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Ralf Krüger1, Benedikt Merz1, Diana Bunzel2, Carina Mack2, Björn Egert2, Achim Bub1,

Benjamin Görling3¤b, Pavleta Tzvetkova3, Burkhard Luy3, Ingrid Hoffmann4, Sabine

E. Kulling2, Bernhard Watzl1

1 Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Karlsruhe, Germany,

2 Department of Quality and Safety of Fruit and Vegetables, Max Rubner-Institut, Karlsruhe, Germany,

3 Institute of Organic Chemistry and Institute for Biological Interfaces 4, Karlsruhe Institute of Technology,

Karlsruhe, Germany, 4 Department of Nutrition Behaviour, Max Rubner-Institut, Max Rubner-Institut,

Karlsruhe, Germany

¤a Current address: Department of Child and Adolescent Psychiatry, University of Zurich, Zurich,

Switzerland

¤b Current address: Bruker BioSpin GmbH, Rheinstetten, Germany

* Manuela.Rist@mri.bund.de

Abstract

Physiological and functional parameters, such as body composition, or physical fitness are

known to differ between men and women and to change with age. The goal of this study

was to investigate how sex and age-related physiological conditions are reflected in the

metabolome of healthy humans and whether sex and age can be predicted based on the

plasma and urine metabolite profiles.

In the cross-sectional KarMeN (Karlsruhe Metabolomics and Nutrition) study 301 healthy

men and women aged 18–80 years were recruited. Participants were characterized in detail

applying standard operating procedures for all measurements including anthropometric,

clinical, and functional parameters. Fasting blood and 24 h urine samples were analyzed by

targeted and untargeted metabolomics approaches, namely by mass spectrometry coupled

to one- or comprehensive two-dimensional gas chromatography or liquid chromatography,

and by nuclear magnetic resonance spectroscopy. This yielded in total more than 400 ana-

lytes in plasma and over 500 analytes in urine. Predictive modelling was applied on the

metabolomics data set using different machine learning algorithms.

Based on metabolite profiles from urine and plasma, it was possible to identify metabolite

patterns which classify participants according to sex with > 90% accuracy. Plasma metabo-

lites important for the correct classification included creatinine, branched-chain amino acids,

and sarcosine. Prediction of age was also possible based on metabolite profiles for men and

women, separately. Several metabolites important for this prediction could be identified

including choline in plasma and sedoheptulose in urine. For women, classification according

to their menopausal status was possible from metabolome data with > 80% accuracy.

The metabolite profile of human urine and plasma allows the prediction of sex and age

with high accuracy, which means that sex and age are associated with a discriminatory
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metabolite signature in healthy humans and therefore should always be considered in meta-

bolomics studies.

Introduction

The human metabolome is influenced by a number of endogenous factors, such as age, sex,

and body mass index (BMI) [1–7], as well as exogenous factors including diet, drugs, physical

activity, psychological stress and further environmental factors [8–12]. Among the endoge-

nous factors, age and sex have been addressed most often in literature and seem to have the

strongest influence, at least in healthy subjects [13, 14]. A number of metabolites have been

reported to differ between older and younger individuals or between men and women. For

example, creatinine, tryptophan, histidine or serine have repeatedly been shown to be higher

in concentration in urine and/or blood in younger persons, whereas citrate, creatine, glycine,

glutamate were described to be higher in older persons [2, 5, 7, 13, 15–18]. In women, meno-

pausal status causes a clear shift in plasma metabolite concentrations [1, 19] and thus may be

the underlying cause for apparent age differences. Differences between men and women were

suggested to be mainly based on higher plasma and/or urine concentrations of branched-

chain amino acids (BCAA) and creatinine in men, whereas several phospholipids, citrate, gly-

cine, hippurate and others were higher in women [2–5, 13, 16, 18, 20–23]. Up to now mecha-

nistic explanations for these observed differences have been scarce.

Most of the early studies were conducted with a rather small number of participants

(n = 60–150) that were not very well characterized in terms of diet or health status. Further,

biological samples were often analyzed using nuclear magnetic resonance spectroscopy

(NMR) as the only analytical method, data analysis was mainly based on principle component

analysis (PCA) and partial least squares discriminant analysis (PLS-DA), and thus results have

been rather descriptive [2, 5, 16, 18, 22]. More recent studies reporting metabolome variations

due to age and/or sex were based on larger cohorts. Metabolite profiles were derived from liq-

uid chromatography (LC)- or gas chromatography-mass spectrometry (GC-MS) analyses,

which generally provide a larger coverage of the metabolome than NMR, and more sophisti-

cated univariate and multivariate data analysis methods were applied [3, 6, 7, 13, 15, 23]. Still,

these reports are generally restricted to one type of biological sample, i.e. blood or urine, and

one type of analytical method, i.e. MS or NMR analysis.

We performed a cross-sectional study [24] to investigate the inherent variation in the

human metabolome including healthy male and female participants spanning a wide age

range. These participants were thoroughly characterized based on several anthropometric,

physiological and functional parameters, including menopausal status in women. Fasting

plasma and 24 h urine samples were collected and analyzed using non-targeted comprehen-

sive two-dimensional gas chromatography (GC×GC)-MS, different targeted GC-MS and

LC-MS/MS methods as well as 1H-NMR. With this multi-platform metabolomics analysis—

combining targeted and non-targeted methods—we were able to cover more than 400 ana-

lytes in plasma and over 500 analytes in urine from a wide range of chemical classes. The aim

of this study was to identify metabolite patterns, i.e. a set of metabolites that in combination

and their relation to one another are predictive for sex or age in plasma and 24 h urine of

healthy men and women. For this purpose, we performed predictive modelling using three

different established machine learning algorithms on the combined data from the different

analytical platforms.

Metabolomics of age and sex in healthy humans
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Materials and methods

Subjects and study design

The Karlsruhe Metabolomics and Nutrition (KarMeN) study is a cross-sectional study that

was performed at the Max Rubner-Institut in Karlsruhe, Germany, between 2011 and 2013,

and was described in detail in Bub et al. [24].

