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Abstract: Cannabis is one of the most commonly used recreational drugs worldwide. Rrecent epidemi-
ology studies have linked increased cardiac complications to cannabis use. However, this literature is
predominantly based on case incidents and post-mortem investigations. This study elucidates the
molecular mechanism of ∆9-tetrahydrocannabinol (THC), and its primary metabolites 11-Hydroxy-
∆9-THC (THC-OH) and 11-nor-9-carboxy-∆9-tetrahydrocannabinol (THC-COOH). Treatment of
cardiac myocytes with THC-OH and THC-COOH increased cell migration and proliferation (p < 0.05),
with no effect on cell adhesion, with higher doses (250–100 ng/mL) resulting in increased cell death
and significant deterioration in cellular architecture. Conversely, no changes in cell morphology or
viability were observed in response to THC. Expression of key ECM proteins α-SMA and collagen
were up-regulated in response to THC-OH and THC-COOH treatments with concomitant modu-
lation of PI3K and MAPK signalling. Investigations in the planarian animal model Polycelis nigra
demonstrated that treatments with cannabinoid metabolites resulted in increased protein deposition
at transection sites while higher doses resulted in significant lethality and decline in regeneration.
These results highlight that the key metabolites of cannabis elicit toxic effects independent of the
parent and psychoactive compound, with implications for cardiotoxicity relating to hypertrophy
and fibrogenesis.

Keywords: cannabis; THC; cardiac myocytes; cytoskeleton; planaria; cardiac toxicity

1. Introduction

Cannabis sativa, commonly known as marijuana is one of the most widely used
recreational drugs and has elicited significant interest within medical research for the
treatment of neuropathic pain, epilepsy, and seizures [1–8]. In recent years, attitudes
towards cannabis have evolved, owing to the large-scale decriminalization of medical and
recreational cannabis use in countries such as the United States and Canada. The effect of
such legislation changes has seen increased cannabis use among younger populations [9].

∆9-tetrahydrocannabinol (THC) is the main psychoactive constituent of cannabis
amongst 500 identified phytocannabinoids [10]. THC interacts with the endogenous en-
docannabinoid system (ECS), an extensive network of receptors regulating heart rate and
blood pressure, along with endocrine and immune responses [9,11–16]. The ECS comprises
of the cannabinoid-1 and cannabinoid-2 receptors (CB1 and CB2) which are activated by
the endogenous endocannabinoids, anandamide and 2-arachidonoylglycerol [17]. THC
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is a partial agonist to the CB1 receptor, following administration, THC is metabolised
through oxidation into the active metabolite 11-Hydroxy-∆9-THC (THC-OH). 11-OH-THC
is further oxidised into a second pharmacologically inactive metabolite, 11-nor-9-carboxy-
∆9-tetrahydrocannabinol (THC-COOH) [18,19]. A study by Anis and colleagues identified
THC as a mediator of cell cycle arrest, cell apoptosis, inhibition of cell migration and a mod-
ulator of F-actin integrity in urothelial cell carcinoma [10]. F-actin is a crucial and abundant
protein of the cell cytoskeleton, essential for cellular function, stability and morphogen-
esis [20]. Response to injury or inflammation activates a cascade of reparative processes
which result in changes to the cell cytoskeleton; reciprocation to micro-environmental
changes include actin severing and assembly, therein promoting cell migration. Several
studies have linked cannabis consumption in otherwise healthy patients with adverse car-
diovascular complications such as acute coronary syndrome (ACS), myocardial infarction
(MI) and arrhythmia [21–24]. A predictable effect of cannabis consumption is a 20–100%
increase in heart rate and resultant elevation of blood pressure due to vasodilation associ-
ated with THC [25]. At higher doses, an increased heart rate is observed partially due to
the peripheral inhibition of the parasympathetic system. Similarly, elevated heart rate is
often attributed to the pathogenesis of ACS [24].

ACS refers to a wide range of clinical conditions including myocardial injury. During
myocardial injury, excess deposition of the extracellular matrix (ECM) occurs in order to
preserve the functionality of the left ventricle (LV) as it undergoes molecular, cellular and
physiological changes [26]. Fibrosis is defined as an excessive and uncontrolled deposition
of ECM proteins, while cardiac fibrosis is characterized by cardiac fibroblast activation and
differentiation into myofibroblasts coupled with elevated collagen type I deposition [26].
Collagen I, III, and alpha smooth muscle actin (α-SMA) along with other key matrix proteins
commonly deposited the site of the injury, promoting wound repair while simultaneously
causing stiffness of the myocardium and increasing risks of future heart failure [27,28].
Alpha Smooth Muscle Actin (αSMA), fibronectin, collagen I and III are the key markers of
cardiac fibrosis alongside phospho-AKT and phospho-ERK, protein kinases involved in
cell proliferation which inhibit apoptosis and promote cell survival [29–32].

Recent studies indicate that cannabis abuse can induce cardiovascular and cerebrovas-
cular complications [22–24]. In 2019/20, 29.6% of individuals from England and Wales
between 16 and 59 used cannabis at least once in their lifetime, an increase of 6%, compared
to 2001 to 2002 [33]. A study by Jouanjus, Lapeyre-Mestre and Miallef [34] suggested a
link between cannabis and cardiovascular complications with particular risk of ACS and
MI. Investigations by Drummer et al. [35] analysed drug overdoses and demonstrated an
association between cardiovascular complications and cannabis which, in serious cases,
can be the primary cause of death if the condition remains untreated. A review by Thanvi
and Treadwell [36] concluded that cannabis abuse, predisposes individuals to stroke and
is a contributory factor in ischemic events in 15–40% of cases in young individuals. The
bulk of research into cannabis and cardiovascular complications has focused on the phar-
macokinetics and pharmacodynamics of cannabinoids, most notably THC. However, the
effects exerted by THC-OH and THC-COOH on the microstructural changes of the cardiac
architecture have not been extensively researched. The current study investigated the effect
of THC and its metabolites in in vitro conditions on cardiac myocytes and in Polycelis
Nigra Planaria animal model to elucidate the role of cannabinoids on fibrogenesis. Our
results indicate that the major metabolites of cannabis, THC-OH and THC-COOH induce
morphological changes in the cytoskeleton, hypermotility coupled with increased wound
healing and ECM deposition. Higher doses were shown to result in severe cellular toxicity
and loss of structural integrity.

