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The metabolome of a biological system provides a functional readout of the

cellular state, thus serving as direct signatures of biochemical events that define

the dynamic equilibrium of metabolism and the correlated phenotype. Hence, to

elucidate biochemical processes involved in sorghum responses to fungal infection,

a liquid chromatography-mass spectrometry-based untargeted metabolomic study

was designed. Metabolic alterations of three sorghum cultivars responding to

Colletotrichum sublineolum, were investigated. At the 4-leaf growth stage, the plants

were inoculated with fungal spore suspensions and the infection monitored over

time: 0, 3, 5, 7, and 9 days post inoculation. Non-infected plants were used as

negative controls. The metabolite composition of aqueous-methanol extracts were

analyzed on an ultra-high performance liquid chromatography system coupled to

high-definition mass spectrometry. The acquired multidimensional data were processed

to create data matrices for multivariate statistical analysis and chemometric modeling.

The computed chemometric models indicated time- and cultivar-related metabolic

changes that reflect sorghum responses to the fungal infection. Metabolic pathway

and correlation-based network analyses revealed that this multi-component defense

response is characterized by a functional metabolic web, containing defense-related

molecular cues to counterattack the pathogen invasion. Components of this

network are metabolites from a range of interconnected metabolic pathways with

the phenylpropanoid and flavonoid pathways being the central hub of the web.

One of the key features of this altered metabolism was the accumulation of an

array of phenolic compounds, particularly de novo biosynthesis of the antifungal

3-deoxyanthocynidin phytoalexins, apigeninidin, luteolinidin, and related conjugates. The

metabolic results were complemented by qRT-PCR gene expression analyses that

showed upregulation of defense-related marker genes. Unraveling key characteristics

of the biochemical mechanism underlying sorghum—C. sublineolum interactions,
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provided valuable insights with potential applications in breeding crop plants with

enhanced disease resistance. Furthermore, the study contributes to ongoing efforts

toward a comprehensive understanding of the regulation and reprogramming of plant

metabolism under biotic stress.

Keywords: Colletotrichum sublineolum, 3-deoxyanthocyanidin, metabolomics, phenylpropanoid, flavonoid,

phytoalexins, Sorghum bicolor

INTRODUCTION

Sorghum [Sorghum bicolor (L.) Moench], is a major cereal
food crop in many parts of the world, particularly in Africa
and Asia, and positioned as the fifth most valuable and highly
produced cereal crop worldwide (Althwab et al., 2015). It plays
an important role in sustainable grain production and food
security, particularly in semi-arid and tropic areas (Dicko et al.,
2006). Although sorghum is used primarily as a food crop in
Africa, Asia, and Latin America, it is mainly utilized for animal
livestock feed and bioenergy generation in Australia and the
United States of America (Poloni and Schirawski, 2014;Wu et al.,
2017). Compared to other grain crops, sorghum has high levels
of phenolic compounds which possess antioxidant properties
and other biological activities that can benefit human health
(Awika and Rooney, 2004). Phenolic compounds are the most
widely distributed secondary metabolites in plants and the major
classes of this family of secondary metabolites are phenolic
acids, flavonoids, and tannins (Quideau et al., 2011; Cheynier
et al., 2013). The phenolic compounds found in sorghum
include phenolic acids and flavonoids. The phenolic acids are
mainly derivatives of cinnamic—and benzoic acids; whereas
the flavonoids may include flavanols, flavones, flavanones,
flavonones, anthocyanins, and derivatives (Quideau et al.,
2011). The profiles and levels of these phenolic compounds in
sorghum are dependent on the genotype as well as growth—and
environmental conditions. Increasing awareness of the health
benefits of these phytochemicals has redefined the value of
sorghum as a most nutritionally valuable cereal crop worldwide
(Awika and Rooney, 2004). For these reasons, there is renewed
interest in sorghum research for a detailed and extended
description of its phytochemical composition, and for in-depth
understanding of the cellular and organismal biochemistry of
sorghum in adverse environments (Balmer et al., 2013; Althwab
et al., 2015).

Like all plants, sorghum is constantly prone to attacks by
a plethora of potential pathogens and other biotic stressors,
which can lead to severe yield losses. One of the biotic
stressors that poses a great threat to sorghum production is
the hemibiotrophic fungus, Colletotrichum sublineolum. It is the
causal agent of a destructive above-ground disease, anthracnose,
which can lead to 70% yield loss under severe epidemics
due to defoliation and tissue death (Basavaraju et al., 2009;
Balmer et al., 2013). The pathogen, C. sublineolum, is capable
of destructively infecting all aerial tissue of sorghum plants,
especially leaf tissue, impacting negatively on the grain yield
and quality. The symptoms and severity of the post-infection
diseased state on sorghum vary depending on the interaction

between host plant, the environment and variation in virulence
within the pathogen population. Some of the symptoms include
elongated lesions which coalesce as the disease progresses to
cover most of the leaf tissue, and few or numerous fungal
fruiting bodies (acervuli) visible as black spots at the center
of the leaf lesion as the fungus sporulates (Tesso et al., 2012).
The control of the disease through the development of resistant
cultivars has been difficult and often less successful, even in
regions with endemic anthracnose, due to the hypervariable
nature of C. sublineolum. In addition, environmental conditions
also effects disease development. Development of sorghum
anthracnose is accompanied and regulated by different cellular
reprogramming events in both C. sublineolum and sorghum
plants; and understanding cellular and molecular responses of
both the pathogen and the host during the infection process could
provide informative insights, leading to sustainable application
avenues in combating the fungal infection of sorghum crops.

Although some key molecular events that characterize the
sorghum defense responses to C. sublineolum infection have
been described (Supplementary Information; Dicko et al., 2005;
Anjum et al., 2013), the mechanistic physiological and molecular
bases that determine the outcome of this phytopathogenic
interaction are still not fully elucidated (Basavaraju et al.,
2009; Tesso et al., 2012; Vargas et al., 2012; McDowell,
2013). Hence, unraveling the intricacies of the molecular
mechanisms underlying the sorghum defensive responses to
the fungal infection could provide descriptive insights, which
along with existing biochemical knowledge, can be explored
for designing and development of improved sorghum cultivars.
Thus, this metabolomics-based investigation reports on the
characterization of multi-parametric metabolic reprogramming
that underlies the induced defense mechanisms in sorghum
plants responding to C. sublineolum infection.

