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Metabolome progression during 

early gut microbial colonization of 

gnotobiotic mice
Angela Marcobal1, Tahir Yusufaly2, Steven Higginbottom1, Michael Snyder3, 

Justin L. Sonnenburg1,* & George I. Mias2,*

The microbiome has been implicated directly in host health, especially host metabolic processes 

and development of immune responses. These are particularly important in infants where the gut 

first begins being colonized, and such processes may be modeled in mice. In this investigation we 
follow longitudinally the urine metabolome of ex-germ-free mice, which are colonized with two 

bacterial species, Bacteroides thetaiotaomicron and Bifidobacterium longum. High-throughput mass 

spectrometry profiling of urine samples revealed dynamic changes in the metabolome makeup, 
associated with the gut bacterial colonization, enabled by our adaptation of non-linear time-series 

analysis to urine metabolomics data. Results demonstrate both gradual and punctuated changes 

in metabolite production and that early colonization events profoundly impact the nature of small 

molecules circulating in the host. The identified small molecules are implicated in amino acid and 
carbohydrate metabolic processes, and offer insights into the dynamic changes occurring during the 
colonization process, using high-throughput longitudinal methodology.

�e human body is populated by a dense array of microorganisms that constitute a dynamic source 
of macromolecules and small molecules (metabolites)1. �ese bacterial-origin metabolites are absorbed 
continuously by the host and integrated into their systemic circulation. E�orts are in progress to cata-
logue speci�c microbial populations in healthy and pathological human states, including the extensive 
research from the Human Microbiome Project2–6, and new directions in integrating such information 
for personalized medicine approaches7–9. �e microbiome has been shown to have multiple connections 
to human physiology, including the e�ects of energy modulation and connections to obesity, metabolic 
disorders and drug e�cacy10. �e e�ect of intestinal dysbiosis has been associated with various diseases, 
including obesity, diabetes, Crohn’s and celiac diseases11–18. �e in�uence of diet on the constitution of 
the microbiome has been also explored, both in the context of mechanism discovery, as well as e�ecting 
physiological changes, such as treatment of disease, obesity reduction as well as modulating drug e�-
cacy and toxicity10,19,20. �e study of the microbiome and the implementation of pharmacomicrobiom-
ics20 lends itself to applications relevant to the recent e�orts on precision medicine announced by the 
National Institutes of Health21. �e interplay between host-microbiome interactions is being extensively 
modeled, at all scales, starting from individual biochemical interactions and protein/gene associations to 
systems-level implementations that predict global e�ects of host-microbiome modulation, colonization 
and diet, including genome-scale metabolic models (GEMs)22.

Additional investigations have studied the processes that drive the development of adult-like bacterial 
composition in the gut, beginning from a “sterile” environment at birth23,24. Studies involving 16 S ribo-
somal RNA (rRNA) based sequencing25 and metatranscriptomic or proteomic analyses26–28 have reported 
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the involvement of conditions at birth and infant diet in the complex development of gut microbiota 
observed during the �rst months of life29. �e 16 S rRNA-based studies revealed that in the intestinal 
microbiota of healthy adult humans the majority (> 99%) of detected phylotypes belonged to two bacte-
rial divisions: Bacteroides and Firmicutes30. �ese relative proportions of these bacterial populations have 
already been implicated in studies contrasting children’s diets31.

�e speci�c mechanisms that select for particular groups of bacteria in the infant gut remain largely 
unknown. To mimic the development of the bacterial �ora in the sterile gut of a newborn, simpli�ed 
mice models, like germ free (GF) mice, have been employed32 and Gnotobiotic mice (ex-GF mice) colo-
nized with speci�c sets of microorganisms or full microbial communities have been shown to be useful 
models in the study of symbiont–host interactions. �e dynamics of microbial colonization events early 
in life upon the host metabolome are also still under investigation. Metabolome changes in feces from 
germ free mice during the process of acclimatization to non-germ free environment have been previously 
evaluated33. Martin et al. studied fecal metabolic di�erences between conventional mice and germ free 
mice colonized with a mix of seven microbes isolated from baby fecal samples34. �eir investigations 
revealed di�erences in metabolite content and proportion at individual time points post colonization. 
We further extend such approaches to the use of time-series correlation trends to follow the e�ects of 
bacterial acquisition as described below.