2. Results
2.1. Metabolites of THC Mediate Increased Cell Migration and Wound Closure in Cardiac Cells

Treatment with 100 ng/mL THC did not produce a statistically significant increase
in cell migration or migration distance when compared to control. Conversely, THC-OH



Int. J. Mol. Sci. 2022, 23, 1401 3 of 21

and THC-COOH treatments of 250 ng/mL potentiated cell migration into the wound space
within 24-h. Additionally, H9c2 cardiomyocyte migration distance was significantly increased
(p < 0.05) in THC-OH and THC-COOH treated cells compared to control (Figure 1A–C). These
results suggest that the major active psychoactive component of cannabis, THC, does not
alter cytoskeletal dynamics but that its short and long-acting metabolites, THC-OH and
THC-COOH, promote alterations in cellular morphology and motility.
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Figure 1. Metabolites of cannabis induce increased wound closure (A) H9c2 cardiomyocytes were
exposed to 100 ng/mL of THC for 24 h, (B) 250 ng/mL of THC-OH for 24 h and (C) 250 ng/mL of
THC-COOH for 24 h compared with complete growth medium control following scratch wound
treatments. The number of migrant cells were quantified by ImageJ analysis software and compared
against untreated control cells. The migratory distance of cardiomyocytes in terms of wound healing
was determined manually by equivalence of the scale bar and compared with untreated control cells
(scale bar was 1000 µm). Statistical comparison for treated vs. control was performed by a two-tailed
Students unpaired t-test (* p < 0.05). n.s. refers to not statistically significant. Results represent the
mean of three individual experiments (N = 3).
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2.2. Cannabinoids Promote Alterations in Cell Proliferation in H9c2 Cells

A BrdU incorporation assay was used to assess the proliferative potential of cardiomy-
ocytes over a 24-h period. H9c2 cardiomyocytes were treated with 100 ng/mL of THC,
250 ng/mL of THC-OH and 250 ng/mL of THC-COOH (Figure 2A). Statistical comparison
performed using a two-tailed Student’s unpaired t-test showed no change in the prolif-
erative potential of THC treated cardiomyocytes. Conversely, cardiomyocytes exposed
to THC-OH and THC-COOH presented a statistically significant increase (p < 0.05) in
cell proliferation. Both THC-OH and THC-COOH mediate time dependent increases in
expression of ERK1-p44 (Thr-202/Tyr204) and ERK2-p42 (Thr-185/Try-187), within 30 min
of 250 ng/mL treatment as shown by western blotting (Figure 2B). These same treatments
resulted in an increased phosphorylation of AKT between 48–72 h (Figure 2C). Results
from proliferation assays and immunoblot experiments suggest metabolites of THC may
act as mediators of increased cell proliferation via a combination of AKT/ERK in H9c2
cardiomyocytes with possible application to fibrogenesis.

2.3. Bioinformatic Analysis of Binding Affinities between Key Regulators of Cytoskeletal Dynamics
and THC Metabolites

Downstream kinases of the Rho-family GTPases have been shown to regulate actin
severing via phosphorylation of cofilin. Rho-ROCK-LIMK have been shown to be a cen-
tral signaling nexus in the modulation of cofilin and actin severing. To identify potential
targets of cannabinoid induced motility we investigated the binding affinity of THC and its
metabolites for the Rho-GTPases in comparison to the CB receptors (Figure 3A,B). In-silico
modelling of THC against LIMK at the ATP binding pocket suggested a higher binding energy
of −22.716 kcal/mol was required for permissive binding to take place when compared to
THC-OH and THC-COOH, which required −31.066 kcal/mol and 41.542 kcal/mol, respec-
tively. Similarly, modelling of THC against ROCK indicates that a higher binding energy of
−16.85 kcal/mol is required for permissive binding to take place compared to THC-OH with
−39.187 kcal/mol and THC-COOH with −41.542 kcal/mol. In-silico modelling suggests that
THC-OH and THC-COOH have potential binding activity of Rho-ROCK-LIMK with poten-
tial for downstream upregulation of filamentous actin severing by ADF cofilin. By contrast,
association of cannabinoids with the canonical Wnt receptor, LRP5/6, presented high binding
energies suggesting non-permissive binding. Canonical Wnt signaling has previously been
implicated in cytoskeletal rearrangement and increased matrix protein deposition.

2.4. Cannabinoids Upregulated Matrix Protein Expression in Cardiomyocytes

In contrast to the results of the ligand binding studies, protein quantification experi-
ments indicate that cannabinoids do not modulate cell migration via actin severing activity
of cofilin. In agreement with previous ligand binding experiments cannabinoid metabolites
also do not increase β-catenin expression, and these results are indicative of non-activation
of the canonical Wnt signaling and RHO-ROCK Kinase modulation (Figure 4A,B).

