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Metabolome-based genome-wide association
study of maize kernel leads to novel biochemical
insights
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Jie Luo1 & Jianbing Yan1

Plants produce a variety of metabolites that have a critical role in growth and

development. Here we present a comprehensive study of maize metabolism, combining

genetic, metabolite and expression profiling methodologies to dissect the genetic basis of

metabolic diversity in maize kernels. We quantify 983 metabolite features in 702 maize

genotypes planted at multiple locations. We identify 1,459 significant locus–trait

associations (Pr1.8� 10�6) across three environments through metabolite-based

genome-wide association mapping. Most (58.5%) of the identified loci are supported

by expression QTLs, and some (14.7%) are validated through linkage mapping.

Re-sequencing and candidate gene association analysis identifies potential causal variants for

five candidate genes involved in metabolic traits. Two of these genes were further validated by

mutant and transgenic analysis. Metabolite features associated with kernel weight could be

used as biomarkers to facilitate genetic improvement of maize.
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P
lants produce numerous structurally diverse metabolites,
which play essential roles in growth, cellular replenishment
and whole-plant resource allocation as well as roles in plant

development and stress responses. In addition, they provide
essential resources for human nutrition, bioenergy, medicine,
flavourings, and so on1. Understanding plant biochemistry is
thus of fundamental importance for sustainable agriculture
and resource conservation, especially under changing climate
conditions2. Metabolomics, which enables comprehensive high-
throughput quantification of a broad range of metabolites, is
invaluable for both phenotyping and diagnostic studies in
humans, animals and plants3–5. The importance of maize as
one of the critical crops for food and feed worldwide makes a
comprehensive metabolomic study of this species imperative6–8.
Moreover, maize manifests exceptional genome and phenotypic
diversity among its inbred lines9,10, making it an attractive model
organism for crop genetics.

As the perceived end product of cellular regulatory and
metabolic processes, the metabolite spectrum and quantities
making up the metabolic complement may be viewed as the
metabolic phenotype or metabotype11,12. As the metabolic
phenotype provides a link between gene sequence and visible
phenotypes, metabolites can be used as biomarkers for trait
prediction6,13. In humans, genome-wide association studies
(GWAS) are beginning to unravel the genetics of metabolic
traits and demonstrate their utility in biomedical and
pharmaceutical research14. Numerous studies on plant primary
and secondary metabolites have been carried out that allowed
the detection of hundreds of QTLs in Arabidopsis, rice and
tomato15–18. Recently, the first metabolite-based association study
in maize demonstrated the utility of this approach in genetic
improvement7. However, the understanding of the genetic and
molecular basis of natural variation in plant metabolomes,
including those of maize, is still limited to relatively small
population size and a few selected biochemical pathways7,15–18.
Further, despite of the respective advantages of GWAS, it is
logical to borrow the strengths from linkage analysis to
complement GWAS in order to validate and identify causal
polymorphisms19.

The rapid development of RNA sequencing and metabolomic
technologies coupled with SNP data has enabled eQTL and
mQTL mapping at a large scale that help us to understand the
flow of biology information underlying complex traits in the
systems genetics level20. Combing GWAS and transcript data can
allow the rapid identification of a large number of novel genes
and potential networks that affect specific metabolism, as
suggested by a previous study in Arabidopsis thaliana21.
Recently, we obtained expression data of 28,769 genes and B1
million high-quality SNPs by deep RNA sequencing of the
immature seeds of 368 diverse maize inbreds22. A pilot GWAS for
oil concentration and composition in maize kernels has identified
74 loci associated with target traits that explain the majority of the
observed phenotypic variation23.

Here we analyse 184 metabolites with associated chemical
structures and additional 799 unknown metabolite features, using
368 diverse maize inbreds, SNP and gene expression information
as mentioned above, along with two recombinant inbred (RIL)
populations. We reveal a relatively simple genetic architecture for
most metabotype compositions using GWAS and linkage
mapping analysis. GWAS manifests strong power to dissect
metabolite traits and its findings can be validated using linkage
and eQTL analysis, as well as functional validation through
molecular experiments. We find novel metabolites and genes,
constituting key processes in the formation of phenolamides
(PAs) and flavonoids. Combining genetics, metabolomics and
expression profiles significantly improves our knowledge of both
the functional genomics and metabolism of maize and provides a
powerful tool for crop improvement.

Results
Metabolite profiling. Using high-throughput LC-MS/MS analy-
sis, we detected and quantified 983 distinct metabolite features
from mature kernel extracts of the association panel (368 inbred
lines) harvested at three locations in China. Most of them
(793/983) were also detected in the two RIL populations (334
lines), as well as overlapped metabolite features found in repli-
cations of the association panel (Supplementary Fig. 1). Chemical
structures of 184 metabolites were identified or annotated
(Supplementary Data 1 and 2).

The level of each metabolite feature varied widely across the
lines in both the association panel and linkage populations. For
the intensity of a majority of metabolite features (483% in the
association panel, 466% in the linkage population), 410-fold
change difference measured in each experiment was observed
(Supplementary Fig. 2), indicating high natural variability.
Greater phenotypic diversity for these metabolite features was
observed among the lines of the association panel than within
both linkage populations (Supplementary Fig. 2).

In the association panel, 725 metabolite features were detected
in two or three environments, 71.7% of which were observed
with a repeatability of 40.5, and 48.3% with a repeatability of
40.7 (Supplementary Fig. 3). The level of repeatability indicated
a precise phenotyping of metabolic level measurement and a
significant genetic contribution to the determination of metabolic
content within the association panel and the three experiments.
GWAS was performed for each experiment independently as the
level of replication within each experiment was not sufficient to
directly test the genotype by experiment interaction term.

