surpris-

ingly, recent significant studies suggested that the inhib-

ition of KRAS and/or downstream RAF-MEK-ERK

signaling pathway could obviously upregulate autophagic

flux, which might be the metabolic adaption of compro-

mised glycolysis and mitochondrial activity. Consistent

with these findings, combining MEK and autophagy in-

hibition showed exciting results in both preclinical and

clinical studies [95, 96]. TP53 also participates in the

regulation of autophagy in pancreatic cancer, but the

mechanism is unclear and merits further study [97, 98].

Both macropinocytosis and autophagy undergo deg-

radation in lysosomes to regenerate nutrients. In this

process, SLC38A9, an arginine-regulated transporter,

facilitates the release of amino acids from lysosomes

and activates mechanistic target of rapamycin com-

plex 1 (mTORC1), both of which support pancreatic

tumor growth [99]. mTORC1 is a homodimer com-

posed of four mTOR units and a regulatory-

associated protein. It is mainly activated by high

levels of intracellular amino acids and growth factor

signaling and phosphorylates multiple downstream

targets and regulates metabolism and tumor progres-

sion [100]. Under nutrient-sufficient conditions, acti-

vated mTORC1 suppresses autophagy and inhibits the

utilization of extracellular proteins through macropi-

nocytosis [101–103]. However, under nutrient-poor

circumstances, inactive mTORC1 contributes to the

increase in autophagy and macropinocytosis [102–

104] to sustain pancreatic tumor growth.

There are several other regulatory relationships in-

volved. For example, MiT/TFE proteins promote the ex-

pression of autophagy-lysosome genes with the help of

importin 8, regardless of the inhibition from active

mTORC1 [105]. Recently, a study suggested that

deprivation of amino acids could also induce protein

scavenging independently of mTORC1 and that mTOR

inhibition could restrict protein synthesis and preserve

the intracellular amino acid pool, sustaining the growth

of murine pancreatic tumor cells under amino acid

deprivation [106].

Metabolic crosstalk within the microenvironment

The pancreatic cancer microenvironment is highly het-

erogeneous. In addition to cancer cells, ECM and stro-

mal cells are also present. The interest in their

interactions in metabolism has been increasing recently

[107, 108] (Fig. 2).

Pancreatic cancer cells are surrounded by tight desmo-

plasia composed of a collagen meshwork, resulting in

hypoxic and nutrient-poor conditions, especially in the

tumor core. This collagen provides Pro to fuel cancer

cells [19]. Additionally, irregular shear stress caused by

dense desmoplasia leads to PI3K/AKT signaling upregu-

lation and ROS production, both of which can enhance

glycolysis in cancer cells [109]. Furthermore, there are

massive amounts of lactate in the tumor, which is dis-

tinctly treated by different pancreatic cancer cells under

normoxia and hypoxia. Connexin-43 channels, a kind of

gap junction, are important for transporting excess lac-

tate from glycolytic pancreatic cancer cells in the tumor

core to the periphery, supplying substrates for OXPHOS

in better-perfused normoxic cancer cells and producing

a suitable chemical milieu for pancreatic tumor growth

[110]. Additionally, lactate within the microenvironment

can also be sensed by GPR81, a Gi-coupled receptor on

the pancreatic cancer membrane, promoting the expres-

sion of MCTs and CD147. In addition, activated GPR81

upregulates peroxisome proliferator-activated receptor

gamma coactivator-1α (PGC-1α) and increases mito-

chondrial biogenesis and respiration. Therefore, both

lactate absorption and use are improved, which is espe-

cially significant for the growth of pancreatic cancer cells

in low glucose conditions [111]. A recent study also re-

vealed that circulating lactate contributes to the TCA

cycle of pancreatic tumors as a primary substrate during

the fasted state [112]. Additionally, lactate produced by

glycolytic cancer cells has some nonmetabolic roles in

tumors, such as improving invasiveness, decreasing anti-

tumor immunity and facilitating angiogenesis [37, 113].

Cancer-associated fibroblasts (CAFs), the major type

of stromal cells, can be stimulated by neighboring cancer

cells, to exhibit aerobic glycolysis and secrete high-

energy metabolites, such as pyruvate and lactate. Adja-

cent cancer cells, particularly in normoxic regions, up-

take and use the metabolites in OXPHOS. Such a

pattern between CAFs and cancer cells is named the re-

verse Warburg effect or two-compartment metabolic

coupling model, which has attracted considerable atten-

tion [44, 114, 115]. Therefore, more recent studies have

refocused the effects of OXPHOS in pancreatic cancer

cells [116, 117]. CAFs also enrich the microenvironment

by releasing exosomes, which contain TCA cycle inter-

mediates, amino acids, and lipids. They are key to pan-

creatic tumor growth, especially under nutrient-deprived

conditions. However, pancreatic cancer cells display
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suppressed mitochondrial OXPHOS and increased gly-