ECM protein deposition is a key indicator of the pathogenesis of fibrogenesis, with
numerous fibrotic conditions characterised by upregulation of key matrix proteins, such
as collagen 1 and α-SMA (Figure 4C). H9c2 cardiomyocytes exposed to 250 ng/mL THC-
OH and THC-COOH showed a statistically significant increase (p < 0.001) in α-SMA
expression within 48 h before returning to basal levels within 72 h. Collagen 1 expression
was significantly increased within 24–48-h of 250 ng/mL THC-OH (p < 0.005) and THC-
COOH (p < 0.05) treatments. These findings suggest that cannabinoid metabolites increase
the production of matrix proteins in H9c2 cells in vitro.
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Figure 2. H9c2 changes in cell proliferation in response to cannabinoids. (A) H9c2 cardiomyocyte
proliferation in response to THC, THC-OH and THC-COOH, represented data of five individual
experiments. (B) Immunoblot analysis of ERK1/2 phosphorylation following THC-OH and THC-COOH
(both 250 ng/mL) exposure. (C) Immunoblot analysis of AKT phosphorylation following THC-OH
and THC-COOH (both 250 ng/mL) exposure. (B,C) Representative immunoblots of three independent
experiments. Densitometry indicating relative band expression for each blot measured using ImageJ
software. Statistical comparison for treated vs. control was performed by a two-tailed Students unpaired
t-test (n.s. refers to not statistically significant, * p < 0.05, ** p < 0.01 and *** p < 0.001) for individual
time points.
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Figure 3. In-silico studies of THC and its metabolites THC-OH and THC-COOH modelled against
key signalling regulators. (A) Interaction between ligands THC, THC-OH and THC-COOH with the
ATP binding site known regulators; CB1, LIMK, ROCK, LRP5/6 and compared to CB1 as a positive
control of a binding site that is permissive to cannabinoid activation. (B) Binding energies measured
in kcal/mol generated by in-silico studies of THC and its metabolites THC-OH and THC-COOH
modelled against key signalling regulators. (A,B) generated using the Scigress docking software.
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Figure 4. Cannabinoids differentially modulate ABP and ECM proteins. (A) Immunoblot analysis
of Cofilin phosphorylation following THC-OH and THC-COOH exposure in H9c2 cardiomyocytes.
(B) Time dependent protein detection of β-catenin following THC-OH and THC-COOH. (C) Western
blot analysis of α-SMA and Col1α1 following THC-OH and THC-COOH. (A–C) Representative
immunoblots of three independent experiments. Drug treatment concentration for both THC-OH
and THC-COOH were 250 ng/mL. Densitometry indicating relative band expression for each blot
measured using ImageJ software. Statistical comparison for treated vs. control was performed by a
two-tailed Students unpaired t-test (* p < 0.05, ** p < 0.01 and *** p < 0.001) for individual time points.

2.5. In-Vitro Analysis of Cannabinoid Metabolism in Cardiomyocytes

An LC-MS analysis technique was developed to identify the metabolic capacity of
H9c2 cells in response to cannabinoid treatment. The analyte library consisted of three ion
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transitions for THC, THC-OH and THC-COOH, while the deuterated internal standards
were identified using single ion transitions (Table 1). The analytical technique displayed
a high degree of accuracy with quality control samples being detected within 92–97% of
target concentration (Table 1). Our results suggest that following THC treatment, there is
no metabolism or conversion of THC into THC-OH or THC-COOH after 24 h, furthermore
treatments with THC-OH did not result in any metabolites for THC-COOH forming
(Table 1). Our findings indicate that H9c2 cells do not possess the enzymatic capacity
to metabolize THC into its primary metabolites. These results highlight a critical issue
that should be considered with future in vitro cannabinoid assays, namely the lack of
biotransformation of parent drugs into active and inactive metabolites which can elicit their
own unique effects separately.

Table 1. H9c2 cardiomyocytes do not metabolize cannabinoids in vitro. (A) Ion transitions and mass
spectrometry parameters for the LC-MS quantification method of cannabinoids (B) In all analysis
quality control samples (QC) of extracted spiked media were run alongside samples. These QC
demonstrated a calculated concentration accuracy of 90–100%. (C) THC treatments of 100 ng/mL
resulted in a media concentration of 33 ng/mL after 10 mins of collection, with an approximate 30%
decrease over 24 h in THC concentration.

(A)

Analyte
Name

Precursor
ion (Amu)

Retention
Time (min)

Retention Time
Window (min)

Fragmentor
(V)

Product Ions
(amu)

Collision
Energy (V)

Dwell
Time (ms)

THC 315.2 14.4 1.19 84
193.2
123.0
259.2

21
32
18

78.64
78.64
78.64

THC-OH 331.2 8.8 1.01 92
313.2
201.0
193.2

20
26
15

77.48
77.48
77.48

THC-
COOH 345.2 9.2 0.94 96

327.2
299.2
193.1

13
17
25

35.63
35.63
35.63

(B)

QC Expected Concentration (ng/mL) Calculated Concentration
(ng/mL) Accuracy (%)

THC 40.00 39.7692 99.42
THC-OH 100.00 97.3173 97.32

THC-COOH 100.00 92.9326 92.93

(C)

Data File THC
Conc. (ng/mL)

THC-OH
Conc. (ng/mL)

THC-COOH
Conc. (ng/mL)

THC Control 0.0000 ND 1.1767
THC 10 min 33.8205 ND 1.1408
THC 30 min 33.8275 ND 1.1094

THC 1 H 37.7523 ND 1.1627
THC 3 H 38.1000 ND 1.1176
THC 24 h 20.8132 ND 1.1047

THC-OH control ND 1.5706 1.1057
THC-OH 10 min ND 143.4358 1.1159

Hydroxy-THC 30 minl ND 129.2503 1.1364
THC-OH 1 h ND 121.2555 1.1277
THC-OH 3 h ND 106.0970 1.1277

THC-OH 24 h ND 91.2759 1.1374
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2.6. Cannabinoids Induce Alteration in the Microstructural of H9c2 Cells

H9c2 cells were imaged using SEM to investigate if dose dependent cannabinoid
treatments (THC 100/200 ng/mL THC-OH and THC-COOH 250/500 ng/mL) resulted
in morphological alterations to cardiomyocytes. In response to THC treatment, there was
no significant change in cell morphology compared to control (Figure 5A–D). Conversely,
in response to low dose treatments with THC-OH and THC-COOH increased cell polar-
ization occurred with pronounced stress fibre formation. Additionally, cells acquired a
stellate shape concomitant with changes in cell adhesion; these morphological changes
are consistent with early stages of increased cell motility (Figure 5E,G). High dose drug
concentrations resulted in a deterioration of membrane integrity with perforations visible
in response to THC-COOH and exacerbations in stress fibre formation in responses to high
doses of THC-OH (Figure 5F,H). These results indicate that the level of polarization of
cardiomyocytes is dose-dependent and more prominent in cells treated with THC-OH and
THC-COOH.
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Figure 5. Dose dependent cannabinoid treatments result in morphological alterations of H9c2 cardiomy-
ocytes. (A–D) In response to both low dose and high dose THC treatments, 100–200 ng/mL, normal
H9c2 cardiomyocytes morphology was retained with intercellular connections and spindle-like spread-
ing present at 24 h following culture. (E–H) Morphological alterations induced in H9c2 cardiomyocytes
following exposure to 250 ng/mL THC-OH or THC-COOH. H9c2 cardiomyocytes indicated features of
altered microstructural architecture, with membrane polarization, cell-substrate adhesion and retraction
observed posterior to sites of membrane folding. Scale bar for each panel are presented below the
respective image with numerical assignment indicating feature specific responses.