Genetic basis of maize metabolome. In GWAS, 445% of the
metabolite features in each of the three environments had at least
one associated locus at a genome-wide significance level of
Pr1.8� 10� 6 (calculated by mixed linear model controlling Q
and K (MLM); N¼ 335–339). In total, 1,459 distinct locus–trait
associations were identified across three environments (Table 1;

Table 1 | Summary of significant loci–trait associations identified by GWAS and QTL identified by linkage mapping.

E1* E2 E3 BB ZY

Number of traitsw 258/548 347/748 332/735 550/725 447/736

Number of lociz 484 655 583 1152 724

Average loci per traity 1.9±2.0* 1.9±1.7 1.8±1.7 2.1±1.1 1.6±0.8

*E1, E2 and E3 represent the three experiments conducted on the association panel; BB, linkage population B73/By804 RIL; ZY, linkage populationZong3/Yu87-1 RIL.

wNumber of traits having significantly associated loci or QTL (before slash), number of total detected traits(after slash).

zNumber of significant loci detected in each experiment on the association panel (Pr1.8� 10�6, MLM) and QTL detected in each RIL population (LODZ3.0).

yAverage number of significant loci (or QTL) detected per trait±s.d.
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Supplementary Data 3). Each locus explained 5.7–49.1% of the
observed metabolic variance, with a median of 7.8%. Among
725 metabolite features that were detected in more than one
environment, we found a total of 1,256 significant loci associated
with 501 of them (Pr1.8� 10� 6). Of the 1,256 associations, 210
(16.7%) were consistently identified in two or three environments
at Pr1.8� 10� 6 (Supplementary Data 3). Additionally, with
relaxed cutoff values of Pr1.8� 10� 6 in one environment and
Pr1.0� 10� 4 in at least one of the other two environments, the
proportion of significant locus–trait associations that are found in
at least two environments increased to 50.2% (Supplementary
Data 3).

Linkage mapping in the BB RIL population identified 1,152
QTLs for 550 metabolite features, which accounted for 75.9% of
all metabolic traits detected in this population. For the ZY RIL
population, 60.7% traits (447 of 736) had at least one QTL
(Table 1). Each QTL explained 3.3–80.4% (in the BB RIL) and
5.3–65.6% (in the ZY RIL) of the phenotypic variance
(Supplementary Data 4). Of the significant GWAS loci identified
in three environments, 14.7% overlapped with the QTLs
identified in at least one of the two RIL populations
(Supplementary Data 3 and 4).

In the present study, 1,197 unique candidate genes correspond-
ing to 1,459 significant locus–trait associations identified across
three environments were annotated (Supplementary Data 3; only
the nearest candidate was reported here, but for the metabolites
with identified or annotated structure, genes within a 100-kb
flanking region of the lead SNPs were also provided in
Supplementary Data 5). Cis expression QTLs (eQTL, Pr1.8
� 10� 6, MLM, N¼ 368) were identified for the majority of these
candidate genes (58.5% or 700/1,197), which were from 946
significant locus–trait associations identified across three envir-
onments. Within these 946 locus–trait associations, significant
correlation (Pr0.01, t approximation, N¼ 335–339) between the
expression level of the candidate genes and the phenotypic
variation of the target metabolic traits were found in 238 cases
(25.2%), which implied that at least some of these candidate genes
affect the phenotypic variation via transcriptional regulation.
Functions of 24% of these genes are currently unknown based on
the available database. Catalytic enzymes, regulators and

transporters were involved in the metabolite content control
(Supplementary Fig. 4).

Biochemical and functional interpretation of GWAS results.
The utility of a metabolic phenotype is enhanced by the rich
knowledge base of many metabolic pathways and the ability to
corroborate candidate associations with biological and functional
arguments12,24. In addition, using GWAS on these metabolic
phenotypes, we were able to verify and have the chance to update
the annotation of many maize genes. Correlating gene annotation
and the biochemical characteristics of the associated metabolite
frequently allows selection of a single most likely causative gene.

The association between caffeoyl CoA 3-O-methyltransferase
1(CCoAOMT1)25,26 and caffeic acid, dicaffeoylspermidine and
several other metabolites is one example of easily pinpointing the
most likely causative gene (Table 2 and Supplementary Data 3).
GWAS associations with N, N-Di-feruloylputrescine and
Apigenin di-C-pentoside provided us the opportunity to
potentially update functional annotation of their causal genes
(Fig. 1; Table 2 and Supplementary Data 3). On the other hand,
the annotation of candidate genes provides useful clues to the
biochemical nature of the associated metabolites. Locus TDC1
(tryptophan decarboxylase, located on chromosome 10 at
82851072bp), which was significantly associated with 16 meta-
bolites (P¼ 7.21� 10� 18–1.54� 10� 6, MLM, N¼ 335–339),
contains two highly homologous genes (GRMZM2G021277
and GRMZM2G021388, 89% and 88% DNA and amino-
acid homology, respectively). Their annotated function in
Hordeumvulgare is tryptophan decarboxylase (IPR010977, query
coverage 99% and max identity 86%).We predicted that some of
these 16 metabolites are tryptophan derivatives based on
tryptamine (3-(2-Aminoethyl) indole hydrochloride) standard
(Table 2 and Supplementary Data 3). Likewise, GWAS result of
metabolite n0769 and functional annotation of the candidate gene
(steroleosin, STE) suggested the structure of n0769 (Table 2 and
Supplementary Data 3). STE is a sterol-binding dehydrogenase in
seed oil bodies27. Indeed, n0769 could be fatty acid moiety—
suggested by its mass spectrum fragmentation pattern, even
though the complete structure remains to be determined.