Briefly, 301 healthy adults, 172 men, 129 women, aged 18–80 y, BMI 17.8–31.4 kg/m2, who

gave their written informed consent were recruited. Participants were included, if they were

free from prevalent diseases, had no history of a chronic disease, were non-smokers, did not

take any medication, hormones, or supplements, and were willing and able to perform all the

examinations.

Participants were subjected to a standardized examination schedule [24] and visited the

study center for a total of three days. Subjects were thoroughly characterized and a number of

anthropometric (including height, weight, waist circumference, and body composition), func-

tional (including blood pressure, arterial stiffness, and pulmonary function), and clinical

parameters (including blood and urine clinical biochemistry) were determined. Also, resting

energy expenditure and cardio-respiratory fitness were assessed. Samples for metabolomics

analyses were collected on study day 2.

In addition, the menopausal status in women was determined by anamnestic interview and

follicle stimulating hormone (FSH) measurements. For premenopausal women the study days

were scheduled such that sample collection on day 2 fell into the luteal phase of their menstrual

cycle, since this is the phase of the cycle with the least hormonal variation.

The study was approved by the ethics committee of the State Medical Chamber of Baden-

Württemberg, Stuttgart, Germany (F-2011-051) and was in accordance with the 1964 Helsinki

declaration and its later amendments. The study was registered at the German Clinical Study

Register (DRKS00004890). WHO universal trial number: U1111-1141-7051. Written informed

consent was obtained from all individual participants included in the study.

Samples

On the morning of study day 2, fasting plasma samples were collected by drawing blood into 9

mL ethylenediaminetetraacetic acid (EDTA) plasma tubes (S-Monovette, Sarstedt, Nümbrecht,

Germany) from an antecubital vein. Blood was centrifuged at 1850 x g at 4˚C and aliquoted into

small portions. In addition, serum samples (S-Monovette Z-gel, Sarstedt, Nümbrecht, Ger-

many) were collected for standard clinical biochemistry analyses.

Subjects collected 24 h urine, starting the morning prior to study day 2 up to the morning

of study day 2. Collection bottles were kept in cool bags with cooling units throughout. Upon

delivery of the 24 h urine samples to the study center, the volume was recorded, 2 x 14 mL

were centrifuged at 1850 x g at 20˚C and aliquoted into small portions.

All samples were initially frozen at -20˚C for one day and then cryopreserved at -196˚C

until analysis as previously found to be an acceptable procedure [25].

Quality control (QC) samples were prepared by pooling fasting plasma samples and 24 h

urine samples, respectively, from KarMeN participants. These QC samples were used for all

analytical methods applied.

Metabolomics analyses

In order to obtain a preferably broad coverage of the metabolome of human biofluids, a num-

ber of different targeted and non-targeted analytical methods were applied. This section
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provides a short overview on the different analytical methods used. A detailed description of

the analytical procedures can be found in the S1 File.

Untargeted GC×GC-MS analysis of plasma and urine samples. All 24 h urine and fast-

ing plasma samples were analyzed by untargeted GC×GC-MS using a Shimadzu GCMS

QP2010 Ultra instrument equipped with a ZOEX ZX2 modulator. The method was originally

developed and described for the analysis of urine samples [26], but here was also used for

plasma. Urine samples were diluted according to osmolality before analysis in order to reduce

matrix effects [27]. Plasma samples were prepared by deproteinization with methanol as well

as defatting with tert-butyl methyl ether [28] in order to reduce instrument contamination

during the prolonged measurements. With this method a wide range of metabolites can be

detected, such as amines, amino acids, organic acids, sugars, sugar alcohols, other polyols etc.

For details see section A and B of the supplemental S1 File.

Semi-targeted GC-MS analysis of sugar species in urine samples. As some isomeric

sugar species cannot be sufficiently resolved with the untargeted GC×GC-MS approach [26]

but may play an important role in human metabolism, a complementary targeted GC-MS

sugar profiling method was developed for urine samples using a Shimadzu GCMS QP2010

Ultra instrument. Using a Scan-/ selected ion monitoring (SIM)-approach, a higher selectivity

and a sufficient sensitivity were achieved. Furthermore, by monitoring common and well-

known sugar fragments, e.g., m/z 217, 307, and 361 as well as fragments specific for sugar-

related compounds like m/z 292, 333, or 318, known as well as unknown sugar species could

be detected. Additionally, some abundant non-sugar compounds always present in urine, such

as creatinine, were also captured. This enabled verification of the results of the GC×GC-MS

approach. Overall, 66 metabolites, consisting of 40 known sugar species, 15 unknown sugar

species, and 11 non-sugar-compounds, were detected with this method. For analytical details

see section A and C of the S1 File.

Targeted GC-MS analysis of fatty acids in plasma. The chromatographic separation of

plasma fatty acids, especially the cis/trans isomers usually requires the application of special-

ized polar columns and can thus not be done adequately using a standard apolar × medium-

polar GC×GC column setup. For this reason, we used the method described by Ecker et al.

[29] to determine plasma fatty acids as methyl esters (FAMEs), with minor modifications.

Using a GC single quadrupole instrument (Shimadzu GCMS QP2010 Ultra) and a BPX90 col-

umn (Trajan Scientific), 48 fatty acids could be determined in plasma. For details see section A

and D of the S1 File.

LC-MS metabolite profiling using the Absolute IDQ™ p180 kit. Acylcarnitines, amino

acids, biogenic amines, phosphatidylcholines and sphingomyelins were determined by LC-MS

in fasting plasma samples using the Absolute IDQ™ p180 kit developed by Biocrates AG (Inns-

bruck, Austria). The 96 well plate kit includes a detailed description for the extraction proce-

dure, instrument settings and quantification software (MetIDQ version 4.5.2). A description

of the preparation and quantification process can be found in Romisch-Margl et al. [30]. For

chromatographic separation of amino acids and biogenic amines a Zorbax Eclipse XDB-C18

column (3 x 100 mm, 3.5 μm; Agilent, Waldbronn, Germany) equipped with a SecurityGuard™
column (C18, 4.0 x 3.0 mm; Phenomenex, Aschaffenburg, Germany) was used. Phosphati-

dylcholines and sphingomyelins were analyzed by flow injection analysis (FIA) into the analyt-

ical system which was comprised of a Nexera UHPLC system (Shimadzu) coupled to an API

QTRAP1 5500 mass spectrometer (AB Sciex, Darmstadt, Germany).