2.7. Cannabinoids Modulate Regenerative Capacity of Polycelis nigra in a Dose Dependant Manner

Dose response studies using an in vivo regenerative model, the planarian flatworm
species Polycelis nigra were undertaken to investigate alterations in the regenerative capac-
ity of planaria following decapitation. Treatments with both low and high doses of THC
(100 ng/mL and 1000 ng/mL) resulted in no overall change in structure or regeneration com-
pared to control (Figures 6 and 7A). However, increased cellular deposition was observed
on the transection wound sites, suggestive of amplification of tissue deposition and rapid
wound healing in response to 250 ng/mL doses of THC-OH and THC-COOH (Figure 6,
Table 2). Conversely, increased THC-OH and THC-COOH (2500 ng/mL) concentrations
resulted in a significant incidence of lethality amongst planaria with a decreased rate of
regeneration of tissue and slow response to stimuli in surviving organisms (Figure 7A,B,
Table 3). These results corroborate the findings of the in vitro H9c2 experiments wherein
low doses of cannabinoid metabolites resulted in increased wound healing response cou-
pled to upregulated ECM deposition, while high doses cannabinoid treatments resulted in
cell toxicity and death.

Table 2. Treatment with THC (100 ng/mL) resulted in no overall change in structure or regeneration
compared to control. Conversely, increased cellular deposition was observed on the transection
wound sites in response to 250 ng/mL doses of THC-OH and THC-COOH (shown in Figure 6).
N = 3 per condition.

Treatment
Condition Disintegration Wound Healing

at Day 1
Obvious Blastema

at Day 4

Presence of
Regenerated Tissue

at Day 7

Regeneration Rate
at Day 7 Compared

to Control

Control No Yes Yes Yes –

THC 100 ng/mL No Yes Yes Yes No difference
to control

THC-OH
250 ng/mL No Yes Yes Yes Increased thickness of

regenerated tissues

THC-COOH
250 ng/mL No Yes Yes Yes Increased thickness of

regenerated tissues
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Table 3. Detailed data for the effect of high concentration treated planaria for a week.

Treatment
Condition

Wound Healing
at Day 1 Disintegration Obvious

Blastema at:

Presence of
Regenerated

Tissue at:

Regeneration Rate at
Day 7 Compared

to Control

Control Yes No Day 4 Day 7 —

THC
1000 ng/mL Yes No Day 7 Day 7 No difference

to control

THC-OH
2500 ng/mL Yes

Disintegrated
completely between

days 2–4
Day 1 Day 2 N/A; completely

disintegrated

THC-COOH
2500 ng/mL Yes

Disintegrated
completely at day 1

(n = 1) and day 2
(n = 1)

Day 1 Day 4

N/A; completely
disintegrated except 1
individual with slow
response to stimuli

and little regeneration
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250 ng/mL) for one week after decapitation Arrows show increased regenerating areas.  

Table 2. Treatment with THC (100 ng/mL) resulted in no overall change in structure or regeneration 
compared to control. Conversely, increased cellular deposition was observed on the transection 
wound sites in response to 250 ng/mL doses of THC-OH and THC-COOH (shown in Figure 6). N = 
3 per condition. 

Treatment 
Condition Disintegration 

Wound Healing 
at Day 1 

Obvious 
Blastema at 

Day 4 

Presence of 
Regenerated Tissue 

at Day 7 

Regeneration Rate 
at Day 7 Compared 

to Control 

Control No Yes Yes Yes -- 

THC 100 
ng/mL No Yes Yes Yes No difference to 

control 

THC-OH 250 
ng/mL No Yes Yes Yes 

Increased thickness 
of regenerated 

tissues 

THC-COOH 
250 ng/mL No Yes Yes Yes 

Increased thickness 
of regenerated 

tissues 

Table 3. Detailed data for the effect of high concentration treated planaria for a week. 

Treatment 
Condition 

Wound Healing at 
Day 1 Disintegration Obvious 

Blastema at: 
Presence of 

Regenerated Tissue at: 
Regeneration Rate at Day 

7 Compared to Control 

Control Yes No Day 4  Day 7 --- 

THC 1000 
ng/mL 

Yes No Day 7 Day 7 No difference to control 

Figure 6. Low dose cannabinoids modulate regenerative capacity of Polycelis nigra. The effects
of cannabinoids at low doses on the planarian flatworm regenerative capacity was assessed over
7 days. Decapitated planaria were treated with THC (100 ng/mL), THC-OH and THC-COOH (both
250 ng/mL) for one week after decapitation Arrows show increased regenerating areas.
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strated toxicity in high dose, while THC-OH caused rapid disintegration and THC-COOH showed 
slower disintegration in which structural integrity was protected for a longer period of time. 

  

Figure 7. High dose cannabinoids treatments induce toxicity in Polycelis nigra. (A) High dose drug
concentration treatment of THC (1000 ng/mL), and its metabolites (both 2500 ng/mL) in decapitated
planaria observed for a week for regeneration and toxicity. (B) THC-OH and THC-COOH demon-
strated toxicity in high dose, while THC-OH caused rapid disintegration and THC-COOH showed
slower disintegration in which structural integrity was protected for a longer period of time. The
arrows highlight the slower disintergration seen in THC-COOH treatments versus that of TH-OH.