Table 2 | Validation of candidate genes through various methodologies and associated information.

Gene Lead trait Marker* Sitew Allele Frequency Location Amino-

acid

change

P-valuez Ny eQTL(P) Mu/

transgenic

PHT DFP

(DiFer-Put)

(n0381-1)

InDel_17/

15/0

Chr.1_140321926 17/

15/0

159/76/

16

Promoter No 2.27� 10� 13 251 3.42� 10� 5 Yes

SNPT/A Chr.1_140321605 T/A 106/144 Exon Leu to

Gln

1.26� 10� 11 250 0.26

CCoAOMT1 n1544-1 InDel_28 Chr.6_79193717 0/28 223/92 5’UTR No 1.99� 10� 22 351 0.06 Yes

STE n0769 InDel_1 Chr.2_68601038 0/1 310/16 Exon Frame

shift

3.80� 10� 8 326 0.02

InDel_878/

185

Chr.2_68602648 878/

185

176/87 Promoter No 0.13

(0.003)||

263 3.65� 10� 13

UGT Apigenin

di-C-

pentoside

(n1201)

SNPA/C Chr.6_120019623 A/C 138/178 Exon Asp to

Ala

1.08� 10�9 316 0.08

TDC1 Tryptamine

(n0671)

InDel_602 Chr.10_82851072 602/0 235/74 Promoter No 4.80� 10� 14 309 N.A.

*Candidate functional polymorphisms.

wPosition for the SNP and indel markers according to version 5b.60 of the B73 reference sequence (MaizeSequence, http://www.maizesequence.org/).

zCalculated by using mixed linear model controlling Q and K (MLM).

yNumber of samples used in statistical analysis.

||The P¼0.003 in parenthesis is calculated by ANOVA.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms4438 ARTICLE

NATURE COMMUNICATIONS | 5:3438 | DOI: 10.1038/ncomms4438 | www.nature.com/naturecommunications 3

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


Functional validation of candidate genes. To further validate
GWAS findings and investigate functional variations in the
candidate sequences, we tested five representative genes,
PHT (putrescinehydroxycinnamoyltransferase), CCoAOMT1,
STE, UGT (UDP glycosyltransferase) and TDC1, using multiple
molecular approaches. These included re-sequencing PCR pro-
ducts that encompassed the genetically associated polymorphisms
in the relevant inbred lines, eQTL analysis, linkage analysis,
mutant analysis and/or transgenic expression.

The PHT locus (GRMZM2G030436) showed the highest
significance (P¼ 2.57� 10� 15, MLM, N¼ 339, Supplementary
Data 3) in the association with the content of compound N, N-Di-
feruloylputrescine (DFP) in maize28. We further verified its
function by transgenic analysis in rice (Table 2 and Fig. 1). Over-
expression of PHT in rice resulted in the accumulation of DFP in
the leaf tissue in which it is normally absent, which strongly
suggest the involvement of PHT in the biosynthesis
of DFP (Supplementary Fig. 5). The functional annotation of
PHT was thus updated from transferase (IPR003480) to a
putative putrescinehydroxycinnamoyltransferase. Re-sequencing
uncovered a 0/15/17bp InDel polymorphism in the promoter
region, which is the most likely responsible for the natural
variation of DFP content, as well as the expression difference of
PHT. Re-sequencing also identified five polymorphisms in the
first exon that were significantly associated with the target traits
(P¼ 4.34� 10� 14–1.26� 10� 11, MLM, N¼ 230–320) and in
modest-to-high LD with the InDel identified in the promoter
region (r2¼ 0.48–0.81). One of the polymorphisms caused the
deletion of an amino acid, and three resulted in amino-acid
replacements (Supplementary Table 1 and 2). Taken together,
genetic variants within promoter and exon regions might
contribute to the functional variation of PHT (Fig. 1).

CCoAOMT1 (GRMZM2G127948) encodes a Caffeoyl-CoA
O-methyltransferase. It influences the content of several metabo-
lites, and its function was validated by examining both
CCoAOMT1 knockout maize lines and transgenic rice lines
(Table 2 and Supplementary Fig. 6). A monoacylatedagmatine,
putrescine and an unknown spermidine derivative (S11) were
significantly upregulated in the CCoAOMT1 knockout lines
(Supplementary Fig. 5). The association between its allelic vari-
ations and the metabolite n1544-1 (spermidine derivative S11)
was supported by metabolite QTL mapping in both BB and ZY
RIL populations. After re-sequencing the association panel, a
strong association signal was detected with a 28 bp InDel in the
50 untranslated region (UTR) of CCoAOMT1 (P¼ 1.99� 10� 22,
MLM, N¼ 315, Supplementary Table 1 and 2 and Supplementary
Fig. 6). At the site of this InDel, the parents of the ZY RIL
population, but not of the BB RIL population are polymorphic,
suggesting that the 28-bp InDel might not be causative, or not the
only causative sequence change. The negative correlation between
metabolite content and gene expression level suggested that
transcriptional regulation may cause the phenotype, although the
28-bp InDel is only marginally correlated (P¼ 0.06, t approxima-
tion, N¼ 315) with gene expression (Supplementary Table 1 and
Supplementary Fig. 6).