To extract more information about the colonization process new systems biology methodologies are 
now being implemented, aided by recent advent of metabolomics technologies (e.g. Nuclear Magnetic 
Resonance (NMR), gas chromatography/mass spectrometry (GC-MS), or ultra-performance liquid chro-
matography/mass spectrometry (UPLC/MS)35,36), which provide a new toolkit, enabling the pro�ling and 
monitoring of all the metabolite components in a given sample. �ese high-throughput approaches cap-
ture the intensities of thousands of components and reveal that host metabolomes are directly impacted 
by the presence of gut bacteria25. �e identity and function of microbes colonizing the gut has a direct 
impact on the small molecules, metabolites, that are produced34,37. Many of these metabolites, which are 
still structurally uncharacterized, are taken up into host circulation where they can interact with tissues 
throughout the body, be co-metabolized by enzymes including those in the liver, and ultimately are 
excreted through the kidney into urine. Comparison of urine metabolic pro�les from conventional and 
germ free rats and mice38,39 revealed an important contribution of the gut microbiota in liver or kidney 
metabolism, and a connection to adaptive immune responses40. Other studies have veri�ed how the 
presence of bacteria impact the colonic luminal metabolome41, as well as some endogenous metabolite 
levels42.

In this investigation we address the direct response in a germ free environment to bacterial col-
onization, and evaluate changes in host urine metabolome over time. To mimic the interaction of 
bacteria-sterile gut we use a gnotobiotic mice model, colonizing germ free mice with Bacteroides the-
taiotaomicron (Bt) and Bi�dobacterium longum (Bif. longum), commonly present in the infant gut32,43,44. 
�e urine metabolome was pro�led over multiple time points (spanning 25 days), once in germ free 
(GF) used as a reference and every �ve days in colonized mice, using UPLC-MS technologies. One of 
the major hurdles in analyzing such time-course data is accounting for the sampling. Missing intensity 
information for mass features in mass spectrometry spectra leads to unevenness in the sampling, even 
if the experiment was designed to sample at regular intervals. To allow for this, we applied a method 
that was initially developed for temporal data in astronomy45–47, and later extended to other time series, 
including biological and omics longitudinal data7,48–53. �e approach takes the time variable into account, 
using classi�cation of each signal by autocorrelation and then pattern matching to reveal the underlying 
collective behavior and is generalizable to longer time series and other omics (Yusufaly and Mias in 
preparation). �e complex data spectra were analyzed in order to identify metabolites and their temporal 
trends, to identify and classify the various patterns corresponding to the process of bacterial colonization. 
Interesting features that show the response to microbiota introduction in the host metabolome include 
both continuous trends and sudden increases and decreases in metabolite intensity levels with a range 
of metabolic pathways observed (related to immune responses, amino acid and carbohydrate processing 
pathways).

Results
To evaluate changes due to bacterial colonization in germ free mice, the study followed the global changes 
in metabolomics from urine samples in Swiss-Webster germ free (GF) mice, a�er colonization. �e urine 
samples were essentially used as an output signature of changes caused by the bacterial colonization. 
�e small molecules in mouse urine were pro�led using mass spectrometry over the course of 25 days 
(Fig. 1a) at �ve days intervals.

�e mice, initially all GF, were placed inside gnotobiotic isolators. One group of GF mice (n =  3) was 
used as a reference for comparison. �e other group of initially GF mice (n =  4) was colonized on Day 
0 using oral gavage with 108 cfu of Bt (VPI-5482) and 108 cfu of Bif. longum (NCC2705). Urine samples 
(used for metabolome pro�le) and feces (used for verifying the colonization composition) from GF mice 
were collected on Day 0, and similarly from the bi-associated mice on Days 5, 10, 15, 20 and 25 a�er 
their colonization. �e bacterial composition in the bi-associated mice was determined by plating assays 
of fecal samples, and did not �uctuate a�er Day 5 (Supplementary Fig. S1), showing a relatively higher 
proportion of Bt (75–95% range). �e urine samples collected were processed using high a�nity liquid 



www.nature.com/scientificreports/

3Scientific RepoRts | 5:11589 | DOi: 10.1038/srep11589

Figure 1. Inoculation of Germ Free Mice. (a) Germ free mice were inoculated on Day 0 with Bacteriodes. 

thetaiotaomicron and Bi�dobacterium longum by oral gavage ingestion. Urine and fecal samples were 

processed for metabolome and colony pro�ling respectively from these mice on days 5, 10, 15, 20, 25. 