3. Discussion

The current study investigated the roles of THC, THC-OH and THC-COOH in me-
diating phenotype changes in rat cardiomyocyte cells. The H9c2 cell line is effective in
portraying human in vitro conditions for modulating cardiac specific markers and eluci-
dating drug-induced toxic events [37]. A plethora of previous literature concentrated on
the psychotropic and subsequent consequences of cannabis exposure on neuronal func-
tion [38–40]. While a number of recent studies have reported adverse cardiac events such
as arrhythmia, acute coronary syndrome, and myocardial infarction in response to cannabis
use, fewer studies have investigated the mechanism of THC and its metabolites on the
cardiovascular environment [21,22,24]. To date, a mechanism mediating morphological
changes in response to cannabinoids has not been proposed.
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The present study reports dose dependant negative alterations in cardiac cell viabil-
ity and morphology in response to THC-OH and THC-COOH treatments. By contrast,
THC treatments mediated minimal alterations in cell structure or toxicity. SEM images
identified stress fibre formation and cell elongation in response to 250 ng/mL THC-OH
and THC-COOH treatments, indicative of cell polarisation and cytoskeletal alterations.
Protein quantification by immunoblot analysis suggest increased phosphorylation of cofilin,
a response associated with reduced actin severing and decreased cell motility [41]. These
results suggest that actin disassembly via cofilin activation is unlikely to be the mechanism
responsible for increased cell migration in response to cannabinoid treatments. Our investi-
gations also indicate that in response to treatments with THC-OH and THC-COOH, H9c2
cardiomyocytes exhibit a downregulation in the expression of β-catenin. By contrast acti-
vation of LRP5/6, and subsequent canonical Wnt signalling, is characterised by increased
β-catenin concentrations and subsequent translocation to the nucleus and followed by
TCF-LEF transcription [42]. These results are further supported by the in-silico docking
studies of THC-OH and THC-COOH which suggest an energetically unfavourable affinity
for the LRP5/6 ATP binding pocket. The canonical Wnt/β-catenin signalling pathway is an
important regulator of cell adhesion, embryonic development and adult homeostasis and
previously been linked with numerous fibrotic phenotypes. However, our findings do not
identify this signalling nexus as a mediator of increased cell motility and morphological
changes in response to cannabinoids [43,44].

By contrast, the current study identified an upregulation in phosphorylation of AKT
and ERK1/2 in response to 250 ng/mL treatment with THC-OH and THC-COOH, respec-
tively. The PI3K/AKT and ERK/MAPK signalling pathways are important regulators
of cell proliferation, apoptosis, and motility. Additionally, increased cell proliferation
in response to THC-OH and THC-COOH, concomitant with modulation of PI3K and
ERK/MAPK suggest that these physiological changes may be an AKT microtubule driven
event. PI3K/AKT and ERK/MAPK pathways have previously been identified as targets
for cancer therapy as dysregulation of this signalling nexus leads to aberrant signalling
activation and tumorigenesis [45,46]. Conversely, several studies suggest that upregulation
of AKT in cardiac cells during ischaemia and reperfusion has positive implications. The
pathophysiology of reperfusion injury is characterised by the restoration of blood flow
to previously ischaemic tissue [47]. Ong and colleagues [48], investigated genetic and/or
pharmacological activation of AKT in the HL-1 cardiac muscle cell line and concluded that
acute activation of AKT presents cardioprotective qualities against ischaemic reperfusion
injury through mitochondrial modulation, with other experimental studies also confirming
this finding [49–51]. Moreover, it is important to highlight that research by Ong et al. [52]
investigated the effect of acute activation of AKT as a cardioprotective measure whilst
chronic AKT activation has been reported to cause cardiac hypertrophy. Similarly, ERK1/2
overexpression is implicated in several phenotypic forms of cardiac hypertrophy and pro-
gression to heart failure [53]. Cardiac hypertrophy can be reversible following clinical and
dietary intervention however pathological hypertrophy of the heart caused by chronic
stress exerted on the cardiac muscle through hypertension may increase ventricular wall
dimension and be accompanied by fibrosis [54]. Uncontrolled and chronic upregulation
of AKT as a result of continuous cannabis exposure is sufficient to induce phenotypic
expression changes ranging from cardiac hypertrophy with preserved systolic function to
cardiac dilation and sudden death [52]. Similarly, ERK1/2 overexpression is implicated in
several phenotypic forms of cardiac hypertrophy and progression to heart failure [53].

Numerous studies have indicated that following smoking of a single preparations of
cannabis, THC blood concentrations of 100–150 ng/mL were achieved within 10 min of
inhalation, after which THC concentrations decline rapidly [55]. Due to the slow elimination
of THC-COOH, regular users of the drug can still present concentrations of up to 50 ng/mL
in whole blood following 7 days of abstinence, this was also coupled with for residual
neurocognitive impairment observed in chronic cannabis users [56]. Research studies in
which cannabinoid metabolites were measured in patients following a single 6.8% THC
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(wt/wt) cannabis detected concentrations ranging from 50–460 ng/mL in plasma and whole
blood [57]. The metabolism of THC predominantly occurs as a hepatic level event, however,
extrahepatic metabolism also occurs in tissues of the brain, heart and lungs which exhibit the
CYP450 enzymes [58]. Oxidative metabolism of THC via a microsomal reaction through the
CYP450 enzymatic pathway yields the active metabolite, THC-OH, and inactive metabolite,
THC-COOH [59]. Our results demonstrate that in vitro H9c2 cardiomyocytes models do
not provide the required environment for THC metabolism. Cannabinoid concentrations
in cell media were quantified using LC-MS analysis and demonstrate no formation of
either THC-OH or THC-COOH even 24 h after THC administration. This is significant
as cell-based assays investigating THC treatments with no oxidative or CYP450 enzymes
present are significantly limited in their scope to assess the effects of THC metabolism and
it subsequent break down products on organ function and cell viability. While previous
studies have suggested an anti-inflammatory and tissue protective effect for THC, this may
not be replicated in vivo settings or cases of chronic recreational use where the half-life of
THC-COOH is significantly longer and may counteract the beneficial effects of THC.