In STE (GRMZM2G108338), re-sequencing revealed a 1-bp
InDel in the coding region, causing a frame shift that was
significantly associated with the content of n0769 (P¼ 3.8�
10� 8, MLM, N¼ 326, Supplementary Table 1 and 2 and
Supplementary Fig. 7). We also found a significant difference
between the expression levels of the two alleles at this InDel
(P¼ 0.02, t-test, N¼ 326, Supplementary Fig. 7). In addition, a
strong cis eQTL was detected for STE (P¼ 1.4� 10� 18, MLM,
N¼ 368, Supplementary Fig. 7), and the expression level of this
gene was positively correlated with the quantity of n0769
measured (r¼ 0.21, P¼ 7.8� 10� 4, N¼ 339; Table 2 and

Supplementary Fig. 7). Re-sequencing the promoter region of
STE indicated that another potentially causative polymorphism
(an 878/185 bp InDel located 370 bp upstream of STE) was
strongly associated with the STE expression level (P¼ 3.7�
10� 13, ANOVA, N¼ 263, Supplementary Table 1 and
Supplementary Fig. 7) and slightly associated with the phenotypic
trait (P¼ 0.003, AVONA, N¼ 263, Supplementary Fig. 7). Low
LD (r2¼ 0.02) was observed between the two polymorphisms. We
thus postulate that the two InDels are both associated with
phenotypic and expression variation to different extents.

UGT (GRMZM2G383404), annotated as UDP-glycosyltrans-
ferase, was associated with the natural variation of a flavonoid
putatively named Apigenin di-C-pentoside. Despite the fact
that it is homologous to rice gene anthocyanin-3-O-glycosyl-
transferase, the protein sequence similarity of UGT to rice
flavone-6-C-glucosyltransferase (Os06g18010) is higher than the
anthocyanin-3-O-glucosyltransferase gene in maize (also known
asBz1GRMZM2G165390; Supplementary Fig. 8)29,30. Strongly
associated SNPs were identified in UGT by re-sequencing
(Supplementary Table 1 and 2). Eight significant SNPs found in
the exon region were located in a LD block. Six of these eight
SNPs cause substitution of amino acids and one SNP (A/C,
SYN13426; P¼ 1.1� 10� 9, MLM, N¼ 316) results in amino-
acid polarity change (Asp to Ala). This and other SNPs in the LD
block are likely to constitute the functional variation; however, it
is difficult to exclude other variants surrounding this region
(Supplementary Table 1 and Supplementary Fig. 9).

A 602-bp InDel in the promoter region of TDC1
(GRMZM2G021277), identified by re-sequencing, is significantly
associated with tryptamine content (P¼ 4.8� 10� 14, MLM,
N¼ 309; Supplementary Table 2). TDC1 was located within the
QTL region mapped in the ZY RIL population and the 602-bp
InDel was segregating in the parents. Although expression level of
this gene in 60 tissues in maize is extremely low31 and was not
detected in our RNA-sequencing study22, this large InDel may
affect the gene expression and, consequently, the phenotype
(Supplementary Table 1 and Supplementary Fig. 10).

New genes in phenolamide and flavonoid biosynthesis pathways.
PAs, which are frequently referred to as hydroxycinnamic acid
amides and phenylamides, have been identified in many plant
species. PAs participate in many physiological and developmental
processes32–34, related to defence against abiotic (temperature,
drought and salt, and UV) and biotic (pathogen and insects)33–37

stresses in plants. One of the major secondary metabolite groups
in plants, flavonoids, is widely distributed and has a variety of
functions38. Combining metabolomics analysis and GWAS, we
found novel metabolites and genes constituting key processes in
the formation of PAs and flavonoids, which had not been
previously characterized in maize.

In the biosynthesis of phenolamides, N-hydrocinnamoyltrans-
ferasesthatuse aliphatic amines as acyl acceptors and hydro-
xycinnamoyl-CoA as a donor were considered the key enzymes.
Some were identified in plants, such as ACT (Agmatinecou-
maroyltransferase) in barley39, SDT (spermidinesinapoyl
CoA acyltransferase) and SCT (spermidinecoumaroyl CoA
acyltransferase) in Arabidopsis32 and AT1 (acyltransferase1),
DH29 (acyltransferase DH29) and CV86 (acyltransferase CV86)
in tobacco40. In addition, the conjugates can be further modified
via species-specific hydroxylation, methylation, cyclization and
coupling reactions41. In Arabidopsis, AtTSM1, which encodes a
CCoAOMT-like protein, was proven to have methylation activity
in the biosysnthesis of phenolamides42.

In this study, we quantified 27 phenolamides. GWAS indicated
that locus PHT (GRMZM2G030436) was highly associated
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with the metabolite diferuloylputrescine (P6), while CCoAOMT1
(GRMZM2G127948) was responsible for the content
of N-(caffeoyl-O-hexoside)-spermidine (S8) and two of
N,N-caffeoyl,feruloyl-spermidine derivatives (S10 and 11)
(Supplementary Data 3 and Supplementary Fig. 5). PHT has
38% amino acid identity with previously identified AT1 from

Nicotianaattenuata40 and CCoAOMT1 shows 81% identity with
CCoAOMT1 from Arabidopsis thaliana42. The in vivo function of
PHT and CCoAOMT1 were validated in this study as described
above. In the rice PHT over-expression lines, both agmatine- and
putrescine-associated conjugates were significantly upregulated
(Supplementary Fig. 5). Interestingly, no change of the
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Figure 1 | Casual sites identification and functional validation of putrescinehydroxycinnamoyltransferase. (a) Structure of N, N-Di-feruloylputrescine

(DFP or DiFer-Put) in the polyamine pathway. (b) LC/MS fragmentation of DFP. Possible structures of the major fragments are shown. (c) Manhattan plot

displaying the GWAS result of the content of DFP (MLM, N¼ 339). (d) Regional association plot for locus PHT. The significant sites identified by

re-sequencing PHT (GRMZM2G030436), show in red (MLM, N¼ 230B320). The bigger red points show the putative functional polymorphisms, an

insertion/deletion at the site InDel_17/15/0 and a SNP at Chr1.S_140321605. (e) Gene model of PHT. Filled blue boxes represent exons and UTRs.