For details regarding reliability of results refer to section E of the S1 File.

Targeted LC-MS analysis of methylated amino compounds. A targeted quantification

UPLC-MS/MS method for seven amino compounds in plasma, including L-carnitine, choline,

and trimethylamine-N-oxide (TMAO), was established [31] using an Acquity UPLC H-Class

Metabolomics of age and sex in healthy humans
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system coupled to a Xevo TQD triple quadrupole MS (both from Waters, Eschborn, Ger-

many). After protein precipitation and dilution with acetonitrile, plasma samples were sepa-

rated by Hydrophilic Interaction Liquid Chromatography (HILIC) mode on a BEH Amide

column (Waters) using a reversed acetonitrile gradient. Up to two specific fragments of target

analytes and deuterated internal standards were monitored using positive electron spray ioni-

zation (ESI) in multiple reaction monitoring (MRM) mode. Calibrators and controls were

made by spiking plasma samples. Method details can be found in section F of the S1 File.

Targeted LC-MS analysis of bile acids. Analyses of 14 bile acids were done from fasting

plasma using a 1200 series HPLC system (Agilent, Waldbronn, Germany) coupled with a

Q-Trap 3200 mass spectrometer (AB Sciex, Darmstadt, Germany). Samples were prepared by

SPE procedure prior to LC-MS/MS analyses using negative ESI and MRM mode as described

in detail in Frommherz et al. [32]. Additional information on reliability of results can be found

in section G of the S1 File.

Untargeted NMR-analysis of plasma and urine samples. All plasma and urine samples

were analyzed by 1D-1H-NMR spectroscopy. Plasma samples were measured at 310 K on an

AVANCE II 600 MHz NMR spectrometer equipped with a 1H-BBI probehead and a BACS

sample changer (Bruker BioSpin GmbH, Rheinstetten, Germany). Urine samples were ana-

lyzed at 300 K on a Bruker 600 MHz spectrometer (either AVANCE III equipped with a
1H,13C,15N-TCI inversely detected cryoprobe or AVANCE II with 1H-BBI room temperature

probe (Bruker BioSpin GmbH, Rheinstetten, Germany)) equipped with either SampleXpress

or BACS sample changer, respectively, as described in Rist et al. [25]. Typically, metabolites

that can be detected include organic acids, amino acids, amines, sugars, sugar alcohols, and

others. Method details can be found in section H of the S1 File.

Standard clinical biochemistry. Calcium, chloride, potassium, sodium, and phosphate

concentrations were determined in a 24 h urine specimen. Calcium, chloride, potassium,

sodium, phosphate, and also iron concentrations, as well as creatinine, bilirubin, LDL-, HDL-,

and total cholesterol, triglycerides, glucose, uric acid, urea, free T3 and free T4 thyroid hor-

mone concentrations were determined in blood serum. Analyses were carried out by the medi-

cal laboratory MVZ Labor PD Dr. Volkmann und Kollegen GbR (Karlsruhe, Germany), which

is an accredited lab according to DIN EN ISO 15189:2001, using standard analytical proce-

dures. Creatinine was quantified in-house in 24 h urine specimens using a photometric assay

based on the Jaffé reaction (DetectX1 Urinary Creatinine Detection Kit; Arbor Assays, Ann

Arbor, Michigan, USA). Total urinary nitrogen was quantified by the Kjeldahl method. FSH

was quantified in blood serum by an enzyme-linked immunosorbent assay (ELISA) (Human

FSH ELISA, BioVendor, Brno, Czech Republic). Urine osmolality was directly determined by

freezing-point depression, using a micro-osmometer (Advanced Micro-Osmometer model

3MO, Advanced Instruments, Norwood, MA, USA).

Data processing

(GC×)GC-MS. GC×GC-MS raw data files were processed by untargeted alignment by in-

house developed R-modules, as described recently [33]. Signal intensity drift, i.e. intra- and

inter-batch effects occurring during the 4–5 week measurement period were corrected by

means of regularly injected QC samples [34–36]. For the data of the semi-targeted GC-MS

analysis of sugar species in urine, an automatic method for integration was prepared using the

Postrun Analysis feature of GCMSsolution (v 4.1.1.). The parameters used to determine area

and height of peaks and for identification are given in section C of the S1 File. Peaks were inte-

grated according to target and reference ions, their ratios as well as deviation allowance for

these ratios. Results of automatic integration were checked manually (see section C of the S1

Metabolomics of age and sex in healthy humans
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File). An excel table with integrated peak areas of the chosen substances was created for further

data processing.

LC-MS metabolite profiling (Absolute IDQ™ p180 kit). To analyze the samples of the

entire study, five Absolute IDQ™ well plates were used. To account for possible batch effects

between the plates, data normalization as described by the manufacturer’s user manual was

applied based on the pooled QC samples which were extracted and measured ten times on

each well plate in between the study samples. The efficacy of the procedure was verified by

comparing PCA plots and coefficients of variation before and after plate correction.

NMR. All spectra were automatically phased with the Bruker AU program apk0.noe.

Using the program AMIX 3.9.14 (Bruker BioSpin GmbH, Rheinstetten, Germany) plasma

spectra were then referenced to the ethylenediaminetetraacetic acid (EDTA) signal at 2.5809

ppm and bucketed graphically, such that buckets wherever possible contained only one signal

or group of signals and no peaks were split between buckets. Urine spectra were resampled to

bring them to a uniform frequency axis. Then, spectra were aligned by “correlation optimized

warping” [37] and bucketed using an in-house developed software based on Python, again,

intended to define buckets that contain only one signal or group of signals and not splitting

peaks between buckets whenever possible. Resulting bucket tables were used for statistical

analyses and machine learning algorithms after normalizing to osmolality in case of urine

data.