The deleterious effects of THC-OH and THC-COOH on cell integrity and structure
was further demonstrated in SEM imaging studies where high dose treatments of both
metabolites resulted in pronounced cell toxicity, characterised by perforations of the cell
membrane, deterioration in cytoskeletal structure and irregular nuclei. This cytotoxic effect
was further investigated utilising an animal model, Polycelis nigra planaria, to observe
if cannabinoids altered regeneration or wound healing dynamics. The Planaria species
was chosen for this study due to their notable tissue regenerative properties [60], mak-
ing them an ideal model to investigate dysregulation in regeneration and dose response
toxicity [61–64]. Other research groups have utilised this animal model to investigate mech-
anism of drug abuse and dysregulation of neuronal function [20,63,65]. The current study
demonstrated that in response to dose-dependent treatments of THC-OH and THC-COOH,
the regeneration rate of amputated Polycelis nigra is differentially modulated. Following
drug exposure for 7 days, during which regeneration dynamics were quantified, low dose
of THC metabolites, THC-OH and THC-COOH (250 ng/mL) accelerated the blastema
formation. This resulted in increased tissue deposition volume and area at the peripheral
of wound healing sites, with accelerated wound healing dynamics and increased tissue de-
position compared to control treatments. At tenfold higher concentrations of THC-OH and
THC-COOH (2500 ng/mL), severe toxicity and planaria disintegration occurred, suggesting
that low doses lead to rapid changes in cellular dynamics consistent with dysregulated
wound healing while higher doses are cytotoxic to the organ and cell function. As with SEM
and scratch wound assays, THC had no significant effect on cytotoxicity or regeneration
even at increased concentrations of 1000 ng/mL.

This study has identified two major cannabinoid metabolites, THC-OH and THC-
COOH as mediators of increased cell migration, matrix protein deposition, cytoskeletal
rearrangement, and dose dependant cell toxicity. Characteristics consistent with cell necro-
sis and fibrotic processes that govern cardiac dysregulations including cannabis-induced
ischemic stroke and myocardial infarction following cannabis use [35]. Moreover, these
results elucidate the critical role that the less pharmacologically active metabolites such
as THC-COOH, play in opposing protective functions of cannabinoid receptor agonism.
Future studies can identify increased cardiac toxicity and subsequent cell injury as a precur-
sor to enhanced activation of cardiac fibroblasts following repeated dosages of cannabinoid
metabolites. Long term, these effects are likely to result in significant alterations to the
morphology of the cardiac architecture. Our results suggest that cannabinoid metabolites
have the capacity to increase cell toxicity and matrix protein deposition in the cardiac
milieu, these dual events are frequently early hallmarks of cardiac hypertrophy and fibrosis
as endogenous myocyte tissue is replaced with non-contractile ECM protein.

Numerous studies have reported myocardial dysregulation following cannabis abuse,
with myocardial infarction induced by vascular spasm and vasoconstriction being pro-
posed as a mechanism of cannabis induced cardiovascular complications [7,36,66]. Chronic
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cannabis use has been linked to hepatotoxicity and structural alterations of the liver, with el-
evated liver markers consistent with hepatic sclerosis [67]. Conversely, the cardiac structure
does not possess the regenerative capacity of the liver, if metabolites of cannabis induce
severe structural alterations that result in organ hypertrophy, increased matrix protein
deposition followed by reduced contractility, and at chronic repeated concentrations, cell
death; these effects are likely to result in an irreversible decline of cardiac function.

Even in cases that do not progress to full fibrosis, cardiac hypertrophy remains a
significant risk due to changes in the heart structure and replacement of endogenous tissue
with enlarged ECM proteins. Regardless, either condition is associated with poor prognosis
and declining future cardiac function due to loss of contractile capacity. Future studies
investigating the possible role of cannabinoid metabolites in the progressive decline of
cardiac function can contribute to greater understanding of how cannabis use can lead to
increased mortality and morbidity.

4. Materials and Methods
4.1. Chemical and Reagents

The following chemicals and reagents were utilized in the experiments explained
below. ∆9-THC 1.0 mg/mL, 11-Hydroxy-∆9-THC 100 µg/mL and 11-nor-9-Carboxy-
∆9-THC 100 µg/mL in methanol (Cerilliant, Merck, Round Rock, TX, USA) were used
for all treatments and diluted in either DMEM, Dulbecco’s phosphate-buffered saline
(DPBS) (Sigma-Aldrich, St Louis, MO, USA), or planaria water. Dimethethyl sulfoxide
(DMSO) (Sigma-Aldrich, St Louis, MO, USA) was used to prepare freezing medium during
cryopreservation procedure. The BrdU incorporation assay (Merck Millipore, Kenilworth,
NJ, USA) kit was used for cell proliferation analysis. Radioimmunoprecipitation assay
(RIPA) buffer (Sigma-Aldrich, St. Louis, MO, USA) supplemented with protease inhibitor
cocktail (1:100) (Abcam, Cambridge, UK), phosphatase inhibitor cocktail (1:100) (Sigma-
Aldrich, St Louis, MO, USA) and 1 mM phenylmethanesulfonyl fluoride solution (Sigma-
Aldrich, St. Louis, MO, USA) was used to perform the cell lysing procedure. In order to
quantify protein in each cell lysate, a Bradford reagent (Sigma-Aldrich, St Louis, MO, USA)
was used, and the protein samples were prepared by using NuPAGE LDS Sample Buffer
4X (Thermo Fisher Scientific, Waltham, MA, USA) containing 2% (w/v) dithiothreitol (DTT)
(Thermo Fisher Scientific, Waltham, MA, USA) for immunoblotting assays. Bovine-serum
albumin (BSA) (Sigma-Aldrich, St Louis, MO, USA) was used to prepare BSA standards
for the Bradford quantification assay. The primary antibodies used for immunoblotting
assays are detailed in Section 4.2.4. Organic mobile phase HPLC grade Acetonitrile and
aqueous HPLC grade water (both VWR Chemicals, Radnor, PA, USA) were used for LC-MS
analysis, both mobile phases were supplemented with 0.1% formic acid (Sigma Aldrich,
St Louis, MO, USA) and only into organic solution 0.01g/L of ammonium acetate was
added. ∆9-THC-D,3, 1.0 µg/mL and 11-nor-9-Carboxy-∆9-THC-D3, 1.0 µg/mL were
used as reference standards (Cerilliant, Gillingham, UK). Scanning Electron Microscopy
(SEM) fixation was carried out using 2.5% (v/v) glutaraldehyde solution (Sigma-Aldrich, St
Louis, MO, USA) and 1% (w/v) osmium tetraoxide (OsO4) (Agar Scientific Stansted, UK).
Dehydration was performed using graded ethanol solutions (VWR Chemicals, Radnor, PA,
USA) and hexamethyledisilizane (Sigma-Aldrich, St Louis, MO, USA). For the toxicity and
regeneration experiment, planaria (Polycelis nigra) and planaria water was used.)