The dashed boxes mark the re-sequenced region, and the stars represent the significant sites identified by re-sequencing, the bigger stars represent the

proposed functional sites. (f) A representation of the pair-wise r
2 value among all polymorphic sites in PHT, where the colour of each box corresponds to

the r2 value according to the legend. (g) Manhattan plot shows the association between expression level of PHTand genome-wide SNPs. Significant signals

are mapped to SNPs within PHT, indicating a cis transcriptional regulation of this gene (MLM, N¼ 368). The presence of the proposed functional site,

InDel_17/15/0, is associated with both the expression level and the content of DFP (h,i), implying that the changed expression level is partially responsible

for the change in DFP content. (h) Plot of correlation between the content of DFP and the normalized expression level of the PHTgene. Maize inbred lines

with different genotypes at the InDel_17/15/0 site were shown in red, sky blue and midnight blue, respectively. The r value is based on a Pearson

correlation coefficient. The P value is calculated using the t approximation. (i) Box plot for DFP content (red) and expression of PHT (sky blue); plotted as a

function of genotypes at the site InDel_17/15/0. (j) Box plot for DFP content (red) and expression of PHT (sky blue), plotted as a function of genotypes at

the site Chr1.S_140321605. Horizontal line represents the mean and vertical lines mark the range from 5th and 95th percentile of the total data (i,j),

respectively. (k) Bar plot for DFP content and PHTexpression level in rice transgenic individuals (T0). The content of DFP and expression level of PHT in the

leaves of each transgenic individual is shown in red and sky blue, respectively. Vertical lines represent the s.e. (N¼ 3).
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monoacylated spermidine was observed while some of the
diacylated spermidines were downregulated in the PHT-over-
expressing lines (Supplementary Fig. 5). In addition, some
monoacylated agmatine and putrescine were significantly
upregulated in the CCoAOMT1 knockout lines (Supplementary
Fig. 5), which further confirmed its biochemical function
in vivo. Unlike the agmatineacyl transferase (ACT)39 and
putrescineacyltransferase (AT1)40 reported previously, the PHT
in our study seems to have a broader substrate specificity and can
recognize both agmatine and putrescine, which has similar
function with AtACT in Arabidopsis thaliana43. The lack of
hydroxycinnamoyl-CoA may result in the downregulation of
diacylatedspermidine in PHT-overexpressing lines. Therefore, we
conclude that the PHT is likely an acyltransferase that can act on
both agmatine and putrescine in maize. Furthermore, the latter
modification of PAs in maize was also confirmed in CCoAOMT1
knockout lines (Supplementary Fig. 5). Further, based on the
results inferred by the metabolic profiling of our over-expressing
rice lines and knockout maize lines, the biosynthetic pathway of
phenolamides was reconstructed (Fig. 2).

Flavonol derivatives are highly enriched in mature maize
kernels; flavanone and anthocyanin derivatives were also
identified in our study. Based on the natural variation of these
compounds, genomic loci responsible for the abundance of
these flavonoids were identified (Fig. 3). Genes involved in the

regulation, as well as the biosynthesis, of individual steps in the
flavonoid biosynthetic pathways were among these loci (Fig. 3
and Supplementary Data 3). Notably, a known locus P1, which
encodes a R2R3-MYB transcription factor44, was responsible for
natural variation of 20 flavonoids found in this study
(Supplementary Data 3). More interestingly, a considerable
number of loci identified in this study as associated with
flavonoids were direct targets of (or regulated by) P1, as
illustrated by Morohashi et al.45 Functional annotation of these
loci, including ABCT (ABC transporter; GRMZM2G018074),
GRD2 (Glucose/ribitol dehydrogenase; GRMZM2G170013),
HCT (hydroxycinnamoyl-CoA shikimate/quinatehydroxycin-
namoyltransferase; GRMZM2G156816), UGT (UDP-glycosyl-
transferase; GRMZM2G383404), HLY (hemolysin-III
homologue; GRMZM2G114650), UGT88A1 (UDP-glycosyl-
transferase 88A1; GRMZM2G122072) and SAMDC
(S-adenosylmethionine decarboxylase proenzyme Precursor;
GRMZM2G154397), provided important clues for their
involvement in maize flavonoid biosynthesis (Fig. 3). Further
experimental investigations are needed to elucidate the precise
functions of these loci.

Naringenin is the key intermediate of the flavone/anthocyanin
pathway, serving as the common precursor for a large number
of downstream flavonoids, as described previously46. The
occurrence of various flavones and O- or C-glycosyl flavones
found here demonstrates the existence of the pathway including
glycosyltransferase genes, implicating the genetic and biochemical
basis for the formation of diverse flavonoids in the maize kernel.
Metabolite GWAS thus facilitated characterization of the
flavonoid metabolic pathway and identification of genes
involved in its biosynthesis.