colysis upon absorbing these exosomes [118]. The ma-

jority of CAFs are derived from pancreatic stellate cells

(PSCs), which are activated during carcinogenesis. They

can secrete autophagy-derived alanine to support pan-

creatic cancer cell metabolism, especially after being

stimulated by cancer cells [119]. In addition to direct

metabolite supply, activated PSCs can be particularly

stimulated by oncogenic KRAS in adjacent pancreatic

cancer cells, reciprocally enhancing downstream path-

ways of oncogenic KRAS signaling in cancer cells, in-

cluding metabolic regulation [120]. Furthermore,

enhanced glycolytic metabolism in pancreatic cancer

cells can also be induced by paracrine hepatocyte growth

factor (HGF) from PSCs [121]. Another recent study in-

dicated that PSCs promote pancreatic cancer progres-

sion in a particular manner depending on PKM2 in

either cancer cells or PSCs, but the mechanism is un-

clear and remains to be further studied [122]. In

addition, saturated and monounsaturated fatty acids

seem to be opposite players in fibrosis and activation of

PSCs [123], but their particular roles in activated PSCs

of pancreatic cancer are still unknown. Nevertheless,

LipidemTM, an ω3 fatty acid-rich emulsion, shows the

ability to decrease PSC proliferation and inhibit the

invasive capacity of pancreatic cancer cells, especially in

combination with gemcitabine [124].

Tumor-associated macrophages (TAMs), another es-

sential type of stromal cell with immune functions, also

participate in metabolic crosstalk within the microenvir-

onment. Compared with steady-state macrophages in

the normal pancreas, TAMs exhibit an elevated glyco-

lytic signature, promoting pancreatic cancer

vascularization and metastasis [125]. Another study

showed that TAMs promote aerobic glycolysis in neigh-

boring pancreatic cancer cells via paracrine signaling.

Subsequently, lactate in the microenvironment promotes

the procancer M2-like polarization of TAMs, which

leads to low immunity [126]. Such a relationship was

also revealed in preclinical experiments on novel mole-

cules, providing hits for further research. Metavert, an

inhibitor of glycogen synthase kinase 3β and histone

deacetylases, could normalize the glucose metabolism of

pancreatic cancer cells and transform M2-like TAMs to

the anticancer M1 phenotype in mouse models [127].

Adipocytes also have extensive metabolic interactions

with pancreatic cancer cells. After coculture with pan-

creatic cancer cells, adipocytes exhibited smaller size,

mesenchymal phenotypes, decreased lipid content and

multiple altered metabolic pathways. Such tumor-

Fig. 2 Metabolic crosstalk within the microenvironment. There is extensive and heterogeneous metabolic crosstalk within pancreatic tumors.

Pancreatic cancer cells can adopt relatively distinct metabolic patterns under different oxygen and nutrition conditions. Black arrows imply shift,

positive regulation or fueling, whereas blunt ends indicate inhibition. Ala, alanine; HGF, hepatocyte growth factor
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associated adipocytes could also promote the aggressive-

ness of pancreatic cancer cells [128]. In addition, a brief

study in murine cell lines suggested that pancreatic can-

cer cells could inhibit Gln degeneration in cocultured

adipocytes and then predispose them to Gln secretion.

In turn, Gln derived from adipocytes facilitates cancer

cell proliferation [129]. In addition to the direct inter-

action between pancreatic cancer cells and adipocytes,

adipocyte accumulation within the microenvironment

could interact with PSCs and tumor-associated neutro-

phils as well, enhancing tumor progression, particularly

in obese patients [130]. There are many other stromal

components besides the abovementioned components,

and the metabolic crosstalk within the microenviron-

ment of pancreatic cancer remains largely unclear.

Chemoresistance and metabolism
Chemotherapy is still the most fundamental systemic