Principal Component Analysis in both Positive (b) and Negative (c) acquisition mode full metabolome 

results reveal that the mice samples aggregate into groups, with the Germ Free and Day 5 groups well 

separated. �e components account for 81% and 80% of the variances in Positive and Negative modes 

respectively. �e corresponding normalized distributions are shown on the right panels displaying similar 

pro�les, where intensities IM have been standardized (with median and median absolute deviation), 

indicating symmetry in approach in positive and negative modes. See also Supplementary Fig. S1, 

Supplementary Table S1.
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chromatography and mass spectrometry (LC-MS), using an Exactive (�ermo Fisher) mass spectrom-
eter, with the electrospray operated in both positive and negative ion modes. �e mass spectra were 
aligned in both retention times and masses (see Methods), resulting in the overall detection of 3245 mass 
features of interest (1555 and 1692 detected in negative and positive mode respectively).

�e processed mass spectra were then analyzed to obtain underlying trends (as outlined in 
Supplementary Fig. S2). Namely, datasets were: (1) analyzed using Principal Components Analysis (PCA) 
to assess variation between the GF mice and the bi-associated mice on di�erent days, (2) spectrally ana-
lyzed to obtain longitudinal patterns and classi�ed into signi�cance categories based on their pro�le over 
time, and (3) potential biological signi�cance assessed through the assignment of putative mass identities 
and pathway analysis (see Methods). In particular:

(1) �e PCA of the aligned comprehensive data revealed a clear separation of the mice into three 
major sets: (i) �e GF mice group and (ii) the Day 5 group, which are distinctly separated from (iii) the 
remaining groups (Days 10–25) which are rather intermixed as one set (Fig. 1b). �e corresponding nor-
malized distributions of metabolites of GF mice and each of the bi-associated mice timepoints remained 
similar across all measurements, both in negative and positive modes, indicative of the robustness of the 
normalization procedure. �e PCA analysis results can account for most of the variability between the 
mice groups. In particular the total variance accounted by the three components shown in Fig. 1b was 
~80% for the positive mode data (variance from [P1,P2,P3]≈ [55%,19%,6%]) and similarly ~81% for 
negative mode data (variance from [P1,P2,P3]≈ [59%,18%,4%]).

(2) �e normalized data were used to construct time series signals. For each detected mass feature, 
a time series was constructed using the GF mice dataset as a stable point reference39 - an e�ective “day 
zero” data point. For a given mass feature, the data from the time points measured in the bi-associated 
mice (Day 5-Day 20 a�er inoculation) were all compared to the same corresponding GF entry. Each 
resulting signal of relative metabolite changes was classi�ed and assigned to one of three classes, if it 
displayed one of the following signi�cant temporal trends: (I) autocorrelated at lag one (at p <  0.05; boot-
strap distribution; n =  100,000 with replacement) where the signal displays correlated behavior (essen-
tially linear) between each sequential time point in the signal; or as spike trends showing maxima (II) 
or minima (III), i.e. aberrantly high or low levels respectively, as compared to the signal baseline with 
random �uctuations, (at p <  0.05; based on n =  100,000 bootstrap simulation with replacement).

�e above outlined classi�cation approach (see Methods) was also tested in simulations, and found 
to perform well for six time-points (directly applicable to this project, Fig. 2). �e simulations assessed 
robustness and reconstruction of temporal trends in known linear signals. �e linear signals were per-
turbed through the addition of random noise, either 5% or 10% and also combined with random signals. 
Each signal set was allowed to have up to one time point missing (except the �rst time point in all series, 
which was used as a reference point, in analogy of using the GF mice as a comparison reference point). 
In the simulations, two �lters were used to explore the e�ciency of the algorithm, (i) a strict p <  0.05 
cuto� for autocorrelation at lag one (Filter S) and (ii) a relaxed �lter (Filter R), in which the p-value was 
relaxed until the entire set of linear trends was recovered by the classi�cation. �e simulation results 
suggested modest false discovery rates (FDR). In a typical example shown in Fig. 2, for the case of 5% 
error in the signals, Filter S had FDR 0.026–0.041 and Filter R recovered all linear signals at p <  0.14 
and FDR 0.026–0.08. For 20% errors in the signals, Filter S had FDR 0.026–0.048 and Filter R recovered 
all linear signals at p <  0.22 and FDR 0.021–0.101. �e heatmaps and clustering corresponding to the 
simulation results are shown in Fig. 2b.