MATERIALS AND METHODS

Sorghum Plant Preparation
Sorghum [Sorghum bicolor (L.) Moench] seeds of three
South African cultivars were used, namely Amazi Mhlophe
(abbreviated as MHL or M), NS 5511 (referred to as bitter and
abbreviated as BTT or B) and NS 5655 (referred to as sweet,
abbreviated as SWT or S; Agricol, Pretoria, South Africa). NS
5511 and NS 5655 are both grain sorghum hybrids of the malting
class. NS 5511 is a red, tannin type, classified as GH (high levels
of condensed tannin, responsible for dark testa), while NS 5655
is classified as GM (no condensed tannins, no dark testa). Both
NS 5511 and NS 5655 have a rating of “3” (on a 1–9 scale with 1
being the most resistant) in terms of exhibiting disease resistance
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against head smut, leaf disease and root rot (Capstone Seeds,
Howick, South Africa). In contrast, Amazi-Mhlophe is an open
pollinated, white grain sorghum type. The three cultivars are
listed in the variety list of the Registrar of Plant Improvement,
Department of Agriculture, Forestry and Fisheries, South Africa
(www.daff.gov.za/daffweb3/Branches/Agricultural-Production-
Health-Food-Safety/Plant-Production/Verietal-Listing).

Seeds were surface-sterilized in a 1.2% sodium hypochlorite
solution and rinsed with sterile water before being placed in glass
Petri dishes with soaked paper towel and incubated at 28◦C in
the dark for 48 h to germinate. The seedlings were then planted
in horticultural-grade vermiculite under fluorescent lights with
a 12 h light (≈85 µmol m−2 s−1) and 12 h dark cycle. The
temperature was kept at 22–27◦C. The seedlings were watered
(tap water with Multisol N fertilizer, Culterra, Muldersdrift,
South Africa) regularly. The study was designed to monitor the
plant response to fungal infection over time for 1, 3, 5, 7, and
9 days post infection (d.p.i.) as based on initial optimisation
studies. The seedlings were planted in replicas of at least 10 plants
per time point, and all plants were grown at the same time under
the same environmental conditions. The complete experimental
design included three biological repeats.

Preparation of Colletotrichum sublineolum

Spore Suspensions
A pathogenic isolate of C. sublineolum (PPRI 7183) from fodder,
grown, and maintained on potato dextrose agar (PDA), was
obtained from the National Collection of Fungi, Plant Protection
Institute, Agricultural Research Council (ARC), Pretoria, South
Africa. The working sub-cultures were maintained on half-
strength PDA solid media in Petri dishes. For spore production,
the fungus was sub-cultured into 20% aqueous V8 medium
(pH 3.9), which was prepared by mixing 100% V8 vegetable
juice (Campbell Soup Company Camden, NJ, USA) and distilled
water (1:5, v/v), and autoclaved. One hundred milli liter of
the autoclaved media in 250mL Erlenmeyer flasks were then
inoculated with fungal mycelia (5 mycelia plugs per flask) from
C. sublineolum cultures growing on half-strength PDA plates.
The inoculated aqueous V8 media was incubated with constant
shaking at 130 rpm, 12 h light cycle, for 7 d. The flask cultures
were harvested after 7 d of growth by filtering the medium under
vacuum through muslin cloth to remove the mycelial clumps.
The spores present in the filtrate were pelleted by centrifugation
at 5,000 × g for 15min, washed by suspension (using autoclaved
distilled water) and centrifugation, and diluted to the required
concentration. The spore concentration was determined using a
haemocytometer and light microscope at 400 × magnification,
and adjusted to 106 spores mL−1.

Inoculation of the Sorghum Seedlings
At the four-leaf growth stage (25 days after sowing), the sorghum
plant leaves were treated by spraying with the fungal spore
suspension, adjusted to 106 spores mL−1, until run-off. The
control plants were not sprayed. After inoculum application, the
treated plants were incubated at 30◦C in an incubator to provide
100% relative humidity, in darkness for 24 h. Following the 24 h
incubation period, the plants were then exposed again to the

same initial conditions: with cycles of 12 h fluorescence light
(≈85 µmol m−2 s−2) and 12 h darkness, and the temperature
kept at 22–27◦C. Post-treatment harvesting of the plants was
done for all cultivars at 1, 3, 5, 7, and 9 d.p.i. by cutting off
the leaves and immediate storage at −80◦C until metabolite
extraction. Similarly, the non-treated (negative controls) plants
were harvested at 1, 5, and 9 days.

Metabolite Extraction and Sample
Preparation
Metabolites were extracted from treated and non-treated plant
leaves using 80% cold aqueous-methanol, in a ratio of 1:15 (w/v),
at 4◦C. The mixture was homogenized using an Ultra Turrax
homogeniser, followed by sonication using a probe sonicator
(Bandelin Sonopuls, Berlin, Germany) set at 55% power for 15 s,
repeated 3 times. The homogenates were centrifuged at 5,000
× g for 10min at 4◦C. The supernatants were concentrated by
evaporating to complete dryness and re-suspending the dried
extracts in 300 µL 50% aqueous-methanol. The samples were
then filtered through 0.22µm nylon syringe filters into HPLC
glass vials fitted with 500 µL inserts. The filtered extracts were
kept at −20◦C until analyzed. The methanol used was LC-
grade (Romil Pure Chemistry, Cambridge, UK) and ultrapure
water. The quality control (QC) samples were pooled samples
prepared by pipetting and mixing aliquots of equal volume from
all samples.

Sample Analyses on an UHPLC-HDMS
Analytical Platform
Ultra-high performance liquid chromatography coupled to high-
definition mass spectrometry (UHPLC-MS) was performed
on a Waters Acquity UHPLC coupled in tandem to a
Waters photodiode array (PDA) detector and SYNAPT G1 Q-
TOF mass spectrometer (Waters Corporation Milford, USA).
Chromatographic separation of the aqueous-methanol extracts
was done using aWaters HSS T3 C18 column (150mm× 2.1mm
× 1.8µm) thermostatted at 60◦C. Although the T3 column is
classified as a C18 reverse phase type, it is able to separate
some polar compounds in addition to the non-polar compounds.
Elution gradient was carried out with a binary solvent system
consisting of 0.1% aqueous formic acid (solvent A) and 0.1%
formic acid in acetonitrile (Romil Pure Chemistry, Cambridge,
UK; solvent B) at a flow rate of 0.4mL min−1. The initial
conditions were 98% A and 2% B and held for 1min. A gradient
was applied to change the chromatographic conditions to 30%
A and 70% B at 14min; and changed to 5% A and 95% B at
15min. These conditions were held for 2min and then changed
to the initial conditions at 18min. The analytical column was
allowed to calibrate for 2min before the next injection. The total
chromatographic run time was 20min and the injection volume
was 2 µL. Each sample was analyzed in triplicate to account for
any analytical variability. Solvent blanks and the QC samples
were also analyzed in parallel with the sample extracts (described
below).

High definition mass spectrometry analyses were performed
on a Waters SYNAPT G1 Q-TOF MS system in V-optics
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operated in both positive and negative electrospray ionization
(ESI) modes. Leucine encephalin (50 pg mL−1), [M + H]+

= 55.2766 and [M–H]− = 554.2615, was used as a reference
calibrant, being continuously sampled every 15 s, producing an
average intensity of 350 counts scan−1 in centroid mode. Using
this reference, the MassLynxTM software automatically correct
the centroid mass values in the sample for small deviations
from the exact mass measurement, giving typical mass accuracies
between 1 and 3 mDa. The capillary and sampling cone voltages
were 2.5 kV and 30V, respectively. The extraction cone was
set at 4.0 V. The source temperature used was 120◦C and the
desolvation temperature 450◦C; cone gas flow 50 L h−1 and
desolvation gas flow of 550 L h−1. A scan time of 0.2 s was used
with a 100–1,000 Da mass range. The nebulisation gas used was
nitrogen with a 700 L h−1 flow rate. The data were acquired with
different collision energies (MSE) 0–30 eV to obtain as much
structural information as possible of the detected compounds.
The software used to control the hyphenated system and perform
all data manipulation was MassLynxTM 4.1 (SCN 704, Waters
Corporation Milford, USA).

