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Abstract

The circulating metabolome provides a snapshot of the physiological state of the organism responding to pathogenic

challenges. Here we report alterations in the plasma metabolome reflecting the clinical presentation of COVID-19

patients with mild (ambulatory) diseases, moderate disease (radiologically confirmed pneumonitis, hospitalization and

oxygen therapy), and critical disease (in intensive care). This analysis revealed major disease- and stage-associated

shifts in the metabolome, meaning that at least 77 metabolites including amino acids, lipids, polyamines and sugars, as

well as their derivatives, were altered in critical COVID-19 patient’s plasma as compared to mild COVID-19 patients.

Among a uniformly moderate cohort of patients who received tocilizumab, only 10 metabolites were different among

individuals with a favorable evolution as compared to those who required transfer into the intensive care unit. The

elevation of one single metabolite, anthranilic acid, had a poor prognostic value, correlating with the maintenance of

high interleukin-10 and -18 levels. Given that products of the kynurenine pathway including anthranilic acid have

immunosuppressive properties, we speculate on the therapeutic utility to inhibit the rate-limiting enzymes of this

pathway including indoleamine 2,3-dioxygenase and tryptophan 2,3-dioxygenase.

Introduction

The year 2020 has been overshadowed by coronavirus

disease-19 (COVID-19) caused by severe acute respiratory

syndrome (SARS) coronavirus-2 (SARS-CoV-2), challen-

ging the resilience of public and private health systems1.

As a result, COVID-19 is mobilizing an unprecedented

technological and scientific effort to diagnose, compre-

hend, and adequately treat the disease. Indeed, contagion

by SARS-CoV-2 provokes a silent or pauci-symptomatic

infection in at least 80% of patients, not requiring any

treatment2,3. However, a substantial fraction of patients

with pre-existing and often age-associated medical con-

ditions (obesity, diabetes, hypertension, cardiomyopathy,

hematological cancers, and general frailty) develop SARS,

requiring hospitalization, oxygen supply, and for the most

severe cases mechanical ventilation in the intensive care
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unit1,4,5. Nonetheless, there is a substantial ‘gray zone’,

meaning that physically fit and relatively young patients

without known pre-existing pathologies may succumb to

SARS-CoV-2, calling for the identification of biomarkers

that predict COVID-19 severity and help management of

patients1,4,5.

Beyond genomic studies (to find COVID-19 suscept-

ibility genes)6, single-cell transcriptomics performed on

circulating leukocytes (to identify inflammatory/ immune

cell subsets involved in, and predictive of, COVID-19

pathogenesis)7,8 and plasma proteomics (to pinpoint

relevant cytokines)9,10, metabolomics offers a functional,

‘post-genomic’ characterization of biochemical circuitries

influenced by COVID-19 and its treatment. Indeed, a few

studies have used mass spectrometric metabolomics to

identify COVID-19-induced alterations in circulating

metabolites, focusing on the correlation of such para-

meters with clinical presentation10, circulating interleukin

(IL)-6 concentrations11 or male sex12. Additional studies

have revealed a metabolomic signature of COVID-19

infection in circulating exosomes13 and in the saliva14.

Here, we report the results of two metabolomic stu-

dies, a first one, non-interventional, in which we corre-

late shifts in circulating metabolites with the severity

stage of COVID-19 patients and a second study, inter-

ventional, in which we focus on patients with a uniformly

moderate clinical presentation to identify metabolites

whose alteration predicts clinical evolution. We identi-

fied anthranilic acid, a product of the kynurenine

pathway, as a potentially prognostic biomarker of the

evolution of COVID-19.

Results

COVID-19 stage-dependents shifts in the plasma

metabolome

Targeted and untargeted metabolomics were performed

using gas chromatography-mass spectrometry (GC-MS)

and ultra-high-pressure liquid chromatography-mass

spectrometry (UHPLC-MS) on plasma samples retrieved

from a total of 72 patients with PCR-verified diagnosis of

SARS-CoV-2 infection and compared to 27 ambulatory

patients with flu-like symptoms, negative for SARS-CoV-

2. Patients with COVID-19 were staged according to their

clinical characteristics into mild (confinement at home,

no complementary exams), moderate (standard hospita-

lization with a radiological diagnosis of pneumonitis,

oxygen therapy <9 L/min), and critical (intensive care

unit, oxygen therapy >9 L/min) cases. Clustering of mass

spectrometry-detectable peaks revealed stage-associated

shifts in the metabolome (Supplemental Fig. 1) that

become clearly visible upon statistical filtering at p < 0.05

(Wilcoxon rank-sum test) and application of a false dis-

covery rate of 0.05 following the Benjamini–Hochberg

procedure to identify metabolites which were stringently

different between critical and mild COVID-19 patients.