Potential utilization of metabolites. Reliable biomarkers
significantly related to plant phenotypic performance is excep-
tionally attractive for breeders and plant biologists. Using
variables with the highest significance above an arbitrary cutoff
value, a set of candidate biomarkers can be defined47. In the
present study, 26 metabolite features significantly associated with
100-kernel weight were detected in E2 that can explain 72.6% of
the phenotypic variance. The most significant metabolite feature
was n1043. For comparison, 17 significant metabolite features
were found in E3, explaining 34.5% of the phenotypic variance.
The most significant metabolite feature is n0486. Two metabolite
features (that is, n0956 and n1618) were significant in both E2
and E3. It is demonstrated that a limited number of metabolite
features significantly correlated with kernel weight (Pr0.05,
general stepwise regression, N¼ 335–339; Supplementary
Table 3) can be explored as useful markers for plant breeding.
Using 100-kernel weight as an example, five and two QTLs were
found from linkage mapping in ZY and BB RIL populations,
respectively. Forty-three QTLs of 42 metabolic traits identified in
this study colocalized with these seven QTLs found for 100-kernel
weight (Supplementary Table 4). More interestingly, of these
42 metabolic traits, two (n1104 and n1266) were significantly
associated with 100-kernel weight according to the general
stepwise regression (Pr0.05; Supplementary Tables 3 and 4).
Additionally, the strongest significant locus associated with
n1266, which is also validated by linkage mapping, was
exactly located in the region of a 100-kernel weight QTL
identified in the ZY RIL population. Sixteen annotated genes
were found within the B500-Kb region including the
lead candidate gene GRMZM2G066067 (annotated as a
UDP-glucosyltransferase), and other genes such as
GRMZM2G472651 (Thylakoid assembly4), GRMZM2G366373
(Aux/IAA-transcription factor), GRMZM2G141379 (Zinc
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finger, C3HC4 type), GRMZM2G112596 (ATPase-like),
GRMZM2G043191 (Endonuclease/exonuclease/phosphatase),
and so on (Supplementary Fig. 11). Further evaluation and
identification of the underlying genes will help to clone the
QTL affecting the kernel weight as well as to understand the
genetic architecture of complex traits, and thus further enhance
the crop-breeding toolbox.

Discussion
Plants are rich in metabolites and it is critical to explore the
immense diversity of plant metabolism for the products
important to human well being1,48. Metabolites may exert
control on growth either by acting as substrates for the

synthesis of cellular components that become limiting under
conditions of maximum growth, or by acting as signals regulating
growth and development13,49. Many secondary metabolites are
involved in biotic and abiotic stress responses. The economic
value of maize grain and the very large contribution of maize to
the diets of humans and animals make grain chemical
composition studies an invaluable research target. The ability to
understand quality determinants at the metabolic level, and use
this information to boost grain nutrition, is one direct benefit of
this study. By measuring 983 metabolite features that include 184
metabolites with associated chemical structures in kernels of 702
genotypes, our understanding of natural variation at the
metabolite level of maize has largely furthered. More than 80%
metabolite features identified in this study exhibited large fold
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change (410) within maize lines, which suggested an interesting
direction to explore how the huge quantitative variations regulate
plant growth and development.

GWAS has become a popular approach in plant genetic studies
owing to the rapid advance of the sequencing technology in
recent years50,51. Maize has exceptionally large diversity within
species and rapid LD decay51. In our metabolite GWAS high
analytical precision and marker density facilitated high-resolution
mapping. We can achieve the mapping resolution down to a
single gene in most cases in this study even though additional
improvements will be possible with larger association panels as
well as resolution and structure determination of a larger number
of metabolites. Linkage mapping is an excellent tool for the
validation of GWAS results. Rapidly developing genotyping
platforms such as high-density SNP chip and genotyping by
sequencing52 will benefit the genotyping of larger panels of
genotypes to achieve the identification of causative sequence
variants. Availability of gene expression data owing to the RNA
sequencing on our association panel also played an important
role in validating function of candidate genes and investigating
how the alleles work to change the phenotype. Picking and
validating candidate genes would be significantly challenging in
some cases based on current genomic annotation of maize.
Function annotation of their orthologous genes in other species
can be helpful clue to gain novel findings in maize, as shown by
the cases of UGT and TDC in this study. Various approaches or
tools are therefore useful and needed to interpret and utilize the
GWAS results. Functional link between genetic variants and
metabolic traits is relatively evident as suggested by our study,
which demonstrates the great potential of combining genetics and
metabolomics to dissect the biological mechanisms of maize
metabolism. For instance, we updated the PAs and flavonoid
biosynthetic pathways in this study. Our knowledge of both
pathways is now greatly improved by the identification of
previously unknown metabolites and candidate genes, including
those for metabolic enzymes, transcription factor and
transporters. Further studies, including structure confirmation
of the selected metabolites and functional validation of additional
candidate genes, can now be undertaken. Understanding natural
variation at the metabolite level facilitates reconstruction of
biosynthetic pathways, which in turn will benefit synthetic
biology and metabolic engineering of desirable compounds in
plants.

Metabolites that are correlated with complex traits like
biomass of plants possess great predictive power to be
used as biomarkers18,49. A number of metabolite features
significantly associated with kernel trait were identified in
this study. Although further validation was required, the
combination of GWAS and metabolomics provided an
alternative to uncover agronomically important traits, which
will enhance the molecular design breeding in maize as well as
other crops.

In summary, the combination of multiple technologies,
including transcript and metabolite profiling, has facilitated
candidate gene selection and allowed novel functional and
biological insights into the association results. Future genetic
studies in conjunction with genomics, transcriptomics, metabo-
lomics and proteomics, as well as precision phenotyping, will help
to fully uncover the mechanisms of complex agronomic and
biochemical traits, and will lead to an accelerated rate of genetic
gain in crop improvement.