The QC (pooled) samples were used to condition the LC-MS
analytical system so as to assess the reliability and reproducibility
of the analysis, and for non-linear signal correction (Godzien
et al., 2015; Broadhurst et al., 2018). Sample acquisition was
randomized and the QC sample (6 injections) was analyzed every
10 injections to monitor and correct changes in the instrument
response. Furthermore, 6 QC runs were performed at the
beginning and end of the batch to ensure system equilibration.
Such sample randomization provides stochastic stratification in
sample acquisition so as to minimize measurement bias. In the
principal component analysis (PCA) space, the QC samples were
clustered closely to each other, confirming thus the stability of
the LC-MS system used, the reliability and reproducibility of
the analysis. The blank samples (50% aqueous methanol) were
randomly run to monitor background noise.

Data Analysis: Data Set Matrix Creation
and Chemometric Analyses
The centroid-raw data obtained from UHPLC-HDMS (both ESI
positive and—negativemodes) were pre-processed (peak picking,
noise filtering, retention time (Rt) alignment, peak integration,
and normalization) using MassLynx XSTM 4.1 software (Waters
Corporation, Manchester, UK). The MarkerLynxTM application
manager of the MassLynx software was used for matrix creation,
producing a matrix of (Rt-m/z) variable pairs, with m/z peak
intensity for each sample. MarkerLynx software parameters were
set to process the 1–15min Rt range of the chromatograms
and m/z domain of mass range 100–1,000 Da. The Rts were
allowed to differ by ± 0.2min and the m/z values by ±

0.05 Da. The mass tolerance used was 0.01 Da, and the
intensity threshold was 100 counts. Only data matrices that
had noise level <50% (MarkerLynx cut off) were retained for
downstream chemometric and statistical analyses. After data
pre-processing, the number of metabolite features (Rt, m/z)
in the clean data sets were 1536 in ESI positive and 2759 in
ESI negative data sets. These data matrices were exported into

SIMCA (soft independent modeling of class analogy) software,
version 14 (Umetrics, Umeå, Sweden) for statistical analyses. Two
unsupervised methods, PCA and hierarchical clustering analysis
(HCA), and a supervised modeling, orthogonal projection
to latent structures-discriminant analysis (OPLS-DA), were
employed. This included the OPLS-DA S plots and the Variable
Importance in Projection (VIP) plots. These multivariate
methods attempt to highlight trends and groupings within
a data set, subsequently facilitating the understanding of the
relationships between- and within the samples (Trygg et al., 2007;
Tugizimana et al., 2013).

To ensure that the biological question of the study is
accurately answered as competently as possible, data scrutiny
was meticulously done following the data pre-processing steps.
This included assessment of the number of extracted features
(<10,000 features, as a rule of thumb), applying the 80% rule
(i.e., features found in <20% of the analyzed samples were
removed) and monitoring the quality of data and stability of
the analysis using QC samples. Data transformation methods
such as centering, scaling or transformation were exploratively
employed to put all variables on equal footing, minimize variable
redundancy and adjust for measurement errors (Tugizimana
et al., 2016). A non-linear iterative partial least squares algorithm
(in-built within SIMCA; Nelson et al., 1996) was used to manage
the missing values, with a correction factor of 3.0 and a default
threshold of 50%. A seven-fold cross-validation (CV) method
(Bro et al., 2008) was applied as a tuning procedure in computing
the chemometric models; and only the components positively
contributing to increase the prediction ability of the model
(R1 significant components) were considered. Furthermore,
thorough model validations were rigorously and consistently
applied; and only statistically satisfactory models were examined
and used in data mining for knowledge discovery. For PCA, the
cumulative R2 (explained variation) and Q2 (predicted variation)
of used models were higher than 0.5. Furthermore, for OPLS-
DA models, the analysis of variance testing of cross-validated
predictive residuals (CV-ANOVA), p-values were below 0.05. The
specific values for these validation parameters (and others) are
provided in the results section.

The study design information, LC-MS raw data, analyses
and data processing information, and the metadata have
been deposited to the EMBL-EBI metabolomics repository—
MetaboLights database with the identifier (accession number)
MTBLS791.

Metabolite Identification, and Metabolic
Pathway and Network Analyses
Metabolite Identification

For metabolite identification, the data matrices from
MarkerLynx-based data processing were exported to the Taverna
workbench (www.taverna.org.uk) for PUTMEDID_LCMS
Metabolite ID workflows (Brown et al., 2011). The Taverna
workflows allow for integrated, automated and high-
throughput annotation and putative metabolite identification
from LC-ESI-MS metabolomic data. The workflows consist
of correlation analysis, metabolic feature annotation, and
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metabolite annotation. A data matrix from MarkerLynx-based
data processing was firstly formatted to match the Taverna
workbench requirements. Three main workflows formed the
Taverna Metabolite ID procedure: (i) Pearson-based correlation
analysis (List_CorrData), (ii) metabolic feature annotation
(annotate_Massmatch)—allowing for grouping together ion
peaks with similar features such as Rt, and annotating features
with the type of m/z ion (molecular ion, isotope, adduct, others)
believed to originate from the same compound. The elemental
composition/molecular formula (MF) of each m/z ion was
then automatically calculated; and (iii) metabolite annotation
(matchMF-MF) of the calculated MF (from the output file from
workflow 2) was automatically compared and matched to the
MF from a pre-defined reference file of metabolites.

For confidence in metabolite annotation, the following steps
were performed: (i) the calculated MF of a selected metabolite
candidate was manually searched against databases and
bioinformatics tools, mainly the Dictionary of Natural Products
(DNP; www.dnp.chemnetbase.com), Chemspider (www.
chemspider.com), PlantCyc (www.plantcyc.org), Knapsack
database (http://kanaya.naist.jp/KNApSAcK/) and KEGG (www.
genome.jp/kegg/); (ii) structural confirmation through careful
inspection of fragmentation patterns by examining the MS1

and MSE spectra of the selected metabolite candidate; (iii)
comparative assessment with/against annotation details of
metabolites in sorghum, reported in literature, particularly in
Kang et al. (2016). Metabolites were annotated to level 2 as
classified by the Metabolomics Standard Initiative (MSI; Sumner
et al., 2007).

The presence and abundance of specific molecular features
or identified metabolites (as expressed as the integrated peak
areas in the data matrix X) was infographically captured by
unsupervised color-coded-PCA scores plots using the SIMCA
software.