treatment against the majority of cancers. According to

the NCCN guidelines, there are several distinct chemo-

therapy regimens against pancreatic cancer with differ-

ent statuses. Among them, gemcitabine (also known as

2,2-difluorodeoxycytidin, dFdC), the nucleoside analog

of deoxycytidine, currently remains the cornerstone of

chemotherapy in pancreatic cancer treatments [131]. As

a type of prodrug, gemcitabine enters pancreatic cancer

cells and undergoes a series of phosphorylation events

with precise regulation. After that, its derivatives can

interfere with DNA synthesis and block cancer cell cycle

progression [132, 133] (Fig. 3). Nano albumin-bound

(nab) paclitaxel delivers a high concentration of pacli-

taxel within pancreatic tumors, resulting in the inhib-

ition of microtubule depolymerization and cancer cell

division [134, 135]. Benefiting from the synergistic ef-

fects [136, 137], the clinical application of nab paclitaxel

often occurs in combination with gemcitabine. In

addition to gemcitabine, 5-fluorouracil (5-FU), an

analogue of uracil, also exerts anticancer effects by dam-

aging DNA and RNA and inhibiting thymidylate syn-

thase (TS) [138]. Although the clinical benefits produced

by 5-FU are lower than those of gemcitabine, 5-FU is

still widely applied in treating pancreatic cancer partly

due to its lower toxicity [139]. In recent years, increasing

evidence has shown that the FOLFIRINOX regimen (5-

FU, leucovorin, irinotecan and oxaliplatin) can achieve

longer overall survival than gemcitabine-based therapy,

especially in patients with good status [140–144]. Com-

pared with other chemotherapy regimens, the underlying

mechanism of gemcitabine resistance is relatively well

documented [131]. At present, there is increasing evi-

dence that gemcitabine resistance is related to the me-

tabolism of glucose, amino acids, and lipids (Fig. 4).

Moreover, metabolic profiling revealed that there is an

obvious difference in the metabolome between

gemcitabine-sensitive and gemcitabine-resistant pancre-

atic cancer cell lines [145].

Chemoresistant pancreatic cancer cell lines induced by

long-term moderate gemcitabine treatment exhibit in-

creased aerobic glycolysis and lower ROS levels than

their parental cells. The increased glycolysis maintains

low ROS levels that induce cancer stem cell (CSC) and

epithelial-mesenchymal transition (EMT) phenotypes,

contributing to chemoresistance [146]. Such enhanced

glycolysis is partly mediated by increased HIF-1α. In

addition to hypoxia, increased expression of MUC1, a

transmembrane protein, also activates and stabilizes

HIF-1α, enhancing glycolysis, nonoxidative PPP and pyr-

imidine biosynthesis [147–149]. All of these factors lead

Fig. 3 The metabolism and mechanisms of gemcitabine action.

Gemcitabine plays an anticancer role after a series of

phosphorylations in pancreatic cancer cells. Asterisks indicate that

dFdCTP is the most active metabolite of gemcitabine that produces

anticancer effects. Intermediates in gray ovals have anticancer

functions. Long solid arrows represent shifts or bioconversions.

Dotted arrows mean positive regulations, while dotted blunt ends

mean negative regulations. dFdC, 2’,2’-difluorodeoxycytidine

(gemcitabine); dFdCMP, 2’,2’-difluorodeoxycytidine 5’-

monophosphate; dFdCDP, 2’,2’-difluorodeoxycytidine 5’-diphosphate;

dFdCTP, 2’,2’-difluorodeoxycytidine 5’-triphosphate; dFdU, 2’,2’-

difluorodeoxyuridine; dFdUMP, 2’,2’-difluorodeoxyuridine 5’-

monophosphate; dFdUDP, 2’,2’-difluorodeoxyuridine 5’-diphosphate;

dFdUTP, 2’,2’-difluorodeoxyuridine 5’-triphosphate; dUMP,

deoxyuridine monophosphate; dTMP, deoxythymidine

monophosphate; dTTP, deoxythymidine triphosphate; CDP, cytidine

diphosphate; dCDP, deoxycytidine diphosphate; dCTP, deoxycytidine

triphosphate; CDA, cytidine deaminase; dCK, deoxycytidine kinase;

DCTD, deoxycytidylate deaminase; hNTs, human nucleosides

transporters; NDPK, nucleoside diphosphate kinase; NMPK,

nucleoside monophosphate kinase; RR, ribonucleotide reductase; TS,

thymidylate synthase; 5’-NT, 5’-nucleotidase
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to gemcitabine resistance in pancreatic cancer cells.

Owing to this mechanism, HIF-1α inhibitors (digoxin or

YC1) and pyrimidine biosynthesis inhibitors (lefluno-

mide) showed the ability to improve gemcitabine efficacy

in animal studies [149]. Furthermore, MUC1 inhibition

also sensitizes pancreatic cancer cell lines to 5-FU [150].

In addition, F-box and WD repeat domain-containing 7

(FBW7), a pancreatic tumor suppressor inhibited by

oncogenic KRAS mutation, inhibited glycolysis in pan-

creatic cancer cells and enhanced the efficacy of gemci-

tabine in xenograft models as well [151]. In our previous

research, we found that L-type amino acid transporter 2

(LAT2), an oncogenic protein in pancreatic cancer cells,

could Gln-dependently activate mTOR to inhibit apop-

tosis and promote glycolysis. Both of them give rise to

the gemcitabine-resistant phenotype, whereas mTOR in-

hibitor (RAD001) could solve such gemcitabine

resistance [152]. Overexpressed Nampt provides massive

NAD, sustaining enhanced glycolytic activity and con-

tributing to gemcitabine resistance as well. Nampt in-

hibitor (FK866) reversed this resistance to sensitivity

[53]. Additionally, gemcitabine also promotes the ex-

pression of the ribonucleotide reductase M2 (RRM2)