�e classi�cation analyses of the experimental urine metabolome data assigned a total of 576 mol-
ecules to the di�erent time trend classes (334 autocorrelated, 106 spike maxima, 136 spike minima). 
45 of these molecules were considered to be high interest identi�cations based on their uniqueness of 
mass, or identity veri�cation through the use of standards using follow-up mass spectrometry exper-
iments (Table  1, Supplementary Table S1 for full data). Hierarchical clustering within each temporal 
class revealed distinct trends in the metabolite compositions, corresponding to the colonization of the 
GF mice (see Methods) (Fig.  3, le�). �e autocorrelated trends revealed two distinct groups, showing 
contrasting trends – one increasing constantly following colonization (A2 in Fig. 3, which included val-
idated compounds such as tyramine, L-homocysteine, and estriol), with the other decreasing constantly 
(clustering group A5 in Fig.  3, including validated compounds such as 5 hydroxy-L-tryptophan and 
N-acetyl-L-methionine). �e spike maxima and minima also displayed various trends, with the most 
prominent spike occurring on Day 5 (e.g. L-phenylalanine in clustering group Min 4, Fig. 3).

(3) �e identi�ed metabolites of high-interest are associated with multiple possible pathways (26 
molecules were found in QIAGEN’s Ingenuity Pathways (IPA®, QIAGEN Redwood City, www.qiagen.
com/ingenuity), Supplementary Fig. S3, including nine molecules that were veri�ed by MS identi�ca-
tion through comparison to standards). Examples with the lowest p-values and with more than two 
identi�ed molecules involved include Amino Acid Metabolism functions, uptake of L-proline and 
L-alanine (p <  2.5 ×  10−5) [both involve L-alanine and L-phenylalanine], as well as carbohydrate metab-
olism functions [involving tyramine and L-phenylalanine, and estriol in transport of monosaccharide 
(p <  4.8 ×  10−5)], with the full IPA® analysis output included in Supplementary Table S2. For the identi-
�ed metabolites in the high interest list, networks were constructed algorithmically using IPA® to iden-
tify connections to known gene and pathway associations. �e highest scoring network (network score 
16, i.e. p <  10−16, by IPA®) is shown in Fig. 3 right panel, and involves Cell-mediated Immune Response, 
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Figure 2. Simulation of Random Time Series. (a) Simulations of the autocorrelation classi�cation 

methodology were performed to assess robustness and reconstruction of temporal trends in known linear 

signals. �e example illustrates a random realization that corresponds to a simulation of: 12,000 linear 

signals, of equal numbers of positive (+ ) or negative slope/trend (− ), combined with a randomly generated 

equivalent set of 6000 random signals, and in randomized order. �e numbers in each set were equally 

distributed between having zero or one time point missing (excluding the �rst one which is used as a 

reference). Additionally a simulation of 100,000 random signals was used as a background of bootstrap 

simulation. In particular, for simulations of linear signals with 5% random error per timepoint, Filter S 

corresponds to a strict p <  0.05 cuto� for autocorrelation at lag 1 (random series bootstrap, n =  100,000). 

In Filter R the p-value is relaxed until the entire set of linear trends is recovered. As seen, this results in 

modest false discovery rates. �e simulation was repeated for linear signals with 20% error per timepoint 

for both �lters. �e corresponding heatmaps and clustering are shown in (b). (c) �e reconstruction of 

autocorrelations from the periodogram, and the exact autocorrelations are shown for a straight signal, for a 

series of n =  6 and n =  100 time points. For n =  100 the reconstruction is indistinguishable from the exact 

calculation in the �gure.
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Compound
KEGG 