Metabolic Pathway and—Network Analyses

Ingenuity pathway analysis (IPA) of metabolites
identified/selected by OPLS-DA were performed with the
MetPA (Metabolomics Pathway Analysis) component of
the MetaboAnalyst bioinformatics tool suite (version 3.0;
http://www.metaboanalyst.ca/), enabling the identification
of the affected metabolic pathways, analysis thereof and
visualization. IPA uses high-quality KEGG metabolic pathways
as the supporting knowledge base. The identified significant
metabolites (with respective KEGG identifiers, Table 1) were
thus uploaded into MetPA tool for pathway analysis. The
possible biological roles were evaluated by enrichment analysis.
An over-representation approach, based on a hypergeometric
test algorithm, was used for pathway enrichment analysis; and
pathway topological analysis was based on relative betweenness
centrality. Since many pathways are tested at the same time,
both Holm-Bonferroni and false discovery rate procedures
were used to adjust for the statistical p-values from enrichment
analysis. Furthermore, correlation-network analyses were used
to examine metabolite associations and interpret chemometric
results within a comprehensive biological and experimental
context. Thus, a biochemical and chemical similarity network

was constructed between all OPLS-DA selected and annotated
metabolites. MetaMapR (https://dgrapov.github.io/MetaMapR)
was used to identify metabolic precursors to product relations
based on KEGG identifiers (Grapov et al., 2015).

Biochemical networks were generated using the Cytoscape
(www.cytoscape.org) version 3.5.0 tool. Structural similarities
were determined based on similarities between PubChem
(https://pubchem.ncbi.nlm.nih.gov/) Substructure Fingerprints
(ftp://ftp.ncbi.nlm.nih.gov/pubchem/specifications/pubchem_
fingerprints.txt). Molecular fingerprints, defined by the presence
or absence of physical properties (e.g., element type, functional
group, nearest neighbors) and PubChem compound identifiers
(CIDs), were used to calculate structural similarities (Bolton
et al., 2011). Molecular fingerprints were compared and a
threshold for structural similarity was defined at a Tanimoto
coefficient of 0.7 (Grapov et al., 2015). The developed network
was visualized using Cytoscape (Shannon et al., 2003; Smoot
et al., 2011), and network characteristic mapping was used to
encode chemometric modeling information through the network
edge and nodes attributes.

Gene Expression Analyses
Total RNA was extracted from harvested leaf tissues,
corresponding to the different time-points (1–9 d.p.i.) of each
biological repeat, using the Trizol-reagent method (Invitrogen,
Carlsbad, CA, USA). The extracted RNA samples were
subjected to DNase treatment using DNase I (Thermo Scientific,
Waltham, MA, USA). Concentrations were determined using
a NanoDrop R© ND-1000TMSpectrophotometer (NanoDrop
Inc., Wilmington, DE, USA). The RNA integrity of all samples
were examined by electrophoresis on a 1.5% agarose gel in 1X
Tris-Borate-EDTA (TBE) buffer and containing 0.5 µg mL−1

ethidium bromide before use. The gels were visualized under
UV light using a Bio-Rad Image Analyser and Quantity OneTM

Version 4.6.1 Software (Bio-Rad Laboratories, Johannesburg,
South Africa). The total RNA samples were aliquoted and stored
at−80◦C for later use.

Real time PCR (qPCR) was used for sorghum gene expression
analysis. Prior to quantification of the expression levels, the
DNase-treated RNA were reverse transcribed to cDNA using

a RevertAid
TM

Premium First Strand cDNA synthesis kit
(Fermentas, Thermo Scientific, Waltham, MA, USA). The
selected genes included: chitinase (PR3), pathogenesis-related
protein 10 (PR10), flavonoid 3′-hydroxylase (F3’H), phenylalanine
ammonia-lyase (PAL) and polyphenol oxidase (PPO). The gene-
specific primer pairs (Supplementary Table S1) were designed
using the “Primer Quest” tool (Integrated DNA Technologies,
Coralville, IA, USA) from sequences obtained in on-line
data bases (GenBank NCBI, www.ncbi.nlm.nih.gov/genbank).
qPCR was performed to analyse the expression of each
gene using a RotorGene-3000A instrument (Qiagen, Venlo,
Netherlands) using the FastStart essential DNAGreenMaster Kit
(Roche, Mannheim, Germany) according to the manufacturer’s
instructions. Ten micro liter of SYBR (FastStart essential DNA
Green Master), 1 µL forward primer (1µM final concentration),
1 µL reverse primer (1µM final concentration), and 6 µL of
DNase-free water were added to 2 µL of cDNA for amplification
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TABLE 1 | Summary of annotated (MI-level 2) metabolites that contributed to the discriminating variability in the altered metabolomes as described by chemometric

models.

Metabolites m/z Rt (min) Ion/Adduct ESI MF MW p-value FC_B FC_S FC_M Direction

1 (-)-Jasmonic acid

methyl ester

245.1149 1.98 M+Na Neg C13H20O3 224.30 0.0017 1.095 1.360 1.107 Increase

2 1,2-bis-O-Sinapoyl-

beta-D-glucoside

591.1695 6.59 M-H Neg C28H32O14 592.55 0.0013 1.059 1.625 1.001 Increase

3 1-O-Sinapoyl-beta-D-

glucose

385.1144 5.56 M-H Neg C17H22O10 386.35 0.0000 2.437 1.020 1.021 Increase

4 2-Coumarate 163.0396 4.51 M-H Neg C9H8O3 163.15 0.0484 1.604 0.798 1.978 Increase

5 3-Methyl-4-cis-

hydroxy-2-butenal

121.0273 5.13 M-H_Na Neg C5H8O2 101.12 0.0000 1.004 0.879 1.334 Increase

6 4-Coumaroylshikimate 357.0381 3.26 M-K Neg C16H16O7 320.30 0.0038 0.767 1.248 1.142 Decrease

7 4-Hydroxycoumarin 163.0385 4.69 M+H Pos C9H6O3 162.14 0.0408 3.830 2.957 0.465 Increase

8 6-Aminohexanoate 170.0586 4.11 M+H_K Pos C6H13NO2 131.18 0.0076 7.432 6.021 5.703 Increase