subunit in pancreatic cancer cells through the ERK/E2F1

pathway, promoting deoxyribonucleotide biosynthesis

and inhibiting gemcitabine-induced DNA damage [153,

154]. CG-5, a glucose transporter inhibitor, inhibits

E2F1 expression and enhances gemcitabine efficacy in

pancreatic cancer cells [153]. Gambogic acid and

fructose-1,6-bisphosphatase 1 inhibits the ERK signaling

pathway and bypasses gemcitabine resistance in mouse

models with xenograft tumors [154, 155]. Increased thy-

midylate synthase expression in gemcitabine-treated

pancreatic cancer cells might also adopt the same E2F1-

Fig. 4 Gemcitabine resistance and metabolism. Gemcitabine and some intrinsic characteristics of pancreatic cancer cells produce

chemoresistance. Ovals are biological substances, rectangles are processes, and hexagons are statuses. Red names indicate corresponding

inhibitors. Arrows represent positive regulations, and lines with blunt ends represent negative regulations. CR, chemoresistance; EMT, epithelial-

mesenchymal transition; FBP1, fructose-1,6-bisphosphatase 1; IDH1, isocitrate dehydrogenase 1; LAT2, L-type amino acid transporter 2; noPPP,

nonoxidative pentose phosphate pathway; RRM2, ribonucleotide reductase subunit-M2
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dependent pathway, but this effect is not very clear yet

[153]. In addition to pyrimidine biosynthesis, enhanced

HBP in pancreatic cancer cells also gives rise to gemcita-

bine resistance by increasing the glycosylation of many

proteins in several chemoresistant signaling pathways

[156].

Compared with the relatively well-documented role of

glucose metabolism, the role of amino acid metabolism

in chemoresistance remains unclear. Enhanced Gln me-

tabolism fuels elevated HBP and glycosylation. More-

over, Gln addiction is also significant for controlling

ROS generation and activating mTOR, both of which

contribute to chemoresistance [152, 156]. ROS produc-

tion in pancreatic cancer cells triggered by gemcitabine

treatment is presumed to be related to the dose. Low to

moderately elevated ROS levels are considered to acti-

vate the nuclear factor-kappa B (NF-κB)/signal trans-

ducer and activator of transcription 3 (STAT3) signaling

cascade, maintaining the CSC phenotype and inducing

chemoresistance [157]. In addition to gemcitabine, low

nutrient conditions also contribute to moderate ROS

generation that activates HuR, an RNA binding protein.

Activated HuR rapidly upregulates isocitrate dehydro-

genase 1 (IDH1) to enhance NADPH recycling, which

maintains redox balance and results in chemoresistance

[158]. Therefore, compared with pancreatic cancer pa-

tients with high serum glucose, patients with low or nor-

mal serum glucose exhibit more severe initial

gemcitabine resistance [158].

In lipid metabolism, FASN expression is upregulated,

which is also crucial for gemcitabine resistance. Overex-

pressed FASN in pancreatic cancer cells upregulates

PKM2 expression, promoting glycolysis and gemcitabine

resistance [159]. PKM2 also plays a nonmetabolic role in

chemoresistance by inhibiting gemcitabine-induced

TP53 signaling and subsequent apoptosis [160]. In

addition to PKM2, high FASN levels relieve ER stress,

maintain the CSC phenotype and inhibit gemcitabine-

induced apoptosis. Orlistat, a FASN inhibitor, induces

ER stress and increases gemcitabine sensitivity in mouse

models with orthotopic pancreatic cancer implantation

[161]. ω3 fatty acids repress NF-kβ and STAT3 activa-

tion and improve the anticancer role of gemcitabine as

well [162]. Furthermore, in a completed phase II clinical

trial, after treatment with gemcitabine and intravenous

ω3 fatty acid-rich emulsion, patients with metastatic or

locally advanced pancreatic cancer exhibited reduced

proinflammatory circulating growth factors and cyto-

kines, which might contribute to the improved outcome

(NCT01019382) [163]. In addition to fatty acids, choles-

terol uptake disruption mediated by LDLR silencing also

enhances gemcitabine-induced regression of murine

pancreatic cancer cells [79]. Cholesterol also supports

the function of caveolin-1 (cav-1) [164], which is the

primary structural protein of caveolae, contributing to

nab-paclitaxel uptake and chemosensitivity [165]. How-

ever, another study suggested that both cholesterol and

cav-1 could maintain ABC transporters in caveolae, lead-

ing to drug efflux and chemoresistance to nab-paclitaxel

in pancreatic tumor initiating cells with high CD133 ex-

pression [166]. In general, chemoresistance has intricate

relations with the metabolism of pancreatic cancer cells,

and further research is needed to achieve better chemo-

therapy responses.

