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Abstract

Metabolic reprogramming has been proposed to be a hallmark of cancer, yet we currently lack a

systematic characterization of the metabolic pathways active in transformed cells. Using mass

spectrometry, we measured the consumption and release (CORE) of 219 metabolites from media

across the NCI-60 cancer cell lines, and integrated CORE profiles with a pre-existing atlas of gene

expression. The integrated analysis identified glycine consumption and expression of the

mitochondrial glycine biosynthetic pathway as strongly correlated with rates of proliferation

across cancer cells. Antagonizing glycine uptake and its mitochondrial biosynthesis preferentially

impaired rapidly proliferating cells. Moreover, higher expression of this pathway was associated

with greater mortality in breast cancer patients. Increased reliance on glycine may represent a

metabolic vulnerability for selectively targeting rapid cancer cell proliferation.

Malignant transformation results from mutations that alter cellular physiology to confer a

proliferative advantage (1, 2). Despite the genetic heterogeneity and complexity of cancer

(3), transformed cells exhibit a number of proposed common hallmarks, including metabolic
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reprogramming, which manifests as altered nutrient uptake and utilization (2, 4). Although

metabolic reprogramming is thought to be essential for rapid cancer cell proliferation, a

systematic characterization of the metabolic pathways active in transformed cells is lacking,

and the contribution of these pathways in promoting rapid cancer cell proliferation remains

unclear (4). Existing studies of cancer metabolism have only examined relatively few cell

lines, and have largely focused on measurement of intracellular metabolite pools (5) from

which it is difficult to infer metabolic pathway activity, or have estimated metabolic flux

through a limited number of reactions using isotope tracing (6).

To systematically characterize cancer cell metabolism, we used liquid chromatography-

tandem mass spectrometry to profile the cellular consumption and release (CORE) of 219

metabolites (table S1) spanning the major pathways of intermediary metabolism, in the

NCI-60 panel, a collection of sixty well-characterized primary human cancer cell lines

established from nine common tumor types (7). CORE profiling builds upon metabolic

footprinting or exometabolomics (8, 9), and provides a systematic and quantitative

assessment of cellular metabolic activity by relating metabolite concentrations in medium

from cultured cells to baseline medium, resulting in a time-averaged consumption and

release (CORE) profile for each metabolite on a per cell basis over a period of exponential

growth (Fig. 1). Using CORE profiling we identified 140 metabolites that were either

present in fresh medium or released by at least one cancer cell line, of which 111

metabolites demonstrated appreciable variation across the 60 cell lines, with excellent

reproducibility between biological replicates (Fig. 2). Approximately one third of the 111

metabolites were consumed by all cell lines, whereas most of the remaining two thirds of

metabolites were consistently released into the medium; only a handful of metabolites

exhibited consumption in certain cell lines and release by others (Fig. 2). A larger, fully

annotated version of Fig. 2 is provided in Fig. S1.

This CORE atlas of cancer metabolism (Fig. 2, S1) can be used to explore metabolic

phenotypes of cancer cells and to discover relationships between metabolites. For example,

ornithine was released from leukemia cells and adenosine and inosine were released from

melanoma cells (Fig. S2), reflecting metabolic activities that may be unique to these cancers.

Unsupervised cluster analysis of metabolite CORE data identified leukemia cells as a

distinct group, but did not more generally distinguish between tumor cell lines based on

tissue of origin (Fig. S3). Functionally related metabolites demonstrated similar patterns of

consumption and release across the 60 cell lines. For example, major nutrients including

glucose, essential amino acids, and choline formed a single cluster, as did metabolites

representing glycolysis, the citric acid cycle, nucleotides, and polyamines (Fig. 2, Fig. S1).

Consumption of major nutrients also correlated with release of their byproducts: for

example, glucose consumption correlated to lactate release (Fig. 1B), consistent with the

well-documented Warburg effect in transformed cells (4). A similar pattern of nutrient

consumption and byproduct release was also observed with other nutrients. Glutamine

consumption, quantitatively the greatest among amino acids, was closely mirrored by

glutamate release (Fig. 1B). An analysis of all monitored metabolites revealed that total

measured carbon consumption was also closely correlated to total measured carbon release

(Fig. 1B), suggesting that transformed cells share a common metabolic phenotype of

incomplete catabolism of major nutrients followed by byproduct release.