4.2. Experimental Methods
4.2.1. Scratch Wound Assay

H9c2 embryonic cardiomyocyte (Lonza, Slough, UK) cell sub-clones, derived from the
parental clone cell line embryonic BD1X rat heart tissue was used in this study. The H9c2
cardiomyocyte cell line has widely been utilized for cardiotoxicity studies for the analysis of
morphological characteristics, as changes in cellular activity resemble immature embryonic
cardiomyocytes with many signalling pathways conserved for their differentiation into
mature myocardial cells. Furthermore, the H9c2 cardiomyocyte cell line has commonly
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been used in various studies relating to drug toxicity pathways (American Type Culture
Collection (ATCC)) and to this end provided a viable in vitro model [63]. Cells were either
subcultured into 75 cm2 sterile flasks at the required culture ratio of either 1:5 or 1:10 or
seeded at adequate densities into 6-well or 96- well tissue culture plates. Initial cell starting
passage was between 4 and 6 with all experiments performed between passages 8–12.

To analyse the migratory response of H9c2 cardiomyocytes following cannabinoid
exposure on wound repair, cells were allowed to reach a 70–80% confluency in clear ster-
ile 6-well culture plates (Corning Costar Incorporated, Cambridge, MA, USA). After a
monolayer was formed, a stimulated scratch wound was applied using a 200 µL sterilised
plastic pipette. High glucose (4500 mg/L) DMEM (Sigma Aldrich, St Louis, MO, USA)
supplemented with 10% Foetal Bovine Serum (FBS), 1% (100 U/mL) penicillin, (100 g/mL)
streptomycin, L-glutamine, sodium bicarbonate and 100 mM sodium pyruvate were used
to culture H9c2 cardiomyocytes. The cells grown in complete cell growth medium alone
served as a control group. The cells were treated with 100 ng/mL of THC, 250 ng/mL
of THC-OH and 250 ng/mL of THC-COOH supplemented with complete medium and
incubated for 24 h at 37 ◦C in a 5% CO2 incubator. Images were captured with AMG Evos
FL™ inverted microscope at 0 h and after 24 h. From three selected areas on the wound,
measurements were taken using the ImageJ Image Processing and Analysis software™,
(Research Services Branch, National Institute of Mental Health, Bethesda, MD, USA) and
percentage of wound closure was determined. Measurements were statistically analysed
from three independent experiments using the IBM SPSS Statistics software package (Ver-
sion 26.0.0.0, 64-bit edition, Armonk, NY, USA). Statistical analysis was performed by a
two-tailed Students unpaired t-test, * p < 0.05 for treated vs. control.

4.2.2. Cell Proliferation Assay

The H9c2 cell proliferation assay was measured in response to 100 ng/mL of THC,
250 ng/mL of THC-OH and 250 ng/mL of THC-COOH for 24h, by the colorimetric read-out
of BrdU incorporation assay (Merk Millipore, Watford, UK). Untreated cells served as the
control group. H9c2 cardiomyocytes were cultured in sterile 96- well tissue plate and incu-
bated with BrdU label diluted in complete DMEM (1:2000). Following removal of the BrdU
label, H9c2 cardiomyocytes were fixed and denatured with BrdU Fixative/Denaturing
solution, then cells were labelled with anti-BrdU conjugated antibody (1:100). BrdU la-
belled H9c2 cells were then washed with 1× diluted washing buffer and labelled with
reconstituted anti-BrdU-peroxidase conjugate antibody (1:1000). Following washing of
peroxidase-labelled cells and exposed with the chromogenic peroxidase substrate, tetra-
methylbenzidine (TMB), stop solution was added prior to take the plate for absorbance
measurement using a Tecan Infinite M200 PRO spectrophotometer at OD 450 nm and
540 nm. Statistical comparison was performed by a two-tailed Students unpaired t-test,
* p < 0.05 for treated vs. control from five independent experiments.

4.2.3. In-Silico Bioinformatic Docking Studies

The Scigress Fujitsu™ software Version 3.4. (Tokoyo, Japan) was used in order to
conduct molecular modelling and drug ligand-docking analyse for the interaction of
ligands: THC, THC-OH and THC-COOH with the ATP binding site in known key signalling
regulators: CB1, LIMK, ROCK and LRP 5/6. Relevant molecular structures of THC, THC-
OH and THC-COOH were programmed into the software before molecular modelling in
three-dimensional (3D) conformer SDF format. Peptide sequences were imported in FASTA
format into the SWISS-MODEL protein structure homology-modelling online server to
generate 3D protein structural models derived from X-ray diffraction and NMR studies. To
measure the protein domain specific sequences, structural coverage levels were utilized.
Generated structural models were imported as a PDB format into the Scigress Fujitsu™
software Version 3.4 (Tokoyo, Japan) to manage according to specific domains of interest.
Binding energy graphs in kilocalorie/mole for THC, THC-OH and THC-COOH with each
key modulators were produced for specified docking sites of interest.
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4.2.4. Western Blotting