In addition to the metabolism of glucose, amino acids,

and lipids, autophagy in pancreatic cancer cells also

plays a role in chemoresistance. Both nutrient limitation

and gemcitabine induce autophagy in pancreatic cancer

cells, which inhibits apoptosis and contributes to che-

moresistance [167, 168]. Gemcitabine-induced autoph-

agy might be mediated by a deubiquitinating protease,

ubiquitin-specific peptidase 9X (USP9X). However,

WP1130, a deubiquitinating enzyme inhibitor, inhibits

USP9X and attenuates chemoresistance in mouse

models bearing tumor xenografts [168]. Additionally,

chloroquine also increases gemcitabine and 5-FU sensi-

tivity as an autophagy inhibitor [168, 169]. In a com-

pleted phase I study, chloroquine showed promising

effects in patients with unresectable or metastatic pan-

creatic cancer when combined with gemcitabine

(NCT01777477) [170].

Although there is no evidence showing the direct rela-

tionship between metabolic crosstalk within the micro-

environment and chemoresistance, the role of the

microenvironment in chemoresistance has become more

significant. For example, a recent study showed that

CAFs in pancreatic cancer could scavenge gemcitabine

and contribute to chemoresistance in murine pancreatic

cancer [171]. Another study suggested that vitamin D re-

ceptors highly expressed on PSCs restrict the tumor-

supportive role of PSCs and improve the delivery and ef-

ficacy of gemcitabine upon binding ligands [172]. More-

over, an OXPHOS inhibitor (metformin) could

overcome CAF-induced chemotherapy resistance and

enhance the efficacy of oxaliplatin in pancreatic cancer

organoids [173]. In addition to CAFs, nab-paclitaxel in-

ternalization of TAMs via macropinocytosis could drive

macrophage M1 polarization, restoring immune recogni-

tion in pancreatic cancer [174]. Given the extensive and

vital metabolic crosstalk within the microenvironment,

there might be many potential opportunities to promote

the anticancer effects of current chemotherapy.

Radioresistance and metabolism
In contrast to chemotherapy, there are several contro-

versies regarding the survival benefits of radiotherapy in

pancreatic cancer [175–177]. However, it is still an effi-

cient player in controlling the local progression of
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pancreatic cancer and other solid tumors [178]. Ac-

cording to the National Comprehensive Cancer Net-

work guidelines on pancreatic cancer, radiotherapy is

recommended as a neoadjuvant therapy for resectable

or borderline disease, an adjuvant therapy for resected

disease, a definitive treatment for locally advanced

disease, and a palliative care strategy for terminal dis-

ease (relieving pain, bleeding and local obstructive

symptoms). Additionally, radiotherapy is also recom-

mended for local recurrent pancreatic cancer, but

there are limited supporting data. Among many mo-

lecular and cellular pathways related to radiotherapy,

some clues suggest that metabolic changes in pancre-

atic cancer are important factors that give rise to

radioresistance [179].

Clinical investigations have shown that patients with

high baseline metabolism in pancreatic cancer have a

poor therapeutic response after receiving chemoradio-

therapy [180, 181]. Increased glycolysis-nucleotide me-

tabolism mediated by overexpressed MUC1 in

pancreatic cancer also plays a key role in facilitating

radioresistance [24]. 2-DG can increase metabolic oxi-

dative stress and cause the radiosensitization of pan-

creatic cancer by inhibiting glucose metabolism [182].

Ketogenic diets represented by high fat and low

carbohydrate intake increased radiotherapy sensitivity

in mouse models with xenograft pancreatic cancer.

However, a relevant phase I clinical trial in pancreatic

cancer patients was not successful, mainly due to

poor compliance (NCT01419483) [183]. In addition to

glucose metabolism, upregulated FASN likely leads to

radioresistance [184, 185]. Several genes involved in

the cholesterol synthesis pathway are also associated

with radioresistance in pancreatic cancer. Among

them, overexpressed farnesyl diphosphate synthase

can be inhibited by zoledronic acid (ZOL), which

partly attenuated the radioresistance of pancreatic

cancer cells [185]. A phase II clinical study combining

ZOL with chemoradiotherapy followed by surgery in

pancreatic cancer patients is ongoing (NCT03073785).

The role of metabolism in pancreatic cancer radiore-

sistance remains to be further researched.

Immunity and metabolism
Pancreatic cancer is a kind of low immunogenicity

tumor that has a highly immunosuppressive microenvir-

onment dominated by three main leukocyte subtypes:

TAMs (mainly predominated by M2-type macrophages),

regulatory T cells (Tregs) and myeloid-derived suppres-

sor cells (MDSCs) [186, 187]. Emerging evidence sug-

gests that there are close relationships between

metabolism and pancreatic cancer immunity, including

immunosuppression and immunotherapy resistance.