ID
Mass 

(amu)
Class 

Group

11-Deoxytetrodotoxin C20026 302.11 A1

Kasugamycin C17968 378.16 A1

*Inosine C00294 267.07 A1

N-Methyl-(R,S)-tetrahydrobenzylisoquinoline C05314 238.15 A2

Amantadine hydrochloride C07939 186.11 A2

Glycinoeclepin A C08765 433.25 A2

Dikegulac C18825 275.11 A2

Longifolonine C09569 296.10 A2

Sila�uofen C18412 407.19 A2

Mitoxantrone C11195 445.20 A2

Naltrindole C18128 415.19 A2

4,4-Di�uoro-17beta-hydroxyandrost-5-en-3-one propionate C15112 381.22 A2

Lycomarasmine B C08496 276.09 A2

SR95531 C13796 288.13 A2

9alpha-Fluoro-16alpha-hydroxyhydrocortisone C14638 397.19 A2

*L-Homocysteine C00155 136.04 A2

*Tyramine C00483 138.09 A2

*Estriol C05141 287.17 A2

(2-Butylbenzofuran-3-yl)(4-hydroxyphenyl)ketone C15049 295.13 A4

Agaritine C01550 266.12 A4

GA C11484 298.15 A4

Metconazole C18476 320.15 A4

1-Carbazol-9-yl-3-(3,5-dimethylpyrazol-1-yl)-propan-2-ol C11560 320.17 A4

L-alpha-Acetyl-N,N-dinormethadol; dinor-LAAM C16662 326.20 A5

Hypoglycin B C08280 271.12 A5

Dihydrozeatin riboside C16447 352.17 A5

*5-Hydroxy-L-tryptophan C00643 221.09 A5

*N-Acetylmethionine C02712 192.07 A5

SN-38 carboxylate form C11366 410.14 Max2

Fenpiclonil C14268 234.99 Max4

Difenpiramide C17720 289.13 Max4

Anthopleurine C16994 176.10 Min1

N-Acetyl-beta-D-glucosaminylamine C01239 219.11 Min2

Phenylacetylglycine dimethylamide; Ralgin C12958 221.12 Min2

*L-Alanine C00041 88.04 Min2

Clomipramine C06918 315.15 Min3

3beta-Hydroxy-16-phosphonopregn-5-en-20-one monoethyl ester C15173 425.24 Min3

Propachlor C18759 210.08 Min4

Amantadine hydrochloride C07939 186.11 Min4

dl-Methylephedrine hydrochloride C13639 214.11 Min4

Streptidine C00837 263.14 Min4

Penthiopyrad C18482 358.13 Min4

Benalfocin; SK&F 86466 C10970 194.08 Min4

*L-Phenylalanine C00079 166.07 Min4

*Urocanate; Urocanic acid C00785 139.05 Min4

Table 1.  Possible Metabolites (Higher Priority List). High con�dence metabolites that showed signi�cant temporal trends (Fig. 2). Mass 

features were annotated using the KEGG72 API, with mass tolerance 10ppm. Additional masses of interest were compared against mass 

spectrometry standards for identi�cation. Masses with unique KEGG IDs or identi�ed through the use of standards were classi�ed as high 

priority and were used for pathway and network analysis through QIAGEN’s Ingenuity® Pathway Analysis (IPA®, QIAGEN Redwood City, 

www.qiagen.com/ingenuity). See also Supplementrary Fig. S2 for analysis framework details and Supplementary Table S3 for full classi�cation 

data. *were identi�ed by use of standards using LC-MS.
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In�ammatory Response, Gastrointestinal Disease. �e network includes multiple processes such as trans-
ports of monosaccharide and D-glucose, uptake of L-alanine, L-proline, ILK signaling and associated 
genes, proteins and enzymes, with TNF, Vegf and IRS1 amongst the highly connected nodes (Fig. 3).

Discussion
�e microbiome is an intrinsic part of the host and should be considered in conjunction with corre-
sponding changes in host molecular components3,4,10. Research is now focusing on the functional aspects 
of the microbiome-host interaction54–56, and reaching a stage where further progress requires systems 
level datasets. Such datasets will help address the global molecular interactions and resulting collective 
dynamic responses in metabolites, genes and proteins, and other associated omics data, and provide 
support for modeling22.