Methods
Populations and field trials. Genetic materials used in this study included a panel
of 368 diverse maize inbred lines for GWAS, which was referred to as the asso-
ciation panel23 and two RIL populations, B73/By804 (ref. 53) and Zong3/Yu87-1

(ref. 54) for linkage analysis. Field trials for the association panel were conducted in
three sites: Hainan (Sanya, E 109�510 , N 18�250) in 2010, Yunnan (Kunming,
E 102�300 , N 24�250) and Chongqing (E 106�500 , N 29�250) in 2011. These three
experiments were hereafter referred to as E1, E2 and E3, respectively. The173 RIL
lines from the B73/By804 cross (referred to as BB hereafter) were planted in Henan
in 2011. The 161 RILs from the Zong3/Yu87-1 cross (referred to as ZY hereafter)
were planted in Yunnan in 2011. All the inbred lines were divided into two groups
(temperate and tropical/subtropical) based on pedigree information and planted in
one-row plots in an incompletely randomized block design within the group. All
lines were self-pollinated and ears of each plot were hand-harvested at their
respective physiological maturity, followed by air drying and shelling. For each line,
ears from five plants were harvested at the same maturity and bulked. One hundred
kernels of each line were also counted and weighted for the association panel
planted in three environments (Sichuan, 2009; Yunnan, 2009 and 2010) and for the
two linkage populations planted in three environments (Chongqing, 2011; Hainan,
2011; Henan, 2011), respectively. The blup values of HKW across all environments
were used for GWAS and linkage analysis.

Genotyping and RNA sequencing. All 368 lines of the association panel were
genotyped using Illumina MaizeSNP50 BeadChip, which contains 56,110 SNP
loci55. Ninety-base pair pair-end Illumina RNA sequencing was subsequently
performed on the immature seeds of 15 days after pollination for these 368 lines.
In all, 1.06 million high-quality SNPs were identified in the whole panel and the
expression data for 28,769 genes were also obtained in all the 368 lines. The
detailed information was described in the recent studies22,23. Both RIL populations
have been genotyped using Illumina GoldenGate BeadChip containing 1,536 SNPs
and linkage map was constructed for both populations56.

Sample preparation and metabolite profiling. We carried out metabolic pro-
filing on mature maize kernels from lines of the association panel (n¼ 368) and
two RIL populations (N¼ 173 and 167, respectively). For each line, 12-well growth
kernels were randomly selected from five plants and bulked for grinding. The
kernels were ground using a mixer mill (MM 400, Retsch) with zirconia beads for
2.0min at 30Hz. The powder of each genotype was partitioned into two sample
sets and stored at � 80 �C until they were required for extraction. One sample set
was extracted for lipid-soluble metabolites, while the other was for extracting
water-soluble metabolites. One hundred milligram of powder and 1ml absolute
methanol, which contained 0.1mg l Lincomycin and Lidocaine, were used for lipid-
soluble metabolites (or 70% methanol for water-soluble metabolites). Samples were
extracted overnight at 4 �C. After centrifugation at 10,000g for 10min, 0.4ml of
each extract was combined and filter spun using 0.22-mm filters (ANPEL, Shanghai,
China, http://www.anpel.com.cn/) before analysis using an LC-ESI-MS/MS system.
The metabolite quantification and annotation is performed by our newly developed
method57, which is described in detail in the Supplementary Notes. All the data
are reported in detail in the Supplementary Materials, following the
recommendations for reporting metabolite data by Fernie et al.58 (see the
Supplementary Note 1; Supplementary Data 1 and 2 and Supplementary Fig. 12).

Metabolite identification and annotation. To facilitate the identification/anno-
tation of detected metabolites by our widely targeted metabolomics approach,
accurate m/z of each Q1 was obtained, if possible. To this end, extracted ion
chromatograms (XICs) of the ESI-QqTOF-MS data for each of Q1 (m/z±0.2Da)
of the 983 transitions in the MS2T library were manually evaluated for the presence
of the targeted substances by analysing corresponding mass spectra, and the
accurate m/z values were obtained. For each of the corresponding accurate m/z,
fragmentation pattern was obtained by running the analysis under targeted MS/MS
mode using three different collision energies of 10, 20 and 30 eV. The accurate m/z
was assigned to the corresponding Q1 if similar fragmentation patterns were
obtained between the ESI-Q TRAP-MS/MS and the ESI-QqTOF-MS/MS. Even-
tually, accurate mass of 245 of Q1 was obtained.

The MS2T library was annotated based on the fragmentation pattern (delivered
by ESI-Q TRAP-MS/MS and/or the accurate m/z value delivered by ESI-QqTOF-
MS/MS) and the retention time of each metabolite. Based on the annotation,
commercially available standards were purchased and analysed using the same
profiling procedure as the extracts. By comparing the m/z values, the retention time
and the fragmentation patterns with the standards, 49 metabolites were identified,
including amino acids, flavonoids, lysoPCs and fatty acid (such as a-linolenic acid),
and some phytohormones (see Supplementary Data 2). For the metabolites that
couldn’t be identified by available standards, peaks in the MS2T library, especially
the peaks that have similar fragmentation patterns with the metabolites identified
by authentic standards, were used to query the MS/MS spectral data taken from the
literature or to search the databases (MassBank, KNApSAcK, HMDB, MoTo DB
and METLIN). Best matches were then searched in the Dictionary of Natural
products and KEGG for possible structures. In all, 184 metabolites were identified
and more than four different pathways were detected in our study.