Immunosuppression and metabolism

Glucose-dependent metabolism, especially aerobic gly-

colysis, is critical to fulfilling the immune functions of

CD8+ effector T cells and IFN-γ production of CD4+ T

cells [188, 189]. In contrast to CD4+ effector T cells

(Th1, Th2, and Th17) and M1-type macrophages, Tregs

and M2-type macrophages are mainly fueled by lipid

oxidation and rely less on glycolysis [190, 191]. Tumor-

associated MDSCs also undergo metabolic reprogram-

ming, resulting in both enhanced fatty acid oxidation

and increased glycolysis, which sustain their survival and

contribute to their immunosuppressive functions [192,

193]. A study in sarcoma revealed that enhancing the

glycolysis of tumor cells restricts glucose supply to

nearby T cells, thereby leading to dysfunctional T cells

and an immunosuppressive tumor microenvironment

[25]. In addition to direct nutrition competition, tumor-

derived lactate is key to remodeling immunity within the

microenvironment, inducing the M2-like phenotype of

TAMs and reducing CD8+ cytotoxic T cell functions

[194, 195]. More significantly, lactate also upregulates

MDSCs and inhibits natural killer cell activity in pancre-

atic cancer, resulting in an immunosuppressive micro-

environment [196]. Additionally, tumor-induced

interleukin 6 compromises host metabolism during cal-

oric deficiency, giving rise to suppressed antitumor im-

munity [20]. In conclusion, metabolism provides novel

directions for addressing immunosuppression, which

limits the effects of many immunotherapies.

Immunotherapies and metabolism

Because of the low proportion of resectable cases and

obvious resistance to chemotherapy and radiotherapy,

immunotherapy has been rising as a novel strategy to

treat pancreatic cancer. Many kinds of immunotherapies

for pancreatic cancer have entered clinical trial stages,

including immune checkpoint inhibitors [11], thera-

peutic vaccines and adoptive T cell transfers [197, 198].

However, most results are disappointing. Recently, accu-

mulated studies have suggested that T cell-mediated im-

munotherapy could be optimized by modulating cell

metabolism [199]. Moreover, immune checkpoint inhibi-

tors also show the ability to support the metabolism of

lymphocytes in the tumor and improve their antitumor

effects [25, 200]. Given the relationship between metab-

olism and immunotherapy, it is appropriate to improve

conventional immunotherapies through metabolic

regulation.

In addition to immunotherapies focusing on improv-

ing the anticancer abilities of lymphocytes, the immuno-

suppressive microenvironment is emerging as a novel

therapeutic target [201]. In addition to leukocyte sub-

types, some cytokines also participate in immunosup-

pression of pancreatic cancer. For example, indoleamine
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2,3-dioxygenase (IDO), a metabolic enzyme expressed in

many carcinomas, including pancreatic cancer cells, de-

grades tryptophan within the tumor microenvironment

and inhibits immune cell responses [202, 203]. Further-

more, combining IDO depletion and tumor desmoplasia

inhibition showed successful antitumor effects in mouse

models with pancreatic cancer [204]. Recently, a phase

I/II trial combining IDO inhibitor (indoximod) and

chemotherapy in patients with metastatic pancreatic

cancer was completed (NCT02077881), while another

phase II clinical study employing another IDO inhibitor

(epacadostat) and immunotherapy or cyclophosphamide

in pancreatic cancer patients is recruiting

(NCT03006302). In general, given the significant role of

metabolism in immunity, metabolic regulation has the

potential to improve the clinical results of

immunotherapies.

Clinical perspectives and conclusion
Metabolism targeted therapy is not yet recommended as

regular treatment in most guidelines for treating variety

of cancers. In addition to the wide use of aromatase in-

hibitors in treating breast cancer [205], most

metabolism-targeted therapies against a variety of can-

cers remain in experimental and clinical trial phases.

However, some of them have shown promising results.

For instance, ivosidenib, an inhibitor of IDH1, improves

the complete remission rate of IDH1-mutated acute

myeloid leukemia with a low frequency of treatment-

related adverse events in a phase I clinical trial that en-

rolled 258 patients [206]. In a phase IV clinical trial that

enrolled 28 patients, the mechanism of diclofenac in ef-

fectively relieving actinic keratosis (a premalignant skin

lesion) was well demonstrated, and the effect was largely

dependent on modulating the metabolism of local le-

sions [207]. However, given the heterogeneity of differ-

ent cancers, successful clinical applications in other

cancers cannot be directly and simply applied to treating

pancreatic tumors. In pancreatic cancer, many metabolic

regulators have been employed in preclinical studies

[208] and even in clinical trials [28, 34]. Compared with

some old drugs, such as metformin [209], aspirin [210,

211], and statins, which play complex roles in metabolic

regulation and have been debated over a dozen years,

there are higher expectations for some new properties of

other drugs, novel drug combinations and new meta-

bolic regulators. In addition to the clinical trials men-

tioned above, many other clinical studies have also

focused on metabolism in pancreatic cancer treatments

(Table 1).