Thus, 77 metabolites exhibited stage-dependent altera-

tions in their plasma concentration (Fig. 1A). Among

these metabolites, 57 were increased in critical care

patients. Random forest classification model was built to

rank the metabolites the upregulation or downregulation

of which distinguished critical from mild patients (Fig. 1B).

Among 30 metabolites, 29 were higher (and 1 lower) in

critical than in mild cases, indicating a preponderance of

upregulation (p < 0.000044, χ2 analysis).

As described in the literature3,4, critical COVID-19

patients were more overweighted, obese, diabetic, and

hypertensive than mild COVID-19 and controls patients

(Supplemental Table 1). Linear regression was used to

control the differences in mean metabolites concentra-

tions between critical and mild COVID-19 patients after

adjustment for such comorbidities (Supplemental Table 2).

Specific changes associated with COVID-19 severity stages

A number of simple sugars including arabinose and

ribose (and its reduction product ribitol), sugar alcohols

(arabitol, erythritol and xylitol), the disaccharide maltose

(which is undistinguishable from trehalose), and the

trisaccharide raffinose were increased in critical cases

(Figs. 1A and 2A and Supplemental Fig. 1A). Moreover, a

series of amino acids were elevated in critical care

patients: arginine, aspartic acid, glutamic acid, phenyla-

lanine, and tyrosine. In addition, the methylated derivative

of lysine, trimethyl-lysine, the methionine derivative (and

methyl group donor) S-adenosylmethionine, and the

dipeptide leucylproline were elevated (Figs. 1A and 2B),

perhaps resulting from increased proteolysis. In contrast,

desaminotyrosine was reduced in critical care patients

(Figs. 1A and 2B), likely reflecting the use of antibiotics

that inhibit the generation of this bacterial metabolite in

the gut15. One of the few amino acids that decreased with

disease severity is arginine, contrasting with an increase

in ornithine, spermine, spermidine, and their mono- or

diacetylated derivatives (Figs. 1A and 3A), suggesting

enhanced polyamine synthesis from arginine. Moreover,

tryptophan tended to diminish, while its immunosup-

pressive metabolite kynurenine increased in critical care

patients as compared to mild cases. The kynurenine

metabolite anthranilic acid was higher in critical as

compared to moderate and mild COVID-19 patients

(Figs. 1A and 3B). Of note, the elevation of anthranilic

acid has not been found in another study that actually

claimed that anthranilic acid decreased in COVID-19

patients as compared to controls11. Indeed, we found that

another molecule that shared the same neutral mono-

isotopic mass (137.04768 Da) as anthranilic acid and that

decreased in COVID-19 patients (annotated and validated

as trigonelline, Supplemental Table 3), perhaps explaining

the difference in the results. Since we compared the gas
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Fig. 1 Profound metabolomics alterations associated with COVID-19 clinical severity. A Heatmap illustrating the changes in metabolite

abundance in the plasma from control (n= 27), mild (n= 23), moderate (n= 21), and critical (n= 28) COVID-19 patients. Significant metabolites were

identified by Wilcoxon rank-sum test and the false discovery rate (FDR) controlled with Benjamini–Hochberg procedure between patients with critical

and mild COVID-19. Hierarchical clustering (Euclidean distance, ward linkage method) of the metabolite abundance is shown. PCaes, total abundance

of the different phosphatidylcholines identified in the cohort plasma samples. B, Random forest classification model was built using main metabolites

altered (p < 0.05) between critical and mild COVID-19 patients as a predicting tool. The variables importance (as the mean decrease of the Gini index)

for building the model is reported in a dot plot, with dots substituted by an up-pointing triangle to indicate metabolites increased in critical vs mild

COVID-19 patients, and by a down-pointing triangle in the opposite case (B), the confusion matrix (indicating model accuracy) is depicted below.

OOB out-of-bag error.

Fig. 2 Effects of COVID-19 on circulating sugars and amino acids. Modified carbohydrates (A) and amino acids (B) were profoundly altered in

patients with the most severe COVID-19. Data in A and B were analyzed by non-parametric unpaired Wilcoxon test (Mann–Whitney) for each

two-group comparison. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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chromatographic retention time of the derivatized ana-

lytes to standards (Supplemental Fig. 2), we conclude that

anthranilic acid is indeed increased in severe COVID-19.