�e longitudinal study presented here is a pilot implementation that has allowed us to follow the 
temporal changes in urine host metabolites, dynamically following colonization of GF mice. Previous 
experiments in germ free rats have shown that a�er fecal inoculation there was an increase of speci�c 
metabolites such as benzoic acid or phenylacetic acid33,57. Rather than considering individual metabo-
lites, we have considered a collective set of all chemicals that are detected by mass spectrometry and that 
correspond to a temporal trend caused by the colonization. Our approach demonstrates that microbiotic 
changes in the gut have an immediate impact on metabolic processes, and provide readouts as collective 
behavior observed in urine metabolite level changes. �ese changes both display immediate punctuated 
response on the ��h day post colonization, in addition to continuous changes, both as gradual increases 
and decreases in the relative levels of groups of metabolites over the entire time course, suggesting longer 
term e�ects. �e reported changes also indicate that gut colonization drastically alters host metabolic 
pathways, including carbohydrate metabolism and molecular transport, relating to host energy balance 
that has been previously reported in bi-species colonization studies58,59, which have been also modeled 
using GEMs60. Such modeling may be carried out for the species considered in the presented study, as 
well as binary and higher combinations. �e overall functional association �ndings and possible connec-
tions to adaptive immunity are consistent with changes observed by others in longitudinal monitoring 
of mice and rats11. Other studies have veri�ed how the presence of bacteria impact the colonic luminal 
metabolome41, as well as some endogenous metabolite levels42.

�e observed host-microbe interaction suggests that in the absence of additional perturbation, col-
onization has long lasting e�ects on metabolic processes, which implicate several proteins/genes that 
participate in host immune responses. Recent mice conventionalization studies have revealed similar 
such immune connections, including as well the association of TNF40. �e approach in our investiga-
tion observed the metabolic changes that resulted from the colonization by two bacteria species. �is 
diet-induced colonization may be extended to study more bacterial species, while the use of urine as an 
output measure allows for generalization to human studies in a rather non-invasive fashion (compared 
to other body tissue sampling). Starting from di�erent binary/paired combinations of bacterial species 
used for colonization, we can envision extending colonization studies systematically to triplets of species 
and increasingly higher numbers. If conducted in parallel with modeling approaches, this will provide 
the necessary data to help elucidate how metabolic processes are a�ected by inter-microbe dependability 
and how metabolism may be modulated through the introduction or removal of bacterial species.

Additionally, supplementing urine studies with monitoring of blood samples will help identify the 
corresponding expression changes in blood metabolomes, transcriptomes and proteomes and investi-
gate further the connection to host immune responses. For example, other studies have reported on 
such omics integration that donor features can be reconstituted in conventionalized mice, and modu-
lated through diet61. Such models allow an investigation of the connection of personalized diet e�ect 
mechanism, that may be studied using the few microbe approach, with extensions to pharmacomicro-
biomics20. Furthermore, some of the validated compounds in our study such as inosine, L-Alanine and 
L-Phenylalanine have been reported as members of the human urine metabolome62, suggesting that the 
study of diet e�ected colonization in mice might have implications in similar applications to humans and 
modulation of the microbiotic makeup. �e simpli�ed mouse model approaches yield results that may 
be used to evaluate more mechanistic hypotheses63–67, including validating the algorithmic modeling of 
microbiome-host interactions at a systems level, for example, acting as output tests for dynamic GEM 
models22. �is will also necessitate more thorough database and annotations of associations of metabo-
lites to known genes, proteins and pathways.

�e implementation of a high-throughput methodology presented here, from sample to temporal 
analysis, is generalizable both in sample scale and number of components and time-points. Addressing 
uneven sampling is of particular concerns in e�orts in personalized medicine7,8,68, where we expect 
metabolomics to play a crucial role in multimodal omics integration. In mass spectrometry missing data 
points, which may e�ectively create uneven sampling are an inherent method limitation. We are able to 
extract patterns from noisy data (Fig. 2), allowing also for recovery of signals with missing time-points. 
�e computational approach scales even better in longer time series (Fig. 2-c), allowing for more uneven 
data sampling (and more missing data points), and exploration of lags greater than one, thus extend-
ing to periodic phenomena. �e generalized implementation of this framework will be included in the 
multi-omics analysis package MathI-Omica (Yusufaly and Mias, in preparation). Finally, we believe that 
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Figure 3. Temporal Trends and Associated Networks. On the le� the hierarchical clustering per 

classi�cation (Autocorrelated, Spike Maxima and Spike Minima) is shown. For each trend molecules with 

unique KEGG ID72 or identi�ed through MS standards were used in QIAGEN’s IPA Ingenuity pathway 

construction (IPA®, QIAGEN Redwood City, www.qiagen.com/ingenuity). �e network displayed on the 

right (network score 16, “Cell-mediated Immune Response, In�ammatory Response, Gastrointestinal 

Disease”) includes 5 molecules, each shown aligned horizontally with its corresponding temporal trend and 

identi�ed with its group on the le�. Signi�cant functions and canonical pathway results that include more 

than two of the metabolites or network components respectively are also included. See also Supplementary 

Table S4 for detailed network composition and functional analysis and Supplementary Fig. S3.
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longitudinal studies may study the di�erent e�ects of microbiotic changes or the host state, and provide 
resource metabolite sets that correspond to each change (cf. gene set analysis generalized to small mol-
ecules).