Data analysis

Data of the different analytical platforms were integrated into a combined data matrix, consist-

ing of 301 samples and> 1000 analytes (including knowns and unknowns). Analytes with a

detected frequency lower than 75% in the study samples were eliminated from the data matrix

prior to statistical analysis. Non-detected values were replaced by values corresponding to 1/10

x limit of quantitation (LOQ) in targeted methods, where no limit of detection (LOD) was

determined; 1/2 x LOD in methods, where LOD was determined/available; or 1/2 x minimal

intensity for non-targeted MS-based methods.

The analytes were arranged in columns of this common data matrix, which were mean cen-

tered and scaled by standard deviation prior to analysis. This resulting matrix was used as

input for three different prediction models: support vector machine (SVM) with linear kernel,

generalized linear model net (glmnet), and PLS. Three algorithms were used in order to sup-

port the interpretation of the results, assuming that metabolites appearing as important in dif-

ferent algorithms are biologically relevant. The prediction performance of these models is

dependent of model specific hyperparameters which have to be optimized. For example, SVM

uses a cost parameter C that controls the trade-off between complexity of the decision function

and training error. The parameters α and λ are tuned in glmnet, and the number of compo-

nents (ncomp) in PLS. In order to find the optimal value for the hyperparameter, a grid search

in conjunction with a nested 5x10-fold cross validation scheme [38] was applied, and the aver-

age of the resulting 50 values was used in the final model. This way, in PLS the number of com-

ponents included in the model ranged between 2 and 7, depending on the question (sex, age,

menopause) and matrix (plasma, urine). When the model was used to predict sex or meno-

pausal status, the classification accuracy was assessed. For the continuous model of age the

root mean squared error (RMSE) and R2 were calculated to estimate performance of the pre-

dictions. Details on nested cross-validation can be found in section I of the S1 File.

For the prediction of sex, due to the relatively low number of young females compared to

young men, only participants in the age range of 36–80 were included. In this age range the

number of males and females is comparable (n = 99 and n = 101, respectively).

Metabolomics of age and sex in healthy humans
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Each prediction model yields a metabolite pattern, i.e. a combination of analytes that is

important for the correct prediction. In case of linear SVM and glmnet negative and positive

weights occur, e.g. favoring the male or female class, respectively. In case of PLS positive and

negative weight are distributed over multiple components and can only be summarized into a

single value by summing up the squared weights from the different components. For the pre-

sentation of results, analytes were assigned a rank for each algorithm according to their weight,

the ranks of the three algorithms were averaged, and analytes sorted according to mean rank.

Identification of unknown substances from non-targeted analyses that are important for

the prediction of sex or age was performed by comparison with databases, as described in Wei-

nert et al. and Egert et al. [26, 33] for GC×GC-MS or with the Chenomx NMR Suite 8.1 (Che-

nomx, Edmonton, Canada) for NMR.

Results

Basic characteristics of KarMeN study participants

Basic characteristics of the KarMeN study participants as well as selected anthropometric,

physiological and functional parameters assessed are listed in Table 1.

Metabolomics data from the multi-platform approach

All plasma samples were analyzed by GC×GC-MS, GC-MS, LC-MS/MS, NMR, and classical

clinical biochemistry. After quality checks and data filtering, 442 analytes were included in the

metabolomics data analyses. Of these, 174 were derived from targeted analyses and thus

known a priori. Of the detected analytes from non-targeted analyses, approximately 40% could

be identified or putatively annotated by comparison with databases. For 24 h urine samples, in

addition to classical clinical biochemistry analyses, metabolomics analyses were performed

using GC×GC-MS, GC-MS, and NMR, yielding 531 analytes after data filtering. Targeted

analyses contribute 57 a priori known metabolites, whereas from the non-targeted analyses

approximately 28% of analytes could be identified or putatively annotated. The complete data-

set is shown in S1 Table.

Prediction of sex

In order to determine if the metabolite profiles of the KarMeN study participants are associ-

ated with sex, predictive modelling was performed on the combined data matrix including

Table 1. Basic characteristics of KarMeN study participants.

Female Male Total

n = 129a n = 172 n = 301

Age (y) 51.7 ± 15.0b 44.4 ± 17.9 47.5 ± 17.1

BMI (kg/m2) 23.2 ± 2.9 24.4 ± 2.7 23.9 ± 2.9

Body fat (%) 34.8 ± 6.8 23.9 ± 6.6 28.5 ± 8.6

BPc sys (mmHg) 121 ± 18 128 ± 14 125 ± 16

BP dias (mmHg) 83.8 ± 12.4 84.8 ± 10.6 84.4 ± 11.4

Basal metabolic rate (kcal/d) 1194 ± 127 1574 ± 191 1411 ± 251

Total serum cholesterol (mg/dL) 209 ± 39.5 (n = 128) 191 ± 45.1 199 ± 43.6 (n = 300)

Serum glucose (mg/dL) 84.9 ± 7.5 (n = 128) 86.6 ± 8.2 85.9 ± 8.0 (n = 300)

Serum insulin (μIU/mL) 9.64 ± 6.94 (n = 127) 10.25 ± 4.50 9.99 ± 4.27 (n = 299)

a with n = 56 in pre- and n = 73 in post-menopausal state at time of sampling and examination
b Data are given in mean ± SD.
c Abbreviations: BP, blood pressure; sys, systolic; dias, diastolic

https://doi.org/10.1371/journal.pone.0183228.t001
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analytes form all analytical methods used. Prediction of sex was possible from plasma metabo-

lite profiles with generally more than 95% accuracy, whereas accuracy of prediction of sex

from urine metabolite profiles was possible with about 90%, with PLS yielding the highest

accuracy for both sample matrices (Table 2). The combination of plasma and urine profiles

did not improve the accuracy of prediction.