9 Abscisate 355.1131 4.02 M+H_FANa Pos C15H20O4 264.32 0.0000 3.912 3.814 2.933 Increase

10 Apigenin 271.0620 6.07 M+H Pos C15H10O5 270.24 0.0288 35.023 17.605 6.901 Increase

11 Apigenin

7-O-neohesperidoside

577.1548 5.95 M-H Neg C27H30O14 578.52 0.0016 21.230 11.350 3.234 Increase

12 Apigenin

7-O-β-D-glucoside

431.0978 6.67 M-H Neg C21H20O10 432.38 0.0008 11.770 10.853 2.538 Increase

13 Apigeninidin 255.0481 6.15 M+H Pos C15H11O
+
4 255.24 0.0000 38.975 22.027 20.551 Increase

14 Caffeoylglucarate 371.0625 4.01 M-H Neg C15H16O11 372.28 0.0550 0.832 4.237 0.283 Decrease

15 Caffeoylquinate 353.0879 4.67 H-H Neg C16H18O9 354.31 0.0000 4.121 1.996 1.195 Increase

16 Coniferaldehyde

glucoside

356.1344 3.26 M-NH3 Neg C16H20O8 340.33 0.0000 0.651 0.748 0.200 Decrease

17 Coniferin 343.1373 4.75 M+H Pos C16H22O8 342.34 0.0000 9.102 11.114 3.163 Increase

18 Coniferyl acetate 223.0956 5.44 M+H Pos C12H14O4 222.24 0.0000 0.818 0.748 0.520 Decrease

19 Coniferyl alcohol 181.0513 3.10 M+H Pos C10H12O3 180.20 0.0060 3.781 4.888 1.280 Increase

20 Coniferyl aldehyde 179.0694 5.71 M+H Pos C10H10O3 178.18 0.0000 2.105 3.467 0.579 Increase

21 Coumarin 145.0289 4.56 M-H/M+H Neg C9H6O2 146.14 0.0000 1.995 1.259 1.569 Increase

22 Coumaroyl-glucose 327.1072 7.22 M+H Pos C15H18O8 326.30 0.0000 1.306 1.055 0.529 Increase

23 Coumaryl acetate 237.0776 4.15 M-FA Neg C11H12O3 192.21 0.0000 2.331 1.643 1.049 Increase

24 Cyanidin 3-(p-

coumaroyl)-glucoside

610.1549 5.90 M-NH3 Neg C30H26O13 595.53 0.0381 2.996 1.050 1.019 Increase

25 Dhurrin 334.0893 4.20 M+H_Na Pos C14H17NO7 311.29 0.0049 37.936 31.379 27.650 Increase

26 Dihydroconiferyl alcohol

glucoside

411.1290 6.06 M-FA-Na Neg C16H24O8 344.36 0.8474 1.203 0.524 0.241 Increase

27 Dihydroxy-4-methoxy-

isoflavanol

333.0991 3.91 M-FA Neg C16H16O5 288.30 0.0000 12.159 3.158 1.509 Increase

28 Dihydroxycinnamate 179.0341 5.29 M-H Neg C9H8O4 179.15 0.0000 1.466 0.950 0.495 Increase

29 Feruloyl-glucose 401.1081 3.19 M + FA Neg C16H20O9 356.33 0.0001 1.852 4.470 1.097 Increase

30 Fumarate 182.9915 1.75 M-FA-Na Neg C4H4O4 116.07 0.0000 0.742 1.037 0.907 Decrease

31 Geranyl-farnesyl

diphosphate

591.1825 4.17 M-KCl Neg C25H44O7P2 518.57 0.0244 1.218 1.132 0.914 Increase

32 Gibberellin A9 methyl

ester

375.1556 5.77 M+H_NaNa Pos C20H26O4 330.42 0.0000 2.565 1.847 1.221 Increase

33 Glutathione disulphide 611.1435 1.87 M-H Neg C20H32N6O12S2 612.63 0.0000 3.834 1.069 1.025 Increase

34 Hesperidin 609.1809 5.53 M-H Neg C28H34O15 610.57 0.0000 7.596 3.658 1.266 Increase

35 Homofuraneol 165.0523 1.83 M+H_Na Pos C7H10O3 142.15 0.0085 2.216 1.722 0.447 Increase

36 Hydroxybrassinolide 517.3128 8.17 M-Na Neg C28H48O7 496.69 0.0013 4.996 3.282 1.822 Increase

37 Hydroxyjasmonate 228.1593 6.98 M+H Pos C12H18O4 226.272 0.0100 1.422 1.519 0.309 Increase

38 Indole-3-acetaldoxime 175.0860 1.97 M+H Pos C10H10N2O 174.08 0.0009 1.140 1.719 0.809 Increase

39 Indole 116.0500 4.10 M-H Neg C8H7N 117.15 0.0079 3.591 1.373 2.933 Increase

40 Indole-3-acetamide 289.1181 4.88 M-H Neg C15H18N2O4 290.13 0.0123 1.222 2.001 1.006 Increase

(Continued)
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TABLE 1 | Continued

Metabolites m/z Rt (min) Ion/Adduct ESI MF MW p-value FC_B FC_S FC_M Direction

41 Indole-3-acetyl-alanine 283.0479 4.78 M-K Neg C13H14N2O3 245.26 0.0000 0.793 0.906 0.692 Decrease

42 Indole-3-acetyl-beta-1-

D-glucoside

337.0901 3.86 M Pos C16H19NO7 337.12 0.0000 8.370 6.306 3.136 Increase

43 Indole-3-glycerol

phosphate

286.2377 11.07 M-H Neg C11H14NO6P 287.21 0.0000 0.661 0.674 0.439 Decrease

44 Indole-3-yl-acetyl-myo-

inositol-L-arabinoside

468.1489 4.52 M-H Neg C21H27NO11 469.44 0.0023 1.662 1.552 0.938 Increase

45 Isoliquiritigenin

4’-glucoside

463.1243 5.36 M-FA Neg C21H22O9 418.13 0.0000 2.316 2.625 1.062 Increase

46 Isovitexin

7-O-glucoside

593.1499 6.09 M-H Neg C27H30O15 594.52 0.0000 0.641 0.782 0.242 Decrease

47 Kaempferol

3,7-O-diglucoside

609.1450 5.99 M-H Neg C27H30O16 610.52 0.0089 5.498 3.325 1.349 Increase

48 Kaempferol

3-O-glucoside

449.1075 6.71 M-HH Neg C21H19O
−
11 447.37 0.0000 5.777 1.550 1.042 Increase

49 Luteolin 287.0566 6.31 M+H Pos C15H10O6 286.24 0.0086 17.712 9.687 2.399 Increase

50 Luteolin 7-O-glucoside 447.0917 6.19 M-H Neg C21H20O11 448.37 0.0000 20.535 15.686 5.252 Increase

51 Luteolinidin 271.0620 6.87 M Pos C15H11O
+
5 271.24 0.0001 31.158 20.078 12.412 Increase

52 Naringin 625.1770 4.49 M-FA Neg C27H32O14 580.54 0.0000 1.992 1.992 1.226 Increase

53 N-Feruloylserotonin 351.1335 11.68 M-H Neg C20H20N2O4 352.39 0.0005 0.701 0.802 0.402 Decrease

54 p-Coumaroylagmatine 275.1997 13.69 M-H Neg C14H20N4O2 276.34 0.0001 1.751 1.750 1.907 Increase