H9c2 cardiomyocytes were cultured in clear sterile 6-well culture plates (Corning
Costar®) with complete DMEM (Sigma-Aldrich, St Louis, MO, USA). After drug exposure
of 100 ng/mL of THC, 250 ng/mL of THC-OH and 250 ng/mL of THC-COOH at different
time points (10 min, 30 min, 1 h, 3 h, 24 h, 48 h, and 72 h), cells were lysed using RIPA buffer
supplemented with protease inhibitor cocktail (1:100), phosphatase inhibitor cocktail (1:100)
and 1 mM phenylmethanesulfonyl fluoride solution. For the Bradford assay, Bradford
reagent and BSA standards (both Sigma-Aldrich, St Louis, MO, USA) were used to quantify
protein in each lysate. The protein samples were prepared with using NuPAGE LDS Sample
Buffer 4X containing 2% (w/v) dithiothreitol DTT (Thermo Fisher Scientific, Waltham, MA,
USA) for Western blotting assays. Total proteins were separated using 6%, 8%, 10% or 12%
SDS–PAGE depending on the molecular weight of the protein of interest, transferred to
a nitrocellulose membrane using semi-dry electrotransfer and probed with the following
antibodies derived from rabbit except AKT after blocking with 5% BSA or 5% non-fat dry
milk solution: ERK1/2, Cofilin/P-Cofilin, β-catenin, AKT/P-AKT (mouse), α-SMA, Col1a1
and β-actin (rabbit). The secondary antibodies were horseradish peroxidase linked as either
anti mouse or anti rabbit. All antibodies were purchased from Cell Signaling Technology.
The primary antibodies were used at dilution of 1:1000 and 1:10,000 for the loading control
(β-actin). The secondary antibodies were used at dilutions of 1:2000–5000 depending on
the expression level of the primary antibody. Densitometry analysis on the Western blot
bands was performed using the ImageJ Image Processing and Analysis software™ and the
data was normalised to total protein levels.

4.2.5. LC-MS Analysis

H9c2 cardiomyocytes were treated with 100 ng/mL of THC, 250 ng/mL of THC-OH
and 250 ng/mL of THC-COOH and cell media was then subtracted at specific timepoints
between 10 min and 24 h. The samples were spiked with deuterated internal standards for
THC (THC-D3) and THC-COOH (THC-COOH-D3). One mL of cell media was added for
each sample, calibrators, blanks, and quality control (QC) standards in conical centrifuge tubes
(Fisher Scientific). Following the drug standards addition, samples were treated with chilled
acetonitrile and centrifuged for 5 min at 3000 RCF. Supernatant was removed and treated with
2 M pH 4 acetate buffer, samples passed through an Strata C18-E (55 um, 70 A) 200 mg/3mL
cartridges (Phenomenex, Macclesfield, UK) for extraction. Samples were eluted in a 70:30
hexane ethyl acetate mix prior to evaporation under nitrogen flow at 40 ◦C. Samples were
then reconstituted in 160 µL of 50/50 of mobile phase A (H2O 0.1% formic acid) and mobile
phase B (acetonitrile 0.1% formic acid). Drug samples were analysed using a LCMS/MS
Agilent 6430 coupled with a Agilent 1260 UHPLC system. Chromatographic separation was
achieved using an Agilent Infinity Lab Poroshell 120 EC-C18, 2.1 × 75 mm, 2.7 µm, narrow
bore LC column. Mobile phases, were combination of aqueous and organic solutions, aqueous
mobile phase consisted of water and 0.1% formic acid. Organic mobile phase was comprised
of LC-MS grade acetonitrile and 0.1% formic acid. Further information on LC-MS analysis
can be found in Figure S1.

4.2.6. Scanning Electron Microscopy

Scanning Electron Microscopy (SEM) was used to visualise detailed morphological
changes on H9c2 cardiomyocyte cells in response to THC at concentrations of 100 ng/mL
and 200 ng/mL, THC-OH at concentrations of 250 ng/mL and 500 ng/mL, and THC-COOH
at concentrations of 250 ng/mL of THC-COOH 500 ng/mL. Cells were cultured on sterile
coverslips in 6-well plates (Corning Costar Cambridge, MA, USA), then primarily fixed
using 2.5% (v/v) Glutaraldehyde solution diluted in 0.1M DPBS. After the primary fixation,
H9c2 cells were washed in DPBS and the secondary fixation containing 1% (w/v) Osmium
Tetraoxide (OsO4) was applied. Following the secondary fixation, H9c2 cardiomyocytes
were dehydrated through graded ethanol concentration series (50, 70, 80, 90, 95 and
100% (v/v), respectively), then immersed in Hexamethyledisilizane and allowed to air
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dry in a fume cupboard. Dried coverslips mounted onto glass slides with double-sided
conductive tape and exposed to gold palladium alloy sputter coating (Polaron Range
SC7640). Thereafter, the coated specimens visualized using the Zeiss™ EV050 SEM to
capture polarised H9c2 cells.

4.2.7. Planaria Studies

To determine the effect of low and high dose of THC, THC-OH and THC-COOH
exposure on toxicity and regeneration, planaria (Polycelis nigra) was implemented as an
animal model due to possessing a central nervous system and regenerative capacity. In a
6-well plate, 100 ng/mL of THC, 250 ng/mL of THC-OH, and 250 ng/mL of THC-COOH,
respectively were diluted in planaria water (0.5 g Ocean Salts/1 L ddH2O). Planaria water
not spiked with cannabinoids served as a control. A dose-dependent experiment required
the preparation of planaria water spiked with 10× higher concentrations: 1000 ng/mL of
THC, 2500 ng/mL of THC-OH and 2500 ng/mL of THC-COOH. Following the observation
of intact planaria under the dissecting microscope (Motic, Barcelona, Spain), planaria
were decapitated with a sterile disposable scalpel (Swann-Morton Ltd, Sheffield, UK)
and then placed in cannabinoid or control conditions. For each studied cannabinoid
concentration, each well contained three decapitated planaria with retained anterior (head)
and posterior (body) parts. Regenerating planaria were maintained at ≈21 ◦C in dark
conditions. Cannabinoids in planaria water and control planaria water were replenished
every 2–3 days to maintain compound activity and the wound healing of each planaria was
observed for 7 days under a Motic dissecting microscope.
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