Metabolites most important for the correct prediction of sex from plasma or 24 h urine that

occurred in the patterns derived from all three algorithms are shown in Fig 1 and include

metabolites from all analytical platforms used. Metabolites with positive or negative weights in

the metabolite pattern tend to show higher concentrations in women or men, respectively (S1

Fig), although this does not necessarily have to be correct for all metabolites included in the

patterns. Most of these metabolites detected in plasma could be identified and include creati-

nine, uric acid, sarcosine and the BCAA leucine, isoleucine, or indoleacetic acid, which all

have negative weights, i.e. generally show higher concentrations in men. Creatine, phosphate,

glycine, sphingomyelin (SM) C18:1, and several phosphatidylcholines, on the other hand, have

positive weights, i.e. tend to show higher concentrations in women. The two urine metabolites

with the highest mean ranks could be identified as 4-deoxythreonic acid (higher in men) and

α-ketoglutaric acid (higher in women). Other urinary metabolites contributing to the correct

prediction of sex included creatinine, leucine, dimethylamine, 2-hydroxyphenylacetic acid,

chloride, and sodium with higher concentrations in men; and citrate, fructose, and p-cresol

with higher concentrations in women (Fig 1). Unfortunately, several of the urinary analytes

important for the prediction of sex could not be identified yet.

Prediction of age

In order to determine whether the metabolite profiles of the KarMeN study participants are

associated with age, predictive modelling was performed on plasma and urine metabolite pro-

files using three different algorithms. Since metabolite profiles of humans are different

between sexes, these predictions for age were performed separately for men and women.

Prediction of age in men. For men, all algorithms used showed clear associations of metabo-

lite profiles with age (Table 3), with PLS generally showing the best prediction (R2 approx. 0.7).

The most important metabolites for the correct prediction of age that occur in the metabo-

lite patterns of all three algorithms used are shown in Fig 2. Again, analytes from all applied

analytical platforms are contained in this list. Metabolites with positive or negative weights in

the metabolite pattern tend to show higher concentrations in older or younger men, respec-

tively (S2 Fig). Most of the metabolites detected in male plasma could be identified and include

phosphate, glycoursodeoxycholic acid (GUDCA), lysophosphatidylcholine (lysoPC) a C18:2,

and L-methionine, which show negative weights, i.e. generally higher concentrations in

Table 2. Prediction accuracy of sex of the KarMeN study participants based on metabolite profiles in plasma and urine using different algorithms.

Matrix Algorithm Accuracy % (total) n = 200 Accuracy % (men) n = 99 Accuracy % (women) n = 101

Plasma SVMlinear 96.7 95.9 97.6

glmnet 95.9 95.9 96.0

PLS 97.3 96.1 98.5

Urine SVMlinear 90.3 92.0 88.5

glmnet 90.5 89.4 91.5

PLS 90.5 93.5 87.4

Plasma + Urine SVMlinear 95.8 95.0 96.6

glmnet 95.8 95.3 96.3

PLS 97.2 97.9 96.4

https://doi.org/10.1371/journal.pone.0183228.t002
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younger men. In contrast, myo-inositol, arabitol, isocitric acid, glucuronic acid, L-ornithine,

TMAO, SM C16:1, L-tyrosine, hippuric acid, choline, pseudouridine, and potassium show pos-

itive weights and therefore tend to have a higher concentration in older men (Fig 2). In urine

samples of male participants, many of the analytes important for correct prediction of age

could not be identified. Of the known metabolites, 4-hydroxymandelic acid, glutaric acid, cre-

atinine, N-acetylaspartic acid, and sedoheptulose show higher concentrations in younger men,

whereas 2,5-furandicarboxylic acid, hippuric acid, citric acid, 3-aminoisobutyric acid, and qui-

nolinic acid show a higher concentration in older men (Fig 2).

Prediction of age in women. For women, the associations of metabolite profiles with age

were less strong than for men (Table 3) with PLS again yielding the best prediction (R2 approx.

0.6). The most important mean rank metabolites for the correct prediction of age are shown in
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Fig 1. Metabolite patterns for the prediction of sex. Top 25 metabolites important for the correct prediction of sex of the KarMeN study

participants in all algorithms applied on plasma (A) and 24 h urine (B) metabolite profiles. Positive and negative weights favor female and male

class, respectively. Patterns are shown for linear SVM (blue bars) and glmnet (red bars) only, since PLS only yields positive values. Metabolites

are sorted according to “mean rank” of all three algorithms. Analytical methods from which metabolites stem are denoted in parentheses, with

CB, clinical biochemistry; GC, GC-MS; GC×GC, GC×GC-MS; LC, LC-MS; NMR, nuclear magnetic resonance. * Tentatively identified using the

NIST2011 library solely based on mass spectral similarity. ** Identified using the FIEHN library based on mass spectral similarity and retention

index. *** Signal possibly includes other metabolites. Abbreviations: U, unknown; 3-OH-3-MBA, 3-hydroxy-3-methylbutyric acid; 4-DTA,

4-deoxythreonic acid; α-KGA, α-ketoglutaric acid; 2-HPAA, 2-hydroxyphenylacetic acid.

https://doi.org/10.1371/journal.pone.0183228.g001
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S3 Fig. Again, analytes from all applied analytical platforms are contained in the ranking, and

the positive or negative weights tentatively indicate higher concentrations of metabolites in

older or younger women, respectively.

In female plasma samples many metabolites important for the correct prediction of age

could be identified and include ornithine, choline, pseudouridine, hippuric acid, meso-erythri-

tol, potassium, phenylalanine, SM(OH)C14:1, SM(OH)C16:1, cholesterol, D-glucuronic acid,

glucose, and phosphatidylcholine (PC).aa.C32:2, which tend to be higher in older women,

whereas PC.ae.C44:5, isoleucine, aspartic acid, malic acid, and tryptophan tend to be higher in

younger women (S3 Fig). Also, many of the analytes important for correct prediction of age

from female urine samples could be identified. The known metabolites that tend to be higher

in younger women include sedoheptulose, N-acetyl-L-aspartic acid, glutaric acid, uracil, suc-

cinic acid, 1,5-anhydro-D-sorbitol, creatinine, erythronolactone, and tiglylglycine. On the

other hand, 2-O-methylascorbic acid, formic acid, 2,5-furandicarboxylic acid, 4-hydroxyphe-

nyllactic acid, and tartaric acid tend to be higher in older women (S3 Fig).

Metabolites important for prediction of age in men and women. Several metabolites

were found to be associated with age in both sexes and could therefore be described as sex-

independent markers of age. They include ornithine, hippuric acid, choline, pseudouridine,

glucuronic acid, phenylalanine, potassium in plasma and glutaric acid, creatinine, N-acetylas-

partic acid, 2,5-furandicarboxylic acid, sedoheptulose, and several unknown metabolites in

urine (Fig 2 and S3 Fig).