We also found that 3-hydroxy-DL-kynurenine, which his

produced from kynurenine by the enzyme kynurenine

3-hydroxylase, and 5-hydroxy-DL-tryptophan, which is

produced from tryptophan by the enzyme tryptophan

5-monooxygenase, were increased, correlating with the

severity of COVID-19 (Fig. 3B).

Bacterial breakdown products of tryptophan, such as

indole, indole-acetamide, indole-3-acrylic acid, and

methyl-3-indole-acetate were significantly reduced in

critical care patients (Figs. 1 and 3B). Other important

metabolic changes affected free fatty acids (arachidonic

acid) or carnitine esters, phospholipids, the immuno-

modulator spingosine-1-phosphate, the secondary bile

acid deoxycholic acid, as well as the niacin metabolite

trigonelline, that all diminish with disease severity,

contrasting with markers of reduced renal clearance

(creatine, urea) that increase (Fig. 1A). Altogether, a

specific pattern of stage-dependent alterations in the

metabolome emerges.

Prognostic alterations in the circulating metabolome

The aforementioned results indicate that the progression

of COVID-19 is associated with major metabolic shifts, yet

do not allow to identify prognostic biomarkers. For this, we

recruited a group of 25 patients that were hospitalized in

standard conditions (not in the ICU) and were relatively

homogeneous in their clinical presentation (Fig. 4A and

Supplemental Tables 4 and 5). After the initial determina-

tion of their circulating metabolome and the quantitation of

serum cytokines (n= 21), these patients received standard

of care treatments plus tocilizumab. Unfavorable evolution

of the COVID-19 (9 out of 21 patients) was defined as a

clinical deterioration with WHO progression scale >5,

Fig. 3 Effecs of COVID-19 on polyamines, tryptophan derivatives and selected amino acids. Polyamines, arginine (A) and tryptophane (B)

pathways alterations in critically ill COVID-19 patients were representative of an immunosuppressive metabolomic state. Data in A and B were analyzed

by non-parametric unpaired Wilcoxon test (Mann–Whitney) for each two-group comparison. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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transfer to ICU, mechanical ventilation, or death16.

Inspection of the global metabolomic profiles did not

revealed any major shift that would distinguish the favor-

able versus unfavorable evolution of COVID-19 neither at

baseline nor at day 7 (Supplemental Fig. 3 and Supple-

mental Tables 6 and 7). Only 10 metabolites were sig-

nificantly different between patients that demonstrated

favorable versus unfavorable evolution (Fig. 4A). However,

they allowed a good discrimination between groups (PC1

45.9%) according to their abundance variation (Fig. 4B and

Supplemental Fig. 5). To find out the variable importance of

these metabolites, we used a random forest classification

model. Although the model was limited because of the

reduced number of individuals in the study, it showed

that, among the most significant metabolites, the upregu-

lation of anthranilic acid coupled to the diminution of

S-adenosylmethionine and proline stood out as parameters

that allowed to distinguish the unfavorable and favorable

evolution of COVID-19 patients respectively (Fig. 4C).

Dimethylglycine, ß-hydroxypyruvate, N1-acetylspermidine,

hypotaurine, and valine were significantly lower in patients

with an unfavorable evolution, while 3-methylhistidine and

O-phosphoethanolamine were higher, but these changes

had a lower impact according to the random forest classi-

fication (Fig. 4B).

Prognostic immunometabolic correlations

None of the 10 cytokines measured at baseline did

exhibit significant differences between the patients

with favorable and unfavorable clinical evolution (Supple-

mental Fig. 4), in line with the similar clinical presentation

of the patients. At difference with patients that exhibited an

unfavorable evolution, patients who ameliorated their

condition exhibited an increase in total lymphocyte counts

(Fig. 5A), a decrease in the inflammatory cytokine inter-

leukin (IL)-18 (IL18) (Fig. 5B), a reduction in the immu-

nosuppressive factor IL10 (Fig. 5C) and an increase in

circulating tryptophan levels (Fig. 5D). Correlation plots

revealed a median correlation (all values positive) among

cytokines of 0.1573, between cytokines and metabolites of

0.2116, and among metabolites of 0.3702 (which was sig-

nificantly higher than the intragroup correlation and the

correlation among cytokines, p < 0.0001, Mann–Whitney

test), suggesting a more robust coordination of metabolic as

compared to inflammatory pathways (Fig. 6A). IL8 corre-

lated with N1-acetylspermidine and hypotaurine, tumor

necrosis factor-α (TNFα) with O-phosphoethanolamine

(Fig. 6A), and anthranilic acid with both IL10 and IL18

(Fig. 6B) at baseline, before the initiation of the treatment.