Statistical analysis of metabolic traits. The mixture of 150 randomly chosen
extracts from the association panel was used as a reference control of each mea-
sured batch59. One reference control that contains 983 molecular features was
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placed and measured per 25 genotypes. In our study, the reference control were
used for normalization even though two internal standards were added, since we
think the internal standards are not the best to reflect the change of all metabolite
features through the analysis procedure, considering different properties of the
large number of metabolite features we analysed. Moreover, each set of 25 samples
and each molecular feature were normalized to the average level of reference
control that was injected before and after these 25 samples. All procedures were
applied after normalization of the metabolite data using the reference control. All
the metabolite concentrations were log2-transformed for further analysis. Since
only one replication was performed in each experiment, phenotypic variance (Vp)
was partitioned into genotype (Vg), environment (Ve) and the error (Ver) using a
SAS proc mixed procedure. Repeatability (R) was then calculated for each
metabolite as R¼Vg/Vp according to Holland et al.60

Genome-wide association studies. Given that the MS system for E1 was different
from that used in the other two experiments (Supplementary Note 1), for sim-
plicity, GWAS was independently performed for each metabolic trait obtained in
each experiment. We used a compressed mixed linear model61 accounting for the
population structure (Q) and familial relationship (K)23 to examine the association
between SNPs and metabolic traits. SNPs with a moderate minor allele frequency
(MAF45%) in the 368 lines were employed in the association analysis. P value of
each SNP was calculated and significance was defined at a uniform threshold of
r1.8� 10� 6 (P¼ 1/n; n¼ total markers used, which is roughly a Bonferroni
correction). SNP with the lowest P value (that is, lead SNP) and its corresponding
gene were reported for each significant metabolic locus (see Supplementary
Data 3). To validate each significant locus by linkage analysis, the physical position
of its lead SNP was compared with the physical region of QTL. For the purpose of
evaluating each candidate gene, eQTL analysis was conducted to investigate the
regulatory pattern of each gene, and the relationship between its expression level
and the corresponding metabolic trait was further investigated.

Linkage mapping. We conducted QTL analysis using Composite Interval Map-
ping implemented in Windows QTL Cartographer V2.5 (refs 62,63) for metabolites
detected in the two RIL populations. Zmap (model 6) with a 10-cM window and an
interval-mapping increment of 2 cM were used. To determine a uniform threshold
for significant QTLs 1,000 permutations were used for 100 randomly selected traits,
50 traits from each RIL population. The average LOD value at Po0.05 is 2.88, so
we chose a uniform value (LOD¼ 3) as the cutoff. The genomic region in which a
peak of LOD value reached the threshold (LOD¼ 3), and the LOD of the flanking
markers was 42.5, was designated as a confidence interval.

eQTL mapping. Using the same method as for GWAS, the associations between
genome-wide SNPs and the expression level of each metabolic trait-associated
gene were investigated. SNPs within a 100-kb region of the lead SNP for each
metabolic trait were evaluated for their possible regulatory involvement.
Only genes expressed in 450% of the 368 sequenced lines that had a mean
quantification of 410 reads were used in this analysis.

Vector construction and rice transformation. The over-expression vector
(pJC034) for rice is constructed from the gateway over-expression vector
pH2GW7; 35S promoter of pH2GW7 is replaced by maize ubiquitin promoter,
which is more suitable for rice over-expression study. To generate PHT and
CCoAOMT1 over-expression constructs, the full-length cDNA of PHT was
amplified from maize inbred line B73 by reverse transcription (RT)-PCR. The PCR
product was cloned into the gateway vector pDONR207 using the BP enzyme
(Invitrogen, Shanghai, China), and then sequenced; the right clones would be used
for LR reaction with pJC034 using the LR enzyme (Invitrogen, Shanghai, China).
This construct were introduced into japonica rice cultivar ZH11 by Agrobacterium
tumefaciens-mediated transformation64.

Expression analyses of the transformed genes. We isolated total RNA from rice
and maize leaves using an RNA extraction kit (TRIzol reagent; Invitrogen,
Shanghai, China) according to the manufacturer’s instructions. The first-strand
cDNA was synthesized using MLV (Invitrogen, Shanghai, China) according to the
manufacturer’s protocol. Real-time PCR was performed on an optical 96-well plate
in an ABI SteponePlus PCR system (Applied Biosystems, Shanghai, China) by
using SYBR Premix reagent F-415 (Thermo scientific, Shanghai, China). The
relative expression level of gene PHT and CCoAOMT1 was determined with the
rice Actin1 (ref. 65) gene as an internal control. The expression measurements were
obtained using the relative quantification method66. For semi-quantitative
RT-PCR, reactions were performed in 20-ml volumes with the following protocol:
one cycle of 94 �C for 5min and 30 cycles of 94 �C for 30 s, 58 �C for 30 s and 72 �C
for 60 s.

Detection of metabolites significantly associated with 100-kernel weight.
General step-wise regression, implemented by GLMSelect procedure in SAS soft-
ware67, was used to detect metabolites significantly associated with 100-kernel

weight investigated in E2 and E3. The probability of marker entering into the
model was set at 0.05 for selecting the top metabolites.

Data availability. All data are available as a public resource to aid functional
studies and interpretation of GWAS findings. Data sets including genotypic,
phenotypic, expression and the mass spec data of each line and detailed infor-
mation of called SNPs from RNA-sequencing result can be viewed and downloaded
from the website http://www.maizego.org/Resources.html.
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