Classification of menopausal status in women. Prediction of age in women was less

accurate than prediction of age in men, and concentrations of many metabolites showed a dis-

continuous trajectory with age, with a sudden increase around the age of 50 (S4 Fig). Thus, the

prediction of age in women was also performed in a categorical manner for pre- and post-

menopausal women using the same classification analyses as for the prediction of sex.

Based on plasma metabolome data, prediction of menopausal status was possible with a

high accuracy of about 88%, whereas prediction based on urine metabolome data was possible

with up to 85% accuracy, with PLS being the algorithm producing the best results in both cases

(S2 Table). Combining the data from plasma and urine samples increased the accuracy of pre-

diction to about 90%, where SVM showed the best performance (S2 Table).

Of the plasma metabolites most important for the correct prediction of menopausal status

only few were identical to the ones important for the prediction of continuous age in women,

Table 3. Prediction of chronological age of the KarMeN study participants based on metabolite profiles in plasma and urine using different

algorithms.

Men

(n = 172)

Women

(n = 129)

Plasma Algorithm RMSE R2 RMSE R2

SVMlinear 9.09 0.729 9.44 0.58

glmnet 9.33 0.713 9.60 0.559

PLS 8.39 0.773 9.19 0.603

Urine Algorithm RMSE R2 RMSE R2

SVMlinear 10.98 0.607 10.25 0.482

glmnet 10.79 0.619 10.88 0.418

PLS 9.79 0.687 9.37 0.575

Plasma and Urine Algorithm RMSE R2 RMSE R2

SVMlinear 8.73 0.75 9.11 0.608

glmnet 9.06 0.732 9.72 0.553

PLS 8.31 0.776 9.02 0.611

https://doi.org/10.1371/journal.pone.0183228.t003
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and include ornithine, choline, glucuronic acid, and cholesterol. Other plasma metabolites

important for the correct classification of women according to their menopausal status include

creatinine, serine, myo-inositol, carnitine, and others (S5 Fig). Important metabolites in urine

were largely identical to the ones important for prediction of continuous age in women, such

as sedoheptulose, 1,5-anhydro-D-sorbitol, and uracil. Other urinary metabolites include 4-pyr-

idoxic acid, glycine, ribose, and aminomalonic acid (S5 Fig).

Discussion

KarMeN study and multi-platform approach

The participants of the KarMeN study were very well characterized, including anthropometric,

physiological and functional measures. Samples were generated according to established SOPs
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Fig 2. Metabolite patterns for the prediction of age in men. Top 25 metabolites important for the correct prediction of age of the male

KarMeN study participants in all algorithms applied on plasma (A) and 24 h urine (B) metabolite profiles. Positive and negative weights

favor older and younger age, respectively. Patterns are shown for linear SVM (blue bars) and glmnet (red bars) only, since PLS only yields

positive values. Metabolites are sorted according to “mean rank” of all three algorithms. Analytical methods from which metabolites stem are

denoted in parentheses, with CB, clinical biochemistry; GC, GC-MS; GC×GC, GC×GC-MS; LC, LC-MS; NMR, nuclear magnetic resonance.

* Tentatively identified using the NIST2011 library solely based on mass spectral similarity. ** Identified using the FIEHN library based on

mass spectral similarity and retention index. *** Signal possibly includes other metabolites. Abbreviations: U, unknown; PO4, phosphate;

Met, L-methionine; 1,5-AS, 1,5-anhydro-D-sorbitol; Phe, phenylalanine; 4-HMA, 4-hydroxymandelic acid; N-AAA, N-acetylaspartic acid;

2,5-FDCA, 2,5-furandicarboxylic acid; ism, isomer; 3-AIBA, 3-aminoisobutyric acid.

https://doi.org/10.1371/journal.pone.0183228.g002
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and under very controlled conditions, with plasma samples collected in the fasting state and a

24 h urine sample collected on the day prior to and up to blood sampling. We focused on

healthy participants in a normal to moderately overweight weight range, in order to minimize

any interference with diseases, medication or metabolic anomalies. Further, menopausal status

in women was assessed. Since the use of oral contraceptives has been described to alter the

plasma metabolome [4], hormonal treatment or supplement use was not allowed for partici-

pants in order to reduce metabolic variation due to hormones or supplements.

Care was also taken to control every step along the metabolomics pipeline in the best possi-

ble way from study design to sample collection, sample storage, sample analysis, and data anal-

ysis. Therefore, although the study included only 301 participants and the study design was

cross-sectional, the data constitutes valuable information for validation investigations.

Previous studies investigating the impact of age and sex on the human metabolome have

based their findings mostly on only one body fluid, and applied mainly one analytical method

[2, 5, 16, 18, 22]. We investigated both plasma and urine and combined several different analyti-

cal methods with targeted and non-targeted approaches in order to assure a broad coverage of

the metabolome. In this way, after quality control and filtering of the data, we detected more

than 400 analytes in plasma and more than 500 analytes in urine from many different chemical

classes. Owing to the fact that some metabolites are detected with more than one method and

that some metabolites may yield more than one signal in non-targeted methods, the number of

unique metabolites will be considerably less. Especially in NMR spectroscopy one compound

can produce many signals in various regions of the spectra, resulting in several variables in non-

targeted analysis. In addition, automatic alignment of peaks in NMR spectra of urine is difficult

and can yield different results, depending on the alignment method applied as reviewed by Vu

and Laukens [39]. The fact that some metabolites are detected by several methods, however,

could be used as a quality measure of our analyses since correlations of these metabolites

between methods was very good in most cases. Therefore, this multi-platform approach is clearly

a strength of our study allowing to correlate metabolite concentrations or intensities between dif-

ferent analytical techniques, to judge the quality of the data, and to identify unknowns [40].