Methods
Mice. All experimental protocols were in accordance with and as approved by (protocol 19727) the 
Administrative Panel on Laboratory Animal Care (APLAC), the Stanford Institutional Animal Care and 
Use Committee (IACUC). Two groups of Swiss-Webster germ free mice were used in this study. �e mice 
were placed inside gnotobiotic isolators. One group of mice was kept GF (n =  3) and urine and feces 
were collected from this group. �e second group of mice was colonized using oral gavage with 108 cfu 
of Bt (VPI-5482) and 108 cfu of Bif. longum (NCC2705) (n =  4). Bacteria were cultured under anaerobic 
conditions at 37oC in tryptone-yeast extract-glucose (TYG) medium and Reinforced Clostridial Medium 
(RCM, Becton Dickinson and Company, MD, United States). Urine and feces from this second group of 
bi-associated mice were collected at 5, 10, 15, 20 and 15 days a�er gavage. All samples were placed in a 
freezer at − 80 °C within 30 minutes of collection, until analysis.

Urine sample preparation and analysis39. Forty µ l of 10 mM ammonium formate were added to 
20 µ l of urine. Five µ l of the mix was used in the analysis. A 150 mm ×  2.1 mm Kinetex 17 µ m C18 column 
was used for chromatographic separation using a ACQUITY Ultra Performance Liquid Chromatography 
system (Waters). �e �ow rate was 0.3 ml/min with solvent A composed of water plus 0.1% formic acid 
and solvent B composed of acetonitrile plus 0.1% formic acid. �e gradient consisted of 3% B for one 
min, followed by a gradient of 35% B over 15 min, hold at 35% B for 5 min, and 100% B for 2 min. �e 
column was equilibrated at 3% B for 2 min. Mass spectrometry was performed an Exactive (�ermo 
Fisher) operated in positive and negative electrospray mode and controlled by Xcalibur 2.1 so�ware. 
�e scan range was from 70 to 800 m/z, at 50000 FWMH resolution, using nitrogen. For positive mode 
(ESI+ ) we used the following conditions: sheath gas �ow rate 40 (arbitrary units), auxilary gas �ow rate 
8 (arbitrary units), sweep gas �ow rate one (arbitrary units), spray voltage 3.5 kV, capillary temperature 
275 C, capillary voltage – 60 V, tube lens voltage − 100 V, skimmer voltage e − 20 V. For negative electro-
spray mode (ESI-): sheath gas �ow rate 30 (arbitrary units), auxiliary gas �ow rate 4 (arbitrary units), 
sweep gas �ow rate one (arbitrary units), spray voltage 3.5 kV, capillary temperature 275 C, capillary 
voltage − 60 V, tube lens voltage − 100 V, skimmer voltage − 21 V.

Metabolomics data processing and time analysis framework. Raw mass spectrometry spectral 
data were collected for each biological replicate at each time point both in positive and negative MS 
modes. Each dataset was analyzed as summarized in Supplementary Fig. S2: (1) preprocessed to align 
and assign mass intensities, (2) spectrally analyzed to obtain temporal patterns and classi�ed into sig-
ni�cant categories (3) assessed for assignment of mass identities and potential biological signi�cance 
through pathway analysis. �e primary statistical analyses were performed using Mathematica 9.069 
(except as indicated below). In particular, for each step:

Data Preprocessing. Continuous mode raw data from the individual analyses were converted to cen-
tered mode .mzXML �les with msconvert (part of ProteoWizard70) and subjected to nornlinear data 
alignment by XCMS70,71. In order to identify speci�c biomarkers by mass, KEGG application program-
ming interface (API) was used for identi�ed compounds72, with a mass tolerance for identi�cation set at 
10 ppm. Masses uniquely identi�ed were considered “high-priority” results.