We next sought to determine whether any metabolite CORE profiles were associated with

cancer cell proliferation. Previously reported doubling times across the 60 cancer cell lines

ranged from 17.0 to 79.5 hours and were highly reproducible (10)(Fig. S4). From the 111

metabolite CORE profiles, two metabolites, phosphocholine and glycine, were significantly

correlated (Bonferroni-corrected P < 0.01) with proliferation rate across the 60 cell lines

(Fig. 3A). Phosphocholine, which was released from all cells, correlated with consumption
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of the essential nutrient choline (Fig. S5), and has been reported to accumulate in

transformed cells as a substrate for phospholipid biosynthesis (11). In contrast, the relation

between glycine consumption and proliferation rate was unanticipated, since glycine is a

non-essential amino acid that can be endogenously synthesized. Glycine exhibited an

unusual CORE profile, being consumed by rapidly proliferating cells and released by slowly

proliferating cells (Fig. 3B), suggesting that glycine demand may exceed endogenous

synthesis capacity in rapidly proliferating cancer cells, whereas in slowly proliferating cells,

glycine synthesis may exceed demand. Increasing glyine consumption with faster

proliferating rate was observed across all 60 cell lines (Fig. 3B), and was even more

pronounced within specific tumor types, including ovarian, colon, and melanoma cells (Fig.

3B, Fig. S6), but not evident in non-adherent leukemia cells (Fig. S6). To determine whether

glycine consumption is specific to transformed cells or a general feature of rapid

proliferation, we measured glycine consumption in cultured primary human mammary

epithelial cells (HMEC), human bronchial epithelial cells (HBE), human umbilical vein

endothelial cells (HUVEC) and human activated CD4+ T lymphocytes. These

nontransformed cells had doubling times between 8 and 18 hours, comparable to the most

rapidly dividing cancer cells, yet each of these cell types released rather than consumed

glycine (HMEC: 3.5 ± 0.8; HBE 17.5 ± 3.2; HUVEC 8.4 ± 1.4; lymphocytes 1.9 ± 0.3 fmol/

cell/h). Thus, glycine consumption appears to be a feature specific to rapidly proliferating

transformed cells.

To complement the metabolite CORE analysis, we next examined the gene expression of

1,425 metabolic enzymes (12) in a previously generated microarray dataset across these 60

cell lines (13). This independent analysis revealed that glycine biosynthesis enzymes are

more highly expressed in rapidly proliferating cancer cell lines (Fig. 3C). Intracellular

glycine synthesis is compartmentalized between the cytosol and mitochondria (14),

providing two separate enzymatic pathways (Fig. 3D). The mitochondrial glycine synthesis

pathway consists of the glycine-synthesizing enzyme serine hydroxymethyltransferase 2,

SHMT2, a target of the oncogene c-Myc (15), as well as MTHFD2 and MTHFD1L, which

regenerate the cofactor tetrahydrofolate (THF) for the SHMT2 reaction (Fig. 3D). Only the

mitochondrial pathway exhibited significant correlation with proliferation, whereas the

corresponding cytosolic enzymes did not (Fig. 3C), suggesting a key role for mitochondria

in supporting rapid cancer cell proliferation. To assess the relative contributions of glycine

consumption vs. endogenous synthesis to intracellular glycine pools, we utilized tracer

analysis with 13C-labeled glycine in rapidly dividing LOX IMVI cells. Assuming a simple

steady state model (13), we estimate from labeling of intracellular glycine and serine pools

(Fig. 3E) that approximately one-third of intracellular glycine originates from extracellular

consumption, whereas the remainder is synthesized endogenously. Thus, both metabolite

CORE profiling and gene expression analysis independently identify glycine metabolism as

closely related to rapid proliferation in cancer cells.