Data analysis was done by multivariate methods: three different machine learning algo-

rithms that are suited for analysis of large-scale metabolomic datasets were used to perform

cross-validated predictive modelling. This enabled prediction of sex or age of “unknown” sam-

ples, and yielded metabolite patterns, i.e. combinations of metabolites that are important for

the correct prediction. Since with these methods the coefficient (weight or “importance

value”) of one metabolite depends on all others, a single importance value cannot be inter-

preted outside this context, and even the signs of the importance values do not necessarily

show the correct concentration trend for all metabolites. For the discussion, however, metabo-

lites that were important in all three algorithms were considered biologically relevant for the

respective questions and are discussed here further (see also S3 Table).

Association of metabolite profiles with sex

Using different machine learning algorithms, it was possible to correctly predict the sex of the

study participants with> 95% accuracy from plasma and> 90% accuracy from urine metabo-

lite profiles. Metabolites that are important for correct prediction from plasma include creati-

nine detected by different analytical methods, lipids (mainly phospholipids), and amino acids

(S3 Table). Especially BCAA and their metabolites seem to play a role in the difference between

men and women, showing higher concentrations in male plasma. This has been shown before

in adolescents [22, 41] and adults [3, 4, 23, 42–45] and is assumed to be caused by the larger

muscle mass in men [46] or a higher protein intake of men compared to women, as a direct
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association between the intake and plasma levels of BCAA has been shown [47–49]. As

described previously in the context of sex differences [3, 4, 6, 50], also in our study several lipid

metabolites in plasma were important for the prediction of sex, which were all higher in

women. Sarcosine has to the best of our knowledge not been described in the context of sex

before. Since it is present in food and can also be formed as an intermediate in the metabolism

from choline to glycine, the difference in plasma sarcosine concentrations between men and

women could indicate different dietary habits [51]. The intermediates in this pathway, choline,

betaine, dimethylglycine, and sarcosine all tend to be higher in men. Glycine, however, tends

to be higher in women which is in agreement with previous reports [3, 4, 23]. Therefore, the

role of plasma sarcosine in the prediction of sex remains speculative.

Unfortunately, many of the metabolites that are important for the prediction of sex from

urine metabolite profiles could not yet be identified. Some of the ones that could be annotated

or were derived from targeted analyses have been described before to differ between men and

women, such as creatinine [2, 5, 16, 20, 52], which is higher in men and known to be deter-

mined by muscle mass, or citrate [2, 5, 16, 20, 53, 54], which is higher in women. The reason

behind this is largely speculative. Excretion of citrate is determined in part by the rate of intra-

cellular citrate metabolism [55]. Since another intermediate of the citric acid cycle, α-ketoglu-

taric acid, is also higher in women, this may hint at a general difference in citric acid cycle

turnover between men and women. However, at least in skeletal muscle no sex differences in

activities of the enzymes of the citric acid cycle have been found, and the capacity for acetyl-

CoA flux through the citric acid cycle appears to be similar in men and women [56].

The metabolite with the highest importance value for the prediction of sex from urine

metabolite profiles, 4-deoxythreonic acid, has not been mentioned in literature in the context

of sex differences before. It is known to be present in urine [57, 58], and has been described as

a metabolite of L-Threonine [59]. Its function, however, is yet unknown. In addition, we found

several other metabolites that are important for the prediction of sex that have not been

described in this context before (S3 Table).

Although we cannot explain the functional role of the described metabolites with this study,

it is easy to imagine that the hormonal differences between men and women, leading among

other effects to different body composition, and behavioral or life-style differences are the

underlying cause for many of the observed metabolite differences.

One limitation of our study is that we were not able to recruit an adequate number of

young females due to exclusion of hormonal contraceptive use. Therefore, prediction models

for sex are based on participants ranging from 36 to 80 years of age. Also, due to the fact that

we did not further explore analytes that occurred in less than 75% of all study samples, we may

have missed metabolites that are specific to one sex.

Based on our results and observations in other studies, we argue that sex has to be taken

into account as a potentially confounding factor for all metabolomics analyses that are based

on study populations including men and women.

Association of metabolite profiles with age

Since sex has a large influence on the metabolome, associations of metabolite profiles with age

were investigated separately for men and women. Employing different machine learning algo-

rithms, it was possible to predict the chronological age of the study participants in a continu-

ous model based on metabolite profiles from plasma or urine for men and women. However,

associations with urine were weaker than with plasma, and for women they were weaker than

for men. The latter could be caused by the lower number of women than men or due to meno-

pausal effects.

Metabolomics of age and sex in healthy humans

PLOS ONE | https://doi.org/10.1371/journal.pone.0183228 August 16, 2017 13 / 21

https://doi.org/10.1371/journal.pone.0183228


It has been reported before [1, 19] and is in line with our own data that concentrations of

some metabolites in women do not change continuously with age, but show a sudden increase

or decrease in concentration around the age of 50 that is associated with menopause. For men,

metabolite concentration changes with age occur continuously starting at 30 or 40 years of age

(S4 Fig). Therefore, we also calculated a categorical model for women, where age groups were

formed according to their menopausal status. Prediction of age category as defined by meno-

pausal status was possible with high accuracy based on plasma and urine metabolite profiles.

Interestingly, in plasma mainly other metabolites were important for the prediction of age cat-

egories, i.e. menopausal status, than for continuous age prediction, whereas in urine important

metabolites for age prediction were largely the same in both models (S3 and S5 Figs). This is

most likely due to the fact that the models for continuous age prediction selected for metabo-

lites that change linearly with age, whereas metabolites important for prediction of menopause

may show non-linear trajectories. However, prediction scores for classification of menopausal

status and the continuous age model are highly correlated (Spearman’s ρ = -0.89 for plasma

and -0.84 for urine), and therefore likely describe the same association.

Generally, as reported by others [1, 7, 18, 19, 42, 50, 60], we found that several amino acids,

lipids, and organic acids in plasma are important for the prediction of age in women, with

ornithine, choline, hippuric acid, cholesterol, glucuronic acid, and glucose occurring in metab-

olite patterns for chronological age and menopause (S3 Table). Interestingly, all these metabo-

lites have higher concentrations in older and post-menopausal women, respectively. Most of

them have been described before in the context of age [1, 16, 18, 61], although urinary hippuric

acid was found to be elevated in younger persons [16]. However, choline and glucuronic acid

have, to our knowledge not been reported before. Since a number of phospholipids show

higher concentrations in older women, it is plausible that choline is also increased in this con-

text. It should be mentioned, however, that the concentration is only marginally higher in

older women, and some phospholipids show lower concentrations in older women. Therefore

this assumption is purely speculative. Further metabolites contained in the pattern for continu-

ous age in women, that have not been reported in this context, include pseudouridine, potas-

sium (higher in older women), and malic acid (higher in younger women).