Spectra from pro�ling at each time point were obtained with 3 technical replicates and aligned for 
mass and retention times using XCMS. �e aligned spectra/mass data were �ltered, and the median and 
median deviation were computed for replicates sets per mass identi�ed, retaining data with a CV < 0.5. 
For each time-point the log-2 intensities distributions were standardized to the median, scaled by the 
average median deviation, and only sets with mass intensities at least 2/3 time-points and including the 
germ-free reference were retained. For statistical computations a non-parametric bootstrap distribution 
with replacement was computed for 100,000 samples. For each of the constructed and experimental mass 
data the di�erence in normalized intensities was computed compared to the germ free datapoint, namely 
the di�erence, σ ∆ =  σ t-σ germ-free, where σ t, is the median deviation of each mass normalized intensity at 
time-point (t) using its own distribution median, and σ germ-free is the median deviation the corresponding 
normalized mass intensity at the germ-free datapoint (germ-free mice samples), from its distribution 
median. �e resulting time-series di�erences set for each mass was constructed into a normalized vector 
(normalized using a Euclidean distance metric).

Classi�cation of Temporal Response. �e normalized time series were classi�ed based on the temporal 
trends observed during the time-course. To allow for missing data points (inherent in MS analyses) 
which essentially create uneven sampling in time, we adopted a spectral analysis for computing autocor-
relations and subsequent visualization. A periodogram of the data in frequency (Fourier) space was 
obtained, by oversampling and using a Lomb-Scargle transformation/linear least squares harmonic func-
tion �t45–47, adapted from astronomy and utilized in biological research, which can aid in accounting for 
unevenly sampled data sets (e.g. due to missing datapoints)7,48–51,53,73–76. Brie�y, (see also references), the 
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Lomb-Scargle transformation computes the periodogram ω( )P Im
 for a time series of intensities ( )I tm i  for 
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�e periodogram is used together with an inverse Fourier transform to allow for even resampling and 
obtain the autocorrelations46–48,53. For each mass intensity evenly-(re)sampled time series the autocorre-
lation at lag one was computed, where the generalized expression
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is evaluated lag j =  1. A classi�cation scheme of autocorrelated signals and spike signals was imple-
mented7, with signals having statistically signi�cant autocorrelation classi�ed as autocorrelated class 
(p <  0.05 cuto�, one-tailed, based on autocorrelations distribution of the bootstrap distributions sim-
ulated per data-set). �e autocorrelated signals were then removed from the dataset, and signals in the 
remaining set showing spiky behavior of aberrantly high or low high or low normalized intensities at any 
time-point as compared to a random simulation were classi�ed as spike maxima or minima (p <  0.05, 
one-tailed by comparison to analysis of randomly simulated distribution of normalized time signals of 
corresponding length N for each time-series in each class).

Hierarchical Clustering and Annotation. �e data in each class were hierarchically clustered in 
Mathematica 9.069, with (correlation distance measure with average linkage). Groups within each class 
were determined from the dendrograms, through changes in fusion coe�cients. Within each group, the 
masses were annotated using the KEGG72 API, with a mass tolerance window of 10ppm. Additional 
masses of interest were compared against mass spectrometry standards for identi�cation. Masses with 
unique KEGG IDs or identi�ed through the use of standards were classi�ed as higher priority data, and 
were used for pathway and network analysis through QIAGEN’s Ingenuity® Pathway Analysis (IPA®, 
QIAGEN Redwood City, www.qiagen.com/ingenuity), (see Table  1). In particular, each KEGG com-
pound identi�er was mapped to its corresponding object in the IPA® Knowledge Base (26 of 45 com-
pounds). �ese Network Eligible molecules were used for Functional Analysis, to identify biological 
functions in the Ingenuity Knowledge Base. Right-tailed Fisher’s exact test was used to calculate a p-value 
determining the probability that each biological function assigned to the data set was due to chance 
alone. Additionally, canonical pathways from the IPA library that were most signi�cant were ascertained 
based on p-value (Fisher’s exact test) and ratio of molecules from the data set as compared to the total 
in the network. Finally, a network (35 molecules) was generated using the Network Eligible molecules 
as seeds with IPA®’s Network Generation Algorithm. �e network score is based on the hypergeometric 
distribution, calculated as –log[right-tailed Fisher’s Exact Test], (IPA®, QIAGEN Redwood City, www.
qiagen.com/ingenuity).
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