To directly evaluate the contribution of glycine metabolism to rapid cancer cell proliferation,

we used a combination of genetic silencing and nutrient deprivation. We stably silenced

expression of the glycine-synthesizing enzyme SHMT2 in slowly proliferating A498 cells

and in rapidly proliferating LOX IMVI cells (Fig. 3B) with four distinct shRNA hairpins

(Fig. S7A). CHO strains mutant in SHMT2 have previously been shown to be auxotrophic

for glycine (16). Silencing of SHMT2 in the absence of extracellular glycine halted

proliferation of LOX IMVI cells (Fig. 3F), and was rescued by the addition of glycine to the

medium, indicating that glycine itself, rather than one-carbon units derived from the SHMT2

reaction (Fig. 3D), is critical to proliferation in these cells (Fig. 3F). Supplementation of

medium with sarcosine, a glycine-related metabolite (17), or formate, a source of cellular

one-carbon units (18), failed to rescue LOX IMVI cells (Fig. S7B). In contrast, slowly

proliferating A498 cells (Fig. 3F) were not impaired by SHMT2 depletion and extracellular
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glycine deprivation, indicating that other means of glycine synthesis can satisfy the

requirements in these cells. Withdrawal of extracellular glycine alone also reduced the

proliferation of LOX IMVI cells but not A498 cells (Fig. S8), although this effect was more

subtle. Collectively, our data suggest that mitochondrial production of glycine is critical

specifically in rapidly proliferating cancer cells. To determine whether this reliance on

glycine for rapid proliferation extends to other cancer cells, we tested silencing of SHMT2
(Fig. S7C) and extracellular glycine deprivation of 10 additional primary cancer cell lines

from the NCI-60 panel (Fig. 3G). Rapidly proliferating cancer cells exhibited slower

proliferation with antagonism of glycine metabolism and were rescued with addition of

extracellular glycine, whereas slowly proliferating cells were less sensitive to these

perturbations (Fig. 3G), even when assessed at later time points to allow for a comparable

number of cellular divisions relative to rapidly proliferating cells (Fig. S9).

We next sought to explore the potential mechanisms by which glycine metabolism

contributes to rapid cancer cell proliferation. Metabolic tracing with 13C-labeled glycine

revealed incorporation of consumed glycine into purine nucleotides in rapidly proliferating

LOX IMVI cells, but limited incorporation in slowly proliferating A498 cells (Fig. 4A,B),

suggesting that consumed glycine in part supports de novo purine synthesis in these cells.

We also noted incorporation of labeled glycine into cellular glutathione (Fig. S10A).

Analysis of previously performed large scale chemosensitivity profiling across the 60 cancer

cells (7) revealed that sensitivity to an inhibitor of glutathione synthesis, buthionine

sulfoximine (19), was unrelated to proliferation rate (Fig. S10B), whereas sensitivity to

inhibitors of de novo purine biosynthesis, mycophenolate, tiazofurin, and alanosine (20),

were highly correlated with proliferation rate across the cell lines (Fig. S10C). Glycine can

be utilized for de novo purine biosynthesis by two mechanisms, direct incorporation into the

purine backbone or further oxidation by the glycine cleavage system (GCS) to yield one-

carbon units for nucleotide synthesis and cellular methylation reactions (Fig. 4A). Since

only carbon 2 of glycine is converted into one-carbon units by the GCS (Fig. 4A), we

cultured LOX cells in 1-13C-glycine or 2-13C-glycine to differentiate between these two

mechanisms (21). Consumed 2-13C-glycine did not give rise to doubly labeled purines (Fig.

4B), indicating that the incorporation of consumed glycine into purine nucleotides does not

involve oxidation by the GCS. To better characterize the impact of glycine deprivation on

cell cycle progression, we performed cell cycle analysis in HeLa cancer cells expressing a

geminin-GFP reporter and stained with DAPI (4′,6-diamidino-2-phenylindole). Silencing of

SHMT2 (Fig. S11A) and deprivation of extracellular glycine slowed proliferation in HeLa

cells (Fig. S11B), similar to other fast proliferating cancer cells (Fig. 3G), and resulted in

prolongation of G1 phase of the cell cycle (Fig. 4C, S11C), while protein synthesis remained

relatively intact (Fig. S11D), consistent with a defect in nucleotide biosynthesis (20).