Most metabolites in urine that were found to be important for the prediction of age in

women have not been reported in this context before with a few exceptions. N-acetyl-aspartic

acid was found by Thévenot et al. to be associated with age, but also with sex and BMI [6]. The

sugar alcohol 1,5-anhydrosorbitol was found to be decreasing with age in plasma [62], which

could explain our observation of lower concentrations in urine in older women. Creatinine in

urine decreases with age in our study, which is in line with other studies [2, 5, 16] and could

possibly be explained by an age-related decline in lean body mass or renal function. Most

other known metabolites contained in the pattern have not been reported as being associated

with age. Of those, sedoheptulose was the most important metabolite for the prediction of

chronological age and menopausal status. It is a sugar with 7 C-atoms that is an intermediate

in the pentose phosphate cycle. Although its presence in urine has been described almost 50

years ago [63], so far it has only been discussed in the context of enzyme deficiencies [64, 65],

but not in healthy humans.

Sedoheptulose was also important for the correct prediction of age in men, but with a lower

rank than in women (S3 Table). Further metabolites were important for the prediction of age

in men and women, such as creatinine and N-acetylaspartic acid, which have been discussed

above, but also glutaric acid and 2,5-furandicarboxylic acid, which to our knowledge have not

been reported to be associated with age. The concentration of glutaric acid is higher in younger

men and women. Since it is a metabolite of lysine degradation, this could again hint at a higher

protein intake and a higher supply with essential amino acids, respectively, in younger
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compared to older participants. 2,5-Furandicarboxylic acid has been described as being pres-

ent in urine in the early 1970ies by Pettersen and Jellum [66]. They also suggested that this

metabolite is derived from exogenous origin, such as furan derivatives in food that was pre-

pared by strong heat treatment [66] again pointing at potentially varying dietary intakes in

men and women of different ages.

The urinary metabolite with the highest importance value for the prediction of age in men

was 4-hydroxymandelic acid with higher concentrations in younger men. Unfortunately, not

much has been reported about this molecule. It has been found as a metabolite in human urine

after consumption of a polyphenol mix from red wine and red grape juice extracts [67], sug-

gesting differences in nutrition habits between younger and older men.

When looking at plasma metabolites contained in the metabolite pattern for age of men,

analogous to the pattern in women, mainly lipids, amino acids, and organic acids are impor-

tant (S3 Table). Several metabolites are present in the metabolite pattern for age of men and

women, including ornithine, hippuric acid, choline, pseudouridine, glucuronic acid, phenylal-

anine, and potassium, with phenylalanine being the only metabolite that shows opposite trends

in men and women. Other metabolites are specific to men, such as phosphate, GUDCA,

lysoPC C18:2, methionine, which are all higher in younger men, or myo-inositol, arabitol, iso-

citric acid, TMAO, and others (higher in older men).

One has to keep in mind that our continuous models were based on chronological age but

not on biological age as suggested by Hertel et al. [68], whereas menopausal status may repre-

sent biological/physiological age to some extent. Also the described results are observations

from a cross-sectional study with samples taken in the fasting, i.e. steady state. Therefore, it is

not possible to draw any conclusions on the mechanisms behind the observed associations,

since they are most likely a combination of endogenous processes related to aging and exoge-

nous life-style differences, such as dietary habits, physical activity etc.

In general, we listed and discussed metabolites only if they had high ranks in all three algo-

rithms. This way we may have missed some metabolites that are important for the prediction

of sex or age in only one or two algorithms, but we concluded that metabolites with high ranks

in all three algorithms may have a high biological relevance and are not method-specific.

As elaborated above, many of the metabolites found in this study to be important for the

prediction of sex or age have been reported multiple times in different studies. Therefore,

these metabolites seem to be reliable and robust markers and thus likely also biologically rele-

vant, since study participants, analytical methods, and statistical methods vary considerably

between these studies. While most other studies looked at significant differences in metabolite

concentrations between sexes or age groups, our predictive modelling approach identified

metabolite patterns that are important for the correct prediction of sex or age, i.e. a set of

metabolites that in combination and in their relation to one another are associated with sex or

age. If metabolites are found to be associated with sex or age in both approaches, this may indi-

cate their fundamental functions in the metabolism with respect to sex and age.

In addition, due to the wide analytical coverage based on different analytical techniques

and the predictive modelling approach we found several metabolites that have not been

reported before to be associated with sex or age. Nevertheless, these may also be relevant in

other study populations.

Based on our results and observations in other studies [5–7], we argue that age has to be

considered as a potentially confounding factor for metabolomics analyses. In addition we and

others [1, 19] found that age-trajectories of many metabolites are sex-dependent. This means

that also age-sex-interactions have to be included in statistical modeling, which can have

important implications for the statistical methodology in the field of metabolomics.
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Conclusions

The clear associations of metabolite patterns of the participants of the KarMeN study with sex

and age demonstrate that the human urine and plasma metabolome varies with age and differs

between sexes. Using different machine learning algorithms, it was possible to predict sex and

age from metabolite profiles of plasma and urine. Due to the fact that we employed a wide

spectrum of analytical methods, that the participants of this study were very well characterized,

and sampling and examinations were performed in very standardized conditions, several

metabolites were found to be important for the correct prediction of sex or age that have not

been described before. Other metabolites identified as being important for the prediction of

sex or age, have been reported previously. This suggests that these are robust markers for sex

or age in healthy humans. Several metabolites were found to be associated with age in men

and women. Thus, they could potentially be considered general markers of age. Due to the

associations of sex and age with the metabolome and the different age-trends in men and

women, we recommend to include not only sex and age but also sex-age-interactions in statis-

tical data analyses of metabolomics studies.
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