This latter correlation appears particularly intriguing

because anthranilic acid is ranked as the best negative

Fig. 4 Patients with unfavorable clinical evolution after tocilizumab, infused for worsening pulmonary involvement of COVID-19, had pre-

treatment metabolomics differences compared to patients with favorable outcome. A Heatmap illustrating pre-tocilizumab metabolite

abundance in COVID-19 patients evaluable for clinical evolution after treatment (n= 21). Significant metabolites were identified by Wilcoxon rank-

sum test between patients with favorable and unfavorable evolution after tocilizumab infusion. BMI Body Mass Index, WHO World Health

Organization, O2 oxygenotherapy, ICU intensive care unit, OTI orotracheal intubation. B Principal component analysis biplot, showing the

contribution of the most significant metabolites (p < 0.05) to the discrimination (PC1 45.9%) between patients with favorable and unfavorable

evolution after tocilizumab infusion. C Random forest classification model was built using main metabolites altered (p < 0.05) in baseline samples

from COVID-19 patients with favorable and unfavorable evolution after tocilizumab treatment as a predicting tool. The variable importance (as the

mean decrease of the Gini index) for building the model is reported in a dot plot, with dots substituted by an up-pointing black triangle to indicate

metabolites increased in patients who showed unfavorable vs favorable evolution, and by a gray down-pointing triangle in the opposite case.

The confusion matrix (indicating model accuracy) is depicted. OOB out-of-bag error.
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prognostic marker (Fig. 4B) and both IL10 and IL18 remain

elevated in the context of an unfavorable evolution (Fig. 5).

Discussion

The present study has been designed to unravel

COVID-19 stage-dependent and prognostic alterations in

the circulating metabolome. Strong shifts across multiple

classes of metabolites were observed among different

stages of COVID-19, from mild through moderate to

critical disease. These shifts reflect in part iatrogenic

effects such as the apparent improvement of the nutri-

tional state (with higher levels of circulating sugars but

lower levels of free fatty acids and ketone bodies, which

would be indicative of acute undernutrition) in the critical

stage and the reduction of bacterial metabolites (such as

the tyrosine metabolite desaminotyrosine and the tryp-

tophane metabolites indole, indole-3-acetamide, indole-3-

acrylic acid, and methyl-3-indole-acetate), likely resulting

Fig. 5 COVID-19 Patients with unfavorable outcome after tocilizumab infusion did not improved lymphopenia, inflammatory,

immunosuppressive, and metabolomic abnormalities instead of patients who evolved towards clinical improvement. Patients with paired

baseline and post treatment (day 7 ± 3) serum samples are represented (n= 18). The measured parameters include total lymphocyte counts (A) as

well as the concentrations of IL18 (B), IL10 (C) and tryptophan (D). Wilcoxon signed-rank test was used to compare paired baseline and post

treatment measures and Wilcoxon rank-sum test to compare baseline or day 7 (±3) measures between patients with response or no response.

*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

Fig. 6 Correlations between cytokines and metabolites before tocilizumab infusion in patients with worsening COVID-19 highlighted

that dysregulated metabolomic and immunologic pathways were closely related to clinical worsening of patients developing critical

COVID-19. A Correlation between cytokines and most significant metabolites at baseline was analyzed by Pearson correlation. *p < 0.05, **p < 0.01,

***p < 0.001. B Pearson correlations between IL10 and IL18 with anthranilic acid serum levels.
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from the administration of broad-spectrum antibiotics.

Other metabolomic shifts may reflect proteolysis (with an

increase in free amino acids and amino acid derivatives),

as well as ongoing organ failure affecting the kidney

(enhanced acetyl polyamine, creatine, and urate levels)

and the liver (reduced primary bile acid production).

Most intriguingly, however, COVID-19 appears to be

associated with metabolic signs of immunosuppression, as

indicated by the increase of kynurenic acid and anthranilic

acid. Tryptophan was diminished in mild and critical

COVID-19 patients compared to uninfected controls,

suggesting a disease-associated activation of tryptophan-

consuming indoleamine 2,3-dioxygenase (IDO) and

tryptophan 2,3-dioxygenase (TDO) that produce the

kynurenic acid precursor kynurenine17. Anthranilate is a

downstream metabolite of kynurenine18, with marked

immunosuppressive effects19. Previous work has identi-

fied an activation of the kynurenine pathway (though

without an elevation of anthranilate) in COVID-19

patients, correlating with an elevation of IL6 levels11,

which in turn are associated with poor prognosis20–23.