Therapies targeting altered glycolysis pathways are

gaining momentum. In a phase I clinical trial in patients

with solid tumors, including advanced pancreatic cancer,

2-DG produced tolerable adverse effects but tangible

clinical benefits in combination with docetaxel

(NCT00096707) [212]. Although PDH is inhibited by

mutant KRAS [46], cancer cell survival still requires the

persistence of PDH activity and mitochondrial metabol-

ism. CPI-613, a lipoate analog, selectively inhibits tumor

PDH activity and could disrupt pancreatic cancer growth

in xenograft models [213]. An ongoing phase I study

combining CPI-613 with modified FOLFIRINOX for

treating metastatic pancreatic cancer showed a small in-

crease in side effects and toxicity compared to that with

FOLFIRINOX alone but an encouraging response rate

(NCT01835041) [214].

For the noncanonical Gln metabolism of pancreatic

cancer, GLS1 inhibition decreases antioxidant pools,

whereas β-lapachone induces excess ROS generation

specifically in pancreatic cancer cells as an NAD(P)H:

quinone oxidoreductase 1-bioactivatable drug. Combin-

ing β-lapachone (ARQ761) with GLS1 inhibitors select-

ively leads to pancreatic cancer cell death in preclinical

mouse models [215]. At present, a phase I clinical study

that combined ARQ761 with gemcitabine/nab-paclitaxel

in patients with advanced pancreatic cancer is ongoing

(NCT02514031). For asparagine metabolism, ERY-ASP

showed good tolerance in patients with metastatic pan-

creatic cancer in a phase I clinical study (NCT01523808)

[216], and a further phase II clinical trial combining

ERY-ASP with chemotherapy was completed recently

(NCT02195180).

Given the comprehensive role of mTOR in metabol-

ism, some clinical trials have employed mTOR inhibitors

to address gemcitabine resistance in pancreatic cancer.

However, RAD001 (everolimus) showed minimal clinical

activity as a single agent in patients with metastatic and

gemcitabine-resistant pancreatic cancer (NCT00409292)

[217], whereas another phase II study combining everoli-

mus with capecitabine showed moderately positive re-

sults and an acceptable toxicity profile (NCT01079702)

[218]. Therefore, further clinical trials are anticipated.

The rewired glucose, amino acid, and lipid metabolism

in pancreatic tumors from the cell to the microenviron-

ment or even at the whole-body level deeply affects can-

cer progression. Furthermore, pancreatic cancer

metabolism is also associated with anticancer treat-

ments. Currently, more clinical trials in pancreatic can-

cer patients are beginning to involve metabolic

regulation. Some of the completed trials even showed

promising and exciting results. Given the side effects of

some metabolic regulators [219], the role of metabolism

targeted therapy in nonmalignant tissues should also be

emphasized in future research, which largely restricts

the transformation from basic study to successful clinical

application. Moreover, pancreatic cancer displayed

highly plastic metabolism, suggesting that cancer cells

can adapt to use other metabolic pathways to bypass a
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Table 1 Representative clinical trials concerning metabolic regulation in pancreatic cancer

NCT Number Status Phase Tumor Types Interventions Monotherapy/
Combination

Targets: Glycolysis and Mitochondrial Metabolism

NCT00096707
Completed I Lung Cancer

Breast Cancer
Pancreatic Cancer
Head and Neck Cancer
Gastric Cancer

2-DG ± Docetaxel Monotherapy/
Combination

NCT01835041
Active, Not
Recruiting

I Acinar Cell Adenocarcinoma of
the Pancreas,
Duct Cell Adenocarcinoma of the
Pancreas,
Recurrent Pancreatic Cancer,
Stage IV Pancreatic Cancer

CPI-613 + mFOLFIRINOX Combination

NCT01419483
Terminated N/A Pancreatic Neoplasms Ketogenic Diet N/A

Targets: Amino Acids Metabolism and Redox Balance

NCT02514031
Recruiting I Pancreatic Cancer ARQ-761 + Gemcitabine + Nab-paclitaxel Combination

NCT01523808
Completed I Pancreatic Cancer GRASPA Monotherapy

NCT02195180
Completed II Metastatic Pancreatic

Adenocarcinoma
ERY001 + Gemcitabine or FOLFOX Combination

NCT02077881
Completed I/II Metastatic Pancreatic

Adenocarcinoma,
Metastatic Pancreatic Cancer

Indoximod + Gemcitabine + Nab-paclitaxel Combination

NCT03006302
Recruiting II Metastatic Pancreatic

Adenocarcinoma
Epacadostat + Pembrolizumab + CRS-207 ± Cyclo-
phosphamide/GVAX

Combination

NCT01049880
Completed I Pancreatic Neoplasms Gemcitabine + Ascorbic Acid Combination