Collectively, these results suggest that consumed glycine is utilized in part for de novo
purine nucleotide biosynthesis in rapidly proliferating in these cells, and antagonism of

glycine metabolism results in prolongation of G1, thus slowing proliferation.

To explore the potential relevance of glycine metabolism to cancer, we examined the

expression of the mitochondrial glycine synthesis enzymes, SHMT2, MTHFD2 and

MTHFD1L (Fig. 3D), in previously generated microarray datasets across six independent

large cohorts totaling over 1300 patients with early stage breast cancer followed for survival

(22–27). We defined two groups of individuals: those with above-median gene expression of

the mitochondrial glycine biosynthesis pathway, and those with below-median gene

expression. Above-median expression of the mitochondrial glycine biosynthesis pathway

was associated with greater mortality (Fig. 5), and a formal meta-analysis of all six datasets

indicated an overall hazard ratio of 1.82 (95% CI: 1.43 – 2.31; Fig. 5), comparable to that of

other established factors such as lymph node status and tumor grade, that contribute to poor

cancer prognosis (25). The mitochondrial glycine synthesis enzyme SHMT2 alone was also
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significantly associated with mortality, whereas its cytosolic paralog SHMT1 was not (Fig.

S12). These data highlight the potential importance of mitochondrial glycine metabolism in

human breast cancer.

In summary, we have generated a large-scale, quantitative atlas of cancer cell metabolism

using CORE profiling. This methodology and dataset may be of broad utility for

investigating cellular metabolism, as well as for identifying metabolite biomarkers of cancer

and drug responsiveness. In the current study, we have utilized this atlas to probe the

relation between metabolism and proliferation to discover an unexpected increased reliance

on glycine metabolism in rapid proliferation cancer cells, a phenotype that was not observed

in rapidly proliferating nontransformed cells. While we find that glycine is utilized for de
novo purine nucleotide biosynthesis in rapidly proliferating LOX IMVI cells, alternative

mechanisms including utilization of one-carbon groups derived from glycine for cellular

methylation reactions (17), may be important in other cancer cell types. Importantly, recent

work has identified that glycine and related metabolites, including sarcosine, serine and

threonine, or their associated metabolic pathways, are central to cancer metastasis (5),

cellular transformation (17, 28, 29), and murine embryonic stem cell proliferation (30).

Glycine metabolism may therefore represent a metabolic vulnerability in rapidly

proliferating cancer cells that could in principle be targeted for therapeutic benefit.

Methods summary

For detailed description of methods, please see Supplemental Methods.

Briefly, NCI-60 cancer cell lines were cultured in according to prior specifications (7), and

media samples were collected at baseline and after 4–5 days in culture. Metabolites were

measured in medium using LC-MS/MS, and absolute concentrations were determined using

serial dilutions of standards covering physiologic concentration ranges. Metabolite CORE

profiles were determined for each metabolite and cell line by examining the change in

metabolite concentration from fresh medium to spent medium, calculating the molar

difference, and normalizing to the area under the growth curve for the corresponding cell

line, to yield a metabolite consumption or release value/cell/hr. SHMT2 was silenced in cell

lines through stable expression of one of four shRNAs targeting distinct sequences for

human SHMT2 (sh1-4) or a control shRNA (shCtrl). Tracer studies were performed using

stable isotope 13C-glycine labeled in the carbon 1 versus carbon 2 position. Cell cycle

analysis was performed in HeLa cells expressing a reporter construct for geminin and

stained for DNA and protein content. In-vitro doubling times and tissue type annotations for

NCI-60 cells were provided by the NCI (http://dtp.nci.nih.gov/docs/misc/common_files/

cell_list.html). Previously generated microarray analysis and compound sensitivity measures

for small molecules across the NCI-60 were obtained from the NCI data repository (http://

dtp.nci.nih.gov/docs/dtp_search.html). For details of statistical analyses and expanded

details for above experiments please see Supplementary Materials and Methods.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Metabolite consumption and release (CORE) profiling
A: For determining metabolite CORE (consumption and release rate) profiles, medium

samples taken before (fresh) and after (spent) 4–5 days of cell culture are subjected to

metabolite profiling using LC-MS/MS. For each metabolite X, the CORE value is calculated

as the difference in molar abundance normalized to the area A under the growth curve. B:

Glucose consumption vs. lactate release; glutamine consumption vs. glutamate release; and

total measured carbon consumption vs. total measured carbon release, across the 60 cell

lines. Gray lines indicate the 1:1 molar ratio of carbon consumed: carbon released for each

metabolite pair; joined data points represent biological replicates.
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Figure 2. CORE profiling across the NCI60 cell lines
Hierarchical clustering of CORE profiles for 111 metabolites across 60 cancer cell lines, in

duplicate cultures. Blue color indicates consumption, white indicates no change, and red

color indicates release. Gray highlights indicate functionally related metabolites. Metabolites

that cannot be distinguished are denoted as x/y. Glycerol_1 and glycerol_2 represent

independent LC-MS/MS measures.
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Figure 3. Glycine consumption and synthesis are correlated with rapid cancer cell proliferation
A: Distribution of Spearman correlations between 111 metabolite CORE profiles and

proliferation rate across 60 cancer cell lines. Metabolites highlighted in red are significant at

P < 0.05, Bonferroni-corrected. B: Glycine CORE versus proliferation rate across 60 cancer

cell lines (left) and selected solid tumor types (right). Cell lines selected for follow-up

experiments are highlighted in red. Joined data points represent replicate cultures. P-value is

Bonferroni-corrected for 111 tested metabolites. C: Distribution of Spearman correlations

between gene expression of 1,425 metabolic enzymes and proliferation rates across 60

cancer cell lines. Highlighted are mitochondrial (red) and cytosolic (blue) glycine

metabolism enzymes. D: Schematic of cytosolic and mitochondrial glycine metabolism. E:

Abundance of unlabeled (0) and labeled (+1) intracellular glycine and serine in LOX IMVI

cells grown on 100% extracellular 13C-glycine. F. Growth of LOX IMVI and A498 cells

expressing shRNAs targeting SHMT2 (sh1-4) or control shRNA (shCtrl), normalized to

shCtrl cells; gly, glycine. G. Growth of 10 cancer cell lines expressing shRNA targeting

SHMT2 (sh4) after 3 days cultured the absence (−gly, filled bars) or presence (+gly, open

bars) of glycine. Cell number is presented as a ratio relative to +gly cells. Error bars in

E,F,G denote standard deviation.
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Figure 4. Glycine metabolism supports de novo purine nucleotide biosynthesis
A: Schematic of carbon incorporation into the purine ring from 1-13C-glycine or 2-13C-

glycine; THF, tetrahydrofolate; GCS, glycine cleavage system. B: Purine nucleotide +1 and

+2 isotopomers in LOX IMVI or A498 cells grown on 100% 1-13C-glycine or 2-13C-

glycine, as a fraction of the total intracellular metabolite pool. C. Cell cycle analysis in HeLa

cells expressing shRNA targeting SHMT2 (shSHMT2) or control shRNA (shCtrl), grown in

the absence (−gly, filled bars) or presence (+gly, open bars) of glycine. Cell cycle phase

length was calculated from the percentage of cells present in each cell cycle phase by

geminin expression and DAPI staining (Fig. S11C).
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Figure 5. Expression of the mitochondrial glycine biosynthesis pathway is associated with
mortality in breast cancer patients
Left, Kaplan-Meier survival analysis of six independent breast cancer patient cohorts (22–

27). Patients were separated into above (red line) and below (blue line) median expression of

mitochondrial glycine metabolism enzymes (SHMT2, MTHFD2, and MTHFD1L, Fig. 3D).

Dashes, censored events. Right, meta-analysis of Cox hazard ratios for the six studies. Solid

lines denote 95% confidence intervals; boxes denote the relative influence of each study

over the results (inverse squared standard error). Diamond marks the overall 95%

confidence interval.
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