55 p-Coumaroylquinate 427.0619 1.81 M-FA-

NaNa

Neg C16H18O8 338.31 0.0013 0.940 0.460 1.599 Decrease

56 Pentahydroxychalcone

4’-O-glucoside

449.1067 5.39 M-H Neg C21H22O11 450.12 0.0000 2.597 1.545 0.545 Increase

57 Phenyl methanol 177.0528 4.97 M+H_FANa Pos C7H8O 108.14 0.0000 0.873 1.042 0.582 Decrease

58 Phenylalanine 164.0922 3.94 M-H Neg C9H11NO2 165.19 0.0172 0.210 1.614 0.206 Decrease

59 Phenylethylamine 142.0635 4.08 M-Na Neg C8H11N 121.18 0.0106 1.667 1.057 1.802 Increase

60 Quercetin

3-O-rhamnoside

447.0914 5.04 M-H Neg C21H20O11 448.38 0.0000 11.038 10.655 3.675 Increase

61 Quercetin 3-sulfate 426.9968 3.35 M-FA Neg C15H10O10S 382.30 0.0000 2.001 1.993 1.125 Increase

62 Quercetin-3-

rhamnoside-7-

rhamnoside

595.1655 5.24 M-H Neg C27H32O15 596.17 0.0499 9.950 7.112 1.013 Increase

63 Riboflavin 443.1183 5.58 M-FA-

NaNa

Neg C17H20N4O6 376.37 0.0081 1.864 0.941 0.641 Increase

64 Salicyl alcohol 147.0415 1.93 M+H_Na Pos C7H8O2 124.14 0.4953 2.743 1.517 0.945 Increase

65 Salicylate

2-O-beta-D-glucoside

137.0241 7.29 M-H Neg C7H6O3 138.12 0.0589 29.384 5.402 1.131 Increase

66 Sinapaldehyde

glucoside

415.1247 5.68 M-FA Neg C17H22O9 370.35 0.0000 0.679 1.097 0.903 Decrease

67 Sinapoyl aldehyde 369.1187 6.02 M-H Neg C17H22O9 370.35 0.0687 5.986 2.775 1.837 Increase

68 Sinapoyl malate 385.0762 4.74 M-FA Neg C15H16O9 338.27 0.0138 0.711 1.140 1.000 Decrease

69 Sinapyl-alcohol 299.0520 7.60 M-FA-

NaNa

Neg C11H14O4 210.23 0.0000 1.499 1.694 1.006 Increase

70 Sophoraflavanone G 423.1834 5.39 M-H Neg C25H28O6 424.49 0.0000 1.613 0.984 0.118 Increase

71 Syringin 409.0908 4.37 M-K Neg C17H24O9 372.37 0.3814 0.897 6.358 0.636 Decrease

72 Tryptophan 205.0968 3.99 M+H Pos C11H12N2O2 204.23 0.0002 5.459 2.043 1.410 Increase

These discriminating metabolites were identified based on OPLS-DA S-plots, all with p-values < 0.05 and VIP scores > 1.0. FC refers to fold change (5 d.p.i. vs. control); and B, S, and

M refer to the BTT, SWT, and MHL cultivars, respectively.

in a total volume of 20 µL. The cycling conditions were as
follows: initial denaturation for 10min at 95◦C followed by
amplification and quantification cycle repeated 40 times each

consisting of 5 s denaturing at 95◦C, 10 s annealing at primer
specific temperatures, 20 s extension at 72◦C. Two independent
cDNA preparations were used with three technical replicates of
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each. Quantification of the relative changes in gene expression
was performed using the relative standard curve method (Liu
and Saint, 2002) with elongation factor 1-alpha (Elf α) and
ubiquitin conjugating enzyme 18 (UBC18) as references genes.
Data sets were statistically compared with the statistical analysis
software GraphPad InStat v3 (GraphPad software, San Diego,
CA, USA) using one-way analysis of variation (ANOVA) with
Dunnet’s post-test comparison of all treated samples vs. non-
treated samples (control) at each time point. The confidence level
of all analyses was set at 95%, and values with p < 0.05 were
considered significant.

RESULTS

Evaluation of Anthracnose Symptoms
Development—Symptomatology
The symptomatic observations regarding the development
of symptoms and disease severity of the MHL, BTT
and SWT cultivars (Supplementary Figures S3, S4 and
Supplementary Table S2) point to cultivar-related differential
interactions between the sorghum plants and the hemibiotrophic
C. sublineolum pathogen.

Metabolic Profiling of C.
sublineolum-Induced Changes in Sorghum
Hydromethanolic extracts of C. sublineolum-infected and non-
infected sorghum plants were analyzed on a reversed phase liquid
chromatography (LC) column coupled to a high-resolution
quadrupole time-of-flight (QTOF) mass spectrometry (MS)
detector system with electrospray ionization (ESI). This LC-ESI-
QTOF-MS platform was combined with an untargeted approach
to gather information on as many statistically significant
metabolites as possible. Considering the inherent chemo-
diversity, heterogeneity, and multi-dimensionality of extracted
metabolomes, chromatographic separation is an essential step
in untargeted metabolomics workflow, providing resolution of
sample constituents (Tugizimana et al., 2013). Interfaced in-
line with ESI-MS, the resultant LC-MS analytical platform
allowed the simultaneous detection of multiple analytes with
high sensitivity, providing deeper and more detailed insight into
the metabolic composition of a biological sample. Distinct MS
chromatograms indicated differential metabolic profiles of the
analyzed samples. Figure 1 and Supplementary Figures S5A,B

shows typical base peak intensity (BPI) mass chromatograms
with differential peak population (presence and intensities),
reflecting differences between samples from infected and non-
infected plants, as well as cultivar-related differences.

To further elucidate the functional readouts of cellular
physiological state(s) related to sorghum responses to C.
sublineolum infection, chemometric analyses were applied to
the collected LC-MS data. Following data processing (Boccard
and Rudaz, 2014; Tugizimana et al., 2016), the created data
matrices, with the number of defined features (Rt, m/z)
being 1536 in ESI positive and 2759 in ESI negative data
sets, were then exported into SIMCA (version 14) software
for multivariate data analyses that included PCA, HCA, and

OPLS-DA modeling. For the descriptive exploration of the
overall structure of the pre-processed multi-dimensional data,
unsupervised learning methods—PCA, and HCA—were used.
These multivariate methods attempt to highlight descriptively
trends and groupings within a data set, subsequently facilitating
the understanding of the relationships between- and within
the samples (Trygg et al., 2007; Tugizimana et al., 2013). PCA
modeling, through the first two principal components (PCs),
revealed treatment-related and cultivar-related sample clustering
(Figures 2A,B and Supplementary Figure S6). Furthermore, in
the PCA space, the QC samples are clustered closely to each
other (and more or less in the middle of the 2D-plots),
reflecting the stability of the LC-MS system used, and the
reliability and reproducibility of the analysis (Godzien et al., 2015;
Broadhurst et al., 2018). These sample groupings highlighted
by the computed PCA models point to differential metabolic
changes in sorghum plants responding to C. sublineolum. The
samples from the MHL cultivar formed a clearly different group
from the other two cultivars. This observation correlates to the
indications from symptomatology (Supplementary Figures S3,
S4 and Supplementary Table S2).