Target: Lipids Metabolism

NCT00944463
Completed II Pancreatic Cancer Gemcitabine + Simvastatin Combination

NCT01019382
Completed II Pancreatic Neoplasms Gemcitabine + Lipidem Fish Oil Infusion Combination

NCT03073785
Recruiting II Pancreatic Adenocarcinoma

Recurrent Pancreatic Carcinoma
Stage I Pancreatic Cancer AJCC v6
and v7
Stage IA Pancreatic Cancer AJCC
v6 and v7
Stage IB Pancreatic Cancer AJCC
v6 and v7
Stage II Pancreatic Cancer AJCC v6
and v7
Stage IIA Pancreatic Cancer AJCC
v6 and v7
Stage IIB Pancreatic Cancer AJCC
v6 and v7
Stage III Pancreatic Cancer AJCC
v6 and v7
Stage IV Pancreatic Cancer AJCC
v6 and v7

Zoledronic Acid + Capecitabine + Fluorouracil +
Radiation Therapy

Combination

Targets: Autophagy and Macropinocytosis

NCT01777477
Completed I Pancreatic Cancer Gemcitabine + Chloroquine Combination

NCT03825289
Recruiting I Metastatic Pancreatic Carcinoma

Stage II Pancreatic Cancer
Stage IIA Pancreatic Cancer
Stage IIB Pancreatic Cancer

Hydroxychloroquine + Trametinib Combination
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certain metabolic inhibition [220]. In addition, pancre-

atic cancer cell lines also showed heterogeneous meta-

bolic addictions [43]. Therefore, identification of the real

metabolic hub of pancreatic cancer or combining dis-

tinct metabolism-targeted therapies in clinical trials is in

high demand. In conclusion, a better understanding of

pancreatic cancer metabolism and its role in treatments

will benefit novel strategies, improving the prognosis of

patients with pancreatic cancer.
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reductase; IDH1: Isocitrate dehydrogenase 1; IDO: Indoleamine 2,3-

dioxygenase; LAT2: L-type amino acid transporter 2; LDH: Lactate

dehydrogenase; LDLR: Low-density lipoprotein receptor;

MCT1: Monocarboxylate transporter 1; MDH1: Malate dehydrogenase 1;

MDSCs: Myeloid-derived suppressor cells; mTORC1: mechanistic target of

rapamycin complex 1; MUC1: Mucin1; NAD: Nicotinamide adenine

dinucleotide; NF-κB: Nuclear factor-kappa B; OAA: Oxaloacetate;

OXPHOS: Oxidative phosphorylation; PDH: Pyruvate dehydrogenase;

PDHK1: Pyruvate dehydrogenase kinase 1; PGC-1α: Peroxisome proliferator-

activated receptor gamma coactivator-1α; PGK1: Phosphoglycerate kinase 1;

PKM2: Pyruvate kinase muscle isozyme 2; PPP: Pentose phosphate pathway;

Pro: Proline; PRODH1: Proline oxidase; PSCs: Pancreatic stellate cells;

ROS: Reactive oxygen species; RPE: Ribulose-5-phosphate-3-epimerase;

RPIA: Ribulose 5-phosphate isomerase; RRM2: Ribonucleotide reductase M2;

SCD1: Stearoyl-CoA desaturase; STAT3: Signal transducer and activator of

transcription 3; TAMs: Tumor-associated macrophages; TIGAR: TP53-induced

glycolysis and apoptosis regulator; Tregs: Regulatory T cells; TS: Thymidylate

synthase; USP9X: Ubiquitin-specific peptidase 9X; ZOL: Zoledronic acid; α-

KG: α-ketoglutarate
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Table 1 Representative clinical trials concerning metabolic regulation in pancreatic cancer (Continued)

NCT Number Status Phase Tumor Types Interventions Monotherapy/
Combination

Stage III Pancreatic Cancer
Stage IV Pancreatic Cancer
Unresectable Pancreatic
Carcinoma

Target: mTOR

NCT00409292
Completed II Pancreatic Cancer RAD001 Monotherapy

NCT00593008
Terminated I Pancreatic Adenocarcinoma Gemcitabine + Temsirolimus Combination

NCT01079702
Unknown I/II Advanced Malignancies (Including

Pancreatic Cancer)
Capecitabine + Everolimus Combination

Comprehensive Metabolic Regulation

NCT03889795
Recruiting I Advanced Pancreatic Cancer

Advanced Solid Tumor
Metformin + Simvastatin + Digoxin Combination

NCT02201381
Recruiting III Cancer (Including Pancreatic

Cancer)
Metabolic Treatment (Metformin + Atorvastatin +
Doxycycline + Mebendazole)

Combination

NCT02048384
Active, Not
Recruiting

I/II Metastatic Pancreatic
Adenocarcinoma

Metformin ± Rapamycin Monotherapy/
Combination
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