Small, but specific differences were observed in a cohort

of patients that demonstrated a similar clinical stage at

presentation, but dissimilar evolution during hospitaliza-

tion. Some metabolites that apparently were not COVID-19

stage-associated were different between patients that

demonstrated a favorable or unfavorable evolution. This

applies to dimethylglycine, 3-methylhistidine and O-phos-

phoethanolamine, proline, and valine. Some metabolites

exhibited a behavior that can be classified as ‘paradoxical’.

Thus, N1-acetylspermidine, S-adenosylmethionine, and

hypotaurine that are highest among severe COVID-19

patients are associated with favorable prognosis, perhaps

because their production reflects an attempt to attenuate

the pathogenesis of COVID-19. Indeed, in preclinical

models, the N1-acetylspermidine precursor, spermidine,

has marked anti-inflammatory and immunostimulatory

effects24–27. Administration of S-adenosylmethionine

attenuates the cytokine storm induced by bacterial sep-

sis28 and mediates immunostimulatory effects in a cancer

model29. Clinical trials have demonstrated that taurine, the

downstream metabolite of hypotaurine, decreases serum

markers of inflammation including C-reactive protein30,

which is a negative prognostic marker of COVID-1931.

In sharp contrast to these ‘paradoxical’ associations, one

metabolite exhibited a ‘concordant’ behavior. This applies

to anthranilic acid, the concentration of which increases

with disease severity and which also predicts unfavorable

prognosis. This observation places the kynurenine path-

way in the limelight of this study. Larger prospective

studies are required to validate the conjecture that

metabolomic profiling and specific measurement of

selected metabolites including anthranilic acid may

predict the fate of COVID-19 patients. Circulating

anthranilic acid levels reportedly correlate with hyper-

leptinemia in schizophrenia32 and are increased in the

plasma of patients with type-1 (but not type-2) diabetes33

and subgroups of patients with chronic liver disease34,

calling for additional investigations of possible con-

founding factors. Irrespective of these considerations, it

might be worthwhile to explore the experimental treat-

ment of COVID-19 with IDO and TDO inhibitors that

are in clinical development35–38. Such inhibitors have

been generated as immune checkpoint inhibitors for the

treatment of cancer, but have not yet received regulatory

approval. The fact that high levels of anthranilic acid

predict the maintenance of high levels of IL10 and

IL18 suggests (but does not prove) that the kynurenine

pathway has an immunomodulatory impact on COVID-

19 pathogenesis. However, this speculation should be

tested by treating anthranilic acid-high COVID-19

patients with IDO/TDO or other kynurenine pathway

inhibitors within a dedicated Phase 2 clinical trial.

Methods

Patients

All patients were recruited by different hospitals of

the Assistance Publique Hôpitaux de Paris (AP-HP) net-

work or at Foch Hospital or Gustave Roussy. The non-

interventional study was approved by institutional review

boards (IRB) of Cochin-Port Royal (Paris, France) hospital

and the ethical committee of Cochin-Port Royal Hospital

(CLEP Decision N: AAA-2020-08023), and conformed to

the principles outlined in the Declaration of Helsinki.

Controls (n= 29) were symptomatic patients who were

seen at the Hôtel-Dieu screening unit and were negative

for SARS-CoV-2 RT-PCR on pharyngeal swab. Mild

COVID-19 patients (n= 23) were defined by having

limited clinical symptoms (fever, cough, diarrhea, myalgia,

and anosmia/ageusia) that did not require CT scan or

hospitalization. Moderate cases (n= 21) were defined as

symptomatic patients with dyspnea and radiological

findings of pneumonia on thoracic CT scan, requiring

hospitalization and a maximum of 9 L/min of oxygen.

Critical patients (n= 28) were those hospitalized in the

ICU with respiratory distress requiring 10 L/min of oxy-

gen or more, without or with endotracheal intubation

and mechanical ventilation. “Comorbidities” variable for

adjustment was considered for patients with obesity or

diabetes or chronic kidney disease and hypertension.

The interventional study was approved by the Foch IRB

(approval number IRB00012437) and was registered on

the National Institute of Health data platform INDS (no

4710280420). Patients received tocilizumab, in an off-label

use setting, to treat severe COVID-19, at Gustave Roussy

and Foch Hospital, over the period of March 20 and

5 April 2020. Inclusions criteria were: (i) Patients who

received at least one dose of tocilizumab, as treatment of
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COVID-19. (ii) ≥18 years, informed, and not opposed for

retrospective use of their anonymized health care files. (iii)