The PCA-extracted trends in the data were further examined
by applying hierarchical clustering analyses on low-dimensional
data generated from the PC analyses. Agglomerative HCA
models were computed using Ward’s linkage method
(incremental sum of squares method) that considers between-
and within-cluster distances when forming clusters, and the
tree was sorted based on size (Szekely and Rizzo, 2005; Ji and
Liu, 2010). The generated hierarchy of clusters was represented
graphically on a dendrogram to evaluate whether some natural
grouping emerges from the data—i.e., if the “metabolite space”
actually contains several distinct subspaces. The computed HC
models depicted two major distinct clusters corresponding to
the samples from the very susceptible MHL cultivar grouping
differentially and separate from the other two cultivars (BTT
and SWT). Treatment-related (infected vs. non-infected) and
time-related sub-clusters were also formed within each major
cluster (Figures 2C,D and Supplementary Figure S6). Thus,
both PCA and HCA modeling aided to evaluate descriptively
the overall structure of the data, revealing underlying patterns
and inner structures and sub-structures within the data: cultivar-
related clustering, treatment-dependent groupings (infected
vs. non-infected), and time-related variation (Figures 2C,D
and Supplementary Figure S6). These observations evidently
point to a biological phenomenon in the (extracted) metabolite
space—differential metabolite profiles defining temporal cellular
events related to the sorghum plants’ responses to C. sublineolum
infection.

For better biochemical interpretability and detailed
assessment of the metabolic changes revealed by PCA and
HCA in sorghum responding to the fungal infection, the
supervised modeling method, OPLS-DA, was used. Evaluation
of this multivariate (binary) classifier helps in extracting the
metabolite variables underlying the discrimination between
classes or groups (Trygg et al., 2007; Tugizimana et al.,
2013). OPLS-DA is an extension to the supervised PLS-DA
regression method, featuring an integrated orthogonal signal
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FIGURE 1 | UHPLC-MS BPI chromatograms (ESI negative data): typical mass chromatograms of extracts from the sorghum NS 5511 (BTT) cultivar leaf tissue

samples, responding to fungal infection. Control refers to samples from non-infected plants. The 3–9 d.p.i. samples are also indicated. Visual inspection of these mass

chromatograms shows resolution of a number of ion peaks, reflecting the complexity of the extracts. Differential peak populations point to treatment-related metabolic

changes: for instance in the retention time range of 4–8min, where differential peak intensities can be seen, and presence or absence of peaks.

correction (OSC)-filtering method and, as such, OPLS-DA
modeling has added interpretational and discriminatory benefits
compared to PLS-DA (Bylesjö et al., 2006). The computed
OPLS-DA models (Figure 3 and Supplementary Figure S7)
to separate multivariate relationships into predictive (related
to C. sublineolum infection) and orthogonal (unrelated to the
treatment) variation, were validated with multivariate statistical
tools and scrutinized by assessing the robustness, predictive
ability, reliability and significance of the models. Some of the
multivariate statistical tool used to validate calculated OPLS-DA
models included R2–and Q2 metrics, the analysis of variance
testing of cross-validated predictive residuals (CV-ANOVA,
p-value<0.05 as a cut-off), the receiver operator characteristic
(ROC) curves, response permutation tests (with n = 50), and
predictive testing (Eriksson et al., 2008; Tugizimana et al., 2016).
The computed and validated OPLS-DA models (p < 0.05) used
in this study were perfect classifiers and statistically reliable, with
very good predictive capability: no signs of possible overfitting,
as indicated by cross-validation; and none of the permutated
models performed better than the original models in separating
classes (Figure 3 and Supplementary Figure S7). These binary
classifier models allowed to assess explicatively the treatment-
related groupings (described by the unsupervised PCA and HCA
models above) by extracting features (variables) responsible for
differentiating sample groups (e.g., infected vs. non-infected).

Thus, the selection of discriminating features (signatory
biomarkers characterized by unique Rt and m/z values)
was carried out by evaluating the OPLS-DA loading S-plots
(Figure 3B). To avoid overinterpretation of the models and
variable selection bias, only features that were statistically
significant in contributing to class separation were retained.

Therefore, variables that combined both high covariation and
correlation (as examined on S-plots) were considered to be
statistically relevant as potential discriminant features (Wiklund
et al., 2008; Tugizimana et al., 2013). However, since the S-plot is
susceptible to data matrix changes due to correlation sensitivity
and dependency on data structure, the statistical significance
and discriminability of the potential markers derived from the
S-plots were further investigated using different tests and tools
such as the VIP plots, jackknife confidence intervals (used to
estimate standard errors in a non-parametric way as an estimate
of bias), variable trends, dot plots and descriptive statistics
(Figures 3C,D). The VIP plots display VIP values as a column
plot with jackknife uncertainty bars, providing a metric to
assess the importance of the variables both to explain X and to
correlate to Y, with the jackknife confidence intervals reflecting
the variable stability (Galindo-Prieto et al., 2015; Tugizimana
et al., 2016). Only S-plot-derived variables with VIP scores
exceeding 1.0, with no (or minimal) overlap between groups
(as indicated by dot—and trends plots), with positive jackknife
confidence intervals and p-value < 0.05 (ANOVA, T-test), and
demonstrating stable signals in the QC samples, were selected
and retained as statistically significant and chemometrically
contributing correctly to class separation. In a logical
extension, these selected discriminant variables are regarded
as essential chemical repertoires explaining the metabolic
changes in sorghum, revealed by PCA—and HCA models
(Figures 2C,D and Supplementary Figure S6). Accordingly,
such features are fundamental elements for the biochemical
interpretation of the chemometrically extracted information.
These extracted features (markers) were then annotated (to
the Metabolomics Standards Initiative, MI-level 2 annotation),
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FIGURE 2 | Unsupervised chemometric modeling (ESI negative data): (A) A PCA scores scatter plot of all the samples, including the QC samples, colored according

to the treatment (C = control, T = treated). (B) The scores plot in (A) but colored according to cultivars (MHL = Mhlophe, BTT = NS 5511, SWT = NS 5655). The

PCA model presented here was an 18-component model (of the Pareto-scaled data matrix X), with R2 of 0.739, explained variation, and Q2 of 0.664, predicted

variation, according to seven-fold cross validation. (C,D) are HCA dendrograms corresponding to (A,B), respectively. The unsupervised modeling provided a global

overview of the data shown in the PCA scores plots and HCA dendrograms, allowing the identification of sample grouping and natural clustering with regards to

treatment-related and cultivar-dependent groupings (A–D).

as described in the experimental section and are reported in
Table 1.