Diagnosis of COVID-19 confirmed by RT-PCR test, with

respiratory symptoms, shortness of breath and require-

ment of oxygen therapy and pulmonary images compa-

tible with COVID-19. (iv) Patients at risk of developing

respiratory distress due to COVID-19, with worsening of

oxygen therapy supplementation equal or more than

4 L/min and requirement by increase of >50% of the need

for supplemental oxygen therapy in the last 24 h before

first dose of tocilizumab. Exclusion criteria for evaluable

population for the response to tocilizumab were: (i)

Patients placed under mechanical ventilation with intu-

bation due to the COVID-19 before the first dose of

tocilizumab treatment. (ii) Respiratory failure related to

other cause than COVID-19 at tocilizumab initiation. (iii)

Patients, who have previously received anti-IL6 receptor

therapy in the last 3 weeks before tocilizumab initiation.

(iii) Alanine transaminase/aspartate transaminase (ALT/

AST) >5 times the upper limit of normal at timing of

first dose of tocilizumab. (iv) Absolute neutrophil count

<1.0 × 109 or platelets <50 × 109 at timing of first dose of

tocilizumab. Tocilizumab was given intravenously at

8 mg/kg and could be repeated once in the following 48 h

if necessary. All patients were followed until day 30 after

the first dose of tocilizumab. Patients’ sera were collected

and stored before and after treatment. Favorable clinical

evolution after tocilizumab infusion was retained in

patients evaluable for the outcome and fulfilling the fol-

lowing three criteria. Criterion 1: on day 14 post first dose

of tocilizumab, the patient has a WHO progression scale

≤ 516. Criterion 2: between days 1 and 14 after the first

dose of tocilizumab, the patient is alive and did not need

to have at any time recourse to invasive mechanical

ventilation (orotracheal intubation) and without any new

intention of “non-realization of resuscitation or ventila-

tion”. Criterion 3: the respiratory symptoms related to

COVID-19 clinically significantly improved with decrease

in oxygen requirements after first dose of tocilizumab and

the WHO scale did not deteriorate after the administra-

tion of the first dose of tocilizumab.

Sampling

Human peripheral blood from the first cohort was

collected into sterile dry vacutainer tubes with 3.2% buf-

fered sodium citrate solution. Samples were centrifuged

twice (2500 × g/20 min), and plasma was collected.

Regarding the samples from the interventional study,

human peripheral blood was collected into sterile dry

vacutainer tubes and centrifuged (1500–2000 × g/15 min)

for serum collection. Fifty microliters of sample were

mixed with 500 µL of a cold solvent mixture (meOH/

water, 9/1, −20 °C, with a cocktail of internal standards),

vortexed and centrifuged (10 min at 1500 × g, 4 °C) for

metabolite extraction and protein precipitation. The

supernatants were collected, split in 4 fractions, and

treated according to the protocols described pre-

viously39. Briefly, 2 fractions of 120 µL each (1st and 2nd

fractions, respectively) of sample extract were trans-

ferred to an injection amber glass vial (with fused-in

insert) and evaporated to dryness (Techne DB3, Staf-

fordshire, UK) at 40 °C. The 1st dried fraction was

solubilized in 50 µL of methoxyamine (CAS 593-56-6;

20 mg/mL in pyridine, Sigma-Aldrich), and left to incu-

bate overnight, at room temperature and protected from

light. The next day, derivatization was carried out by

adding 80 µL of MSTFA (CAS 24589-78-4; Supelco),

followed by 30 min-incubation at 40 °C. Derivatized

samples were immediately used for GC/MS injection and

analysis. The 2nd dried fraction was recovered with

100 µL of ultra-pure water and kept at −80 °C until

injection and analysis by UHPLC/MS. The 3rd fraction

consisted of 40 µL of sample extract transferred to an

injection amber glass vial (with fused-in insert) for

derivatization and SCFA analysis. Sample derivatization

was carried out by adding 20 µL of 3-NPH (200 mM in

meOH; CAS 636-95-3; Sigma-Aldrich) and 20 µL of EDC

(150 mM in meOH; CAS 25952-53-8; Sigma-Aldrich) to

the sample. Immediately after incubation (1 h/ 40 °C),

80 µL of water were added, and the derivatized samples

were used for UHPLC/MS injection and analysis. Finally,

the 4th fraction together with the sample pellet were re-

extracted with 80 µL of 2% SSA (in meOH), vortexed and

centrifuged (10 min at 15,000 × g, 4 °C). The supernatant

(200 µl) was transferred to an injection polypropylene

vial (with fused-in insert) and evaporated to dryness

(Techne DB3, Staffordshire, UK) at 40 °C. Dried samples

were recovered with 200 µl of ultra-pure water and kept

at −80 °C until injection and analysis by UHPLC/MS for

polyamines detection.

Cytokine measurements

Serum samples were monitored using the V-plex

Proinflammatory panel 1 Human kit (Meso Scale Dis-

covery, ref: K15049D) according to the manufacturer’s

instructions, for the measurement of IFNγ, IL1β, IL2, IL4,

IL6, IL8, IL10, IL12p70, IL13, and TNFα. Soluble Cal-

protectin (diluted 1:100), IFNα2a and IL18 were analyzed

using a R-plex Human Calprotectin Antibody Set (Meso

Scale Discovery, ref: F21YB), the ultra-sensitive assay

S-plex Human IFNa2a kit (Meso Scale Discovery, ref:

K151P3S) and the U-plex Human IL18 assay (Meso Scale

Discovery, ref: K151VJK), respectively, following manu-

facturer’s instructions. Acquisitions and analyses of solu-

ble cytokines and calprotectin were performed on a

MESO QuickPlex SQ120 reader and the MSD’s Discovery

Workbench 4.0. Each serum sample was assayed twice

with the average value taken as the result.
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Widely targeted analysis of intracellular metabolites

GC/MS

Derivatized samples for GC/MS analysis (1st fraction)

were injected (1 µL) into a gas chromatograph (Agilent

7890B; Agilent Technologies, Waldbronn, Germany)

coupled to a triple quadrupole mass spectrometer (QQQ/

MS; 7000C Agilent Technologies, Waldbronn, Germany),

equipped with a high sensitivity electronic impact source

(EI) operating in positive mode. Injection was performed

in splitless mode. Front inlet temperature was kept at

250 °C, transfer line and ion-source temperature were

250 °C and 230 °C, respectively. Septum purge flow was

fixed at 3 mL/min, purge flow to split vent operated at

80 mL/min during 1 min and gas saver mode was set to

15mL/min after 5 min. Helium gas flowed through

column (HP-5MS, 30m × 0.25 mm, i.d. 0.25 mm, d.f.

J&WScientific, Agilent Technologies Inc.) at 1 mL/min.

Column temperature was held at 60 °C for 1 min, raised to

210 °C (10 °C/min), then to 230 °C (5 °C/min), to finally

reach 325 °C (15 °C/min), and hold at during 5min. Col-

lision gas was nitrogen.

UHPLC/MS

Targeted UHPLC/MS analyses were performed on a

RRLC 1260 system (Agilent Technologies, Waldbronn,

Germany), with an autosampler kept at 4 °C, and a pel-

letier oven for rigorous control of the column tempera-

ture. The UHPLC was coupled to a QQQ/MS 6410

(Agilent Technologies) equipped with an electrospray

source, using nitrogen as collision gas. For bile acids

detection, 10 µL from samples recovered in water (2nd

fraction) were injected into a Poroshell 120 EC-C8

(100 mm× 2.1 mm particle size 2.7 µm; Agilent technol-

ogies) column protected by a guard column (XDB-C18,

5 mm × 2.1 mm particle size 1.8 μm). Mobile phase con-

sisted of 0.2% formic acid (A) and ACN/IPA (1/1; v/v) (B)

freshly made. Flow rate was set to 0.3 mL/min, and gra-

dient as follow: 30% B during 1.5 min; increased to 60% B

over 9 min; and finally to 98% B for 2 minutes (column

washing), followed by 2min of column equilibration at

30% B (initial conditions). After each injection, needle was

washed twice with IPA and thrice with water. The QQQ/

MS was operated in negative mode. Gas temperature and

flow were set to 325 °C and 12 L/min, respectively.

Capillary voltage was set to 4.5 kV.

Derivatized samples for SCFA detection (3rd fraction)

were injected (10 μL) into a Zorbax Eclipse XBD C18

(100 mm × 2.1 mm particle size 1.8 µm; Agilent technol-

ogies) column, protected by a guard column (XDB-C18,

5 mm × 2.1 mm particle size 1.8 μm). Column oven

maintained at 50 °C during analysis. Mobile phase con-

sisted of 0.01% formic acid (A) and ACN (0.01% formic

acid) (B). Flow rate was set to 0.4 mL/min, and gradient

as follow: 20% B during 6min; increased to 45% B over

7 min; and finally to 95% B for 5 minutes (column wash-

ing), followed by column equilibration phase at 20% B,

during 4min. The QQQ/MS was operated in negative

mode. Gas temperature was set to 350 °C with a gas flow

of 12 L/min. Capillary voltage was set to 4.0 kV.

Polyamines were detected in the 4th fraction after

injection of 10 μL of sample were into a Kinetex C18

(150mm× 2.1mm particle size 2.6 µm; Phenomenex)

column protected by a guard column C18 (5mm×

2.1mm, particle size 1.8 μm). Column oven maintained at

40 °C during analysis. The gradient mobile phase consisted

of 0.1% HFBA (Sigma-Aldrich) (A) and ACN (0.1% HFBA)

(B) freshly made. The flow rate was set to 0.2ml/min, and

gradient as follow: from 5% (initial conditions) to 40% B in

10min; then 90% B maintained 2.5min, and finally equi-

libration to initial conditions, 5% B, for 4min. The QQQ/

MS was operated in positive mode. The gas temperature

was set to 350 °C with a gas flow of 12 l/min. The capillary

voltage was set to 3.5 kV. At the end of each UHPLC/MS

batch analysis, column was rinsed with 0.3mL/min of

ultra-pure water (A) and ACN (B) as follow: 10% B during

20min, to 90% B in 20min, and maintained during 20min

before shutdown. MRM scan mode was used for targeted

analysis in both GC and UHPLC/MS. Peak detection

and integration were performed using the Agilent Mass

Hunter quantitative software (B.07.01).

Pseudo-targeted analysis of intracellular metabolites

The profiling analysis was performed with a Dionex

Ultimate 3000 UHPLC system (Thermo Scientific) cou-

pled to an Orbitrap mass spectrometer (q-Exactive,

Thermo Fisher Scientific) equipped with an electrospray

source operating in both positive and negative mode, and

acquired samples in full scan analysis mode, from 100 to

1200 m/z. LC separation was performed on reversed

phase (Zorbax Sb-Aq 100 ×2.1 mm × 1.8 µm particle size),

with mobile phases: 0.2% acetic acid (A) and ACN (B).

Column oven was kept at 40 °C. Ten microliters of aqu-

eous sample (2nd fraction) were injected for metabolite

separation with a gradient starting from 2% B, increased to

95% B in 22min, and maintained during 2min for column

rinsing, followed by column equilibration at 2% B for

4min. Flow rate was set to 0.3mL/min. The q-Exactive

parameters were: sheath gas flow rate 55 au, auxiliary gas

flow rate 15 au, spray voltage 3.3 kV, capillary temperature

300 °C, and S-Lens RF level 55V. The mass spectrometer

was calibrated with sodium acetate solution dedicated to

low mass calibration. Data were treated by the quantitative

node of Thermo XcaliburTM (version 2.2) in a pseudo-

targeted approach with a home-based metabolites list.

Untargeted analysis of intracellular metabolites

Raw data files obtained by the previously described

pseudo-targeted analysis were also used to perform unbiased
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profiling analysis, using the Thermo Compound Dis-

coverer (3.1.). After sample injection and data acquisition,

raw data files were processed following a customized

node-based workflow for identifying unknown com-

pounds in metabolomics. Spectra selection and retention

time alignment were performed, followed by removal of

background noise and baseline correction. Next, the

processing workflow found chromatographic peaks for

unknown compounds (molecular weight, MW, x reten-

tion time, RT) extracting all relevant spectral and chro-

matographic information, to predict the elemental

composition of the unknowns. All data was exported to

R software (version 3.4) for data representation.

Statistical analysis

All targeted and pseudo-targeted treated data were

merged and cleaned with a dedicated R (version 3.4)

package (@Github/Kroemerlab/GRMeta). Calculations

and statistical tests were performed using R v3.4. Wil-

coxon-Mann–Whitney test was used to assess differences

in concentration between two different groups. When

indicated, the false discovery rate (FDR, p > 0.05) was

controlled using the Benjamini–Hochberg procedure.

Data representation was performed with softwares R v3.6

and Rstudio v1.2.1335 using tidyverse, dplyr, ggplot2,

ggpubr, complexheatmap, and corrplot packages. Princi-

pal component analysis biplot was built using FactoMineR

and factoextra packages, after selection of the metabolites

significantly different (p < 0.05) between clinical evolution

groups (“unfavorable” and “favorable”), at baseline. Data

were scaled unit variance before the analysis.

Determination of most discriminating metabolites with

Random Forest Classification Model

Selected metabolites were thereafter used for training a

random forest classification model using the R caret

package. This machine learning tool allowed to classify

the relative importance of metabolites for distinguishing

COVID-19 stage (here classified in a binary fashion as

«critical» and «mild») and clinical evolution (“unfavor-

able” and “favorable”), by computing the mean decrease of

the Gini index (an entropy-like measure of the impurity)

over the random forest nodes that were split on them.
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