Metabolite Pathway Analysis and
Metabolic Network Analysis
To identify the most significant metabolic pathways defining
the sorghum defense responses, the MetPA (Metabolomics
Pathway Analysis)—an integral module of the MetaboAnalyst
bioinformatics tool suite (version 3.0; http://www.metaboanalyst.
ca/)—was used. MetPA is a pathway analysis and visualization
tool that combines several advanced pathway enrichment
analysis methods along with the analysis of pathway topological
characteristics to facilitate the elucidation of most relevant
and altered pathways involved in the conditions under study
(Xia et al., 2015; Chong et al., 2018. A representation of all
MetPA-computed metabolic pathways displayed according to
their significance or pathway impact in shown in Figure 4

and Table 2. The nine most significant pathways were (with
some overlap): phenylalanine metabolism, stilbenoid and
gingerol biosynthesis, flavonoid biosynthesis, flavone and
flavanol biosynthesis, tryptophan metabolism, phenylpropanoid
biosynthesis, aromatic amino acid biosynthesis, riboflavin-,

and tyrosine metabolism. Furthermore, the topological
characteristics of the phenylpropanoid—and flavonoid pathways
are shown in Figure 5, illustrating that the two pathways are
structurally highly interconnected, with some overlap as also
shown in the topological graph-pathways generated from
MetPA.

To complement these results, a biochemical and empirical
network displaying metabolic relationship patterns between
metabolites (indicated by OPLS-DA as signatory biomarkers)
were performed. Figure 6 illustrates how the metabolites are
connected based on biochemical relationships or structural
similarity. The graphic representation and computed network
parameters (e.g., clustering coefficient of 0.695; network density
of 0.573) revealed a high interconnectivity of the OPLS-DA
selected metabolites.

Expression Analyses of Selected
Defense-Related Genes in Sorghum

bicolor
To enrich the metabolomic results with transcriptome insights,
a phytoalexin-related gene (F3′H) and some defense-related
genes (PAL and PPO, and PR-proteins PR3 and PR10) were
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FIGURE 3 | OPLS-DA modeling and variable/feature selection (data from NS 5511/ BTT cultivar samples). (A) A typical receiver operator characteristic (ROC) plot for

the OPLS-DA model (ESI negative data) separating “control vs. infected plants” at 7 d.p.i. (1 + 1 + 0 components, R2X = 0.611, Q2 = 0.994, CV-ANOVA p-value =

2.4 × 10−14). The ROC plot is a graphical summary of the performance of a binary classifier. A model with perfect discrimination has a ROC curve with 100%

sensitivity and 100% specificity, as it is the case with this OPLS-DA model. (B) An OPLS-DA loadings S-plot for the same model in (A); variables situated in the

extreme end of the S-plot are statistically relevant and represent prime candidates as discriminating variables/features. (C) A variable importance for the projection

(VIP) plot for the same model; pointing mathematically to the importance of each variable (feature) in contributing to group separation in the OPLS-DA model. (D) A

typical variable trend plot (of the selected variable in VIP and S-plots), displaying the changes of the selected variable across the samples. C = control; and T =

treated samples (7 d.p.i.). The variable trend plot show that the selected feature significantly discriminates the treated from the control samples.

selected and analyzed for expression levels in response to
C. sublineolum infection. The general observation from
these results points to time- and cultivar-related expression
profiles; and all genes showed significant expression levels
at different time intervals after pathogen inoculation
(Figures 7, 8).

DISCUSSION

Evaluation of Anthracnose Symptoms
Development—Symptomatology
The phenotypic observations can be interpreted as BTT
exhibiting a stronger defense response than SWT, with
hypersensitive response-like lesions and purple color formation
around the infected tissue. In contrast, the MHL cultivar
exhibited little or no resistance against C. sublineolum. As
mentioned, anthracnose development and severity in sorghum
vary depending on the interaction between C. sublineolum

(variation in virulence within the pathogen population), the
genetics-based potential of the host plant to ward off infection,
as well as environmental conditions (Tesso et al., 2012).
Considering that in this study the sorghum cultivars were
infected with a genetically uniform C. sublineolum isolate, in a
controlled environment, the symptomatic differences thus reflect
cultivar-related responses to the fungal infection. Although the
plant defense responses triggered upon fungal infection are
broadly similar across cultivars, the kinetics of these biochemical
and cellular events and the relative abundance and timing may
vary among cultivars (Liu et al., 2010; Tesso et al., 2012).
Furthermore, such observation points to the inherent complexity
of multi-layered plant innate immunity, of which omics-based
studies have barely scratched the surface. Hence, characterizing
metabolic phenotypes related to the sorghum defense responses
to C. sublineolum infection would provide more insights
into cellular pathways linked to underlying biochemical and
molecular mechanisms operative in this specific plant-pathogen
interaction.
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FIGURE 4 | Summary of pathway analysis with MetPA: Representation of all

MetPA-computed metabolic pathways displayed according to their

significance or pathway impact. The graph, presents a view of all the matched

pathways arranged by p-values (pathway enrichment analysis) on the y-axis,

and the pathway impact values (pathway topology analysis) on the x-axis. The

node color (beige to red) is based on the node’s p-value and the node radius is

defined by the pathway impact values. The latter is the cumulative percentage

from the matched metabolite nodes, and the maximum importance of each

pathway is 1. Thus, the graph indicates pathways with high impact:

phenylalanine metabolism, phenylpropanoid-, flavonoid-, flavone- and

flavonol-biosynthesis, to be highly significant metabolic pathways that are

involved in the sorghum response to C. sublineolum infection.

Defense-Related Metabolic
Reprogramming in Sorghum bicolor
For biochemical interpretation of the post-infection metabolic
reprogramming in sorghum plants, as infographically
described by the chemometric models, the statistically selected
biomarkers/metabolites (Table 1) were further explained in the
global metabolic interrelationships. Thus, metabolic pathway
mapping and correlation network analyses were performed
to elucidate the most relevant pathways and global dynamic
metabolic networks involved in sorghum’s responses to C.
sublineolum infection. Both approaches exploited the relational
properties present in the generated metabolomic data. Metabolic
pathway analysis (or mapping) uses prior biological knowledge
to map and analyse metabolites in an integrative manner,
inferring significant pathways related to the study (Barupal et al.,
2018; Rosato et al., 2018). On the other hand, metabolic network
analysis methodology uses the high degree of correlation
(biochemical and/or structural) existing in the generated
metabolomic data to construct networks that characterize the
complex relationship in measured metabolites (Toubiana et al.,
2013; Grapov et al., 2015; Rosato et al., 2018).

Based on the chemometrically extractedmetabolites (Table 1),
pathway analysis with MetPA revealed that nine significant

metabolic pathways out of a total of 24 pathways (impact
score >0.10) were uniquely altered during the sorghum: C.
sublineolum interactions. These most significant pathways
include phenylalanine metabolism, flavonoid biosynthesis,
phenylpropanoid biosynthesis, tryptophan metabolism, and
riboflavin metabolism, among others (Figure 4 and Table 2).
These results suggest that sorghum responses to C. sublineolum
involves highly complex cellular reprogramming characterized
by altered metabolism spanning a number of metabolic
pathways; particularly the 9 significant pathways indicated in
Table 2 and Figure 4, with phenylpropanoid and flavonoid
biosynthesis pathways showing the highest hits. The constituents
of these two metabolic pathways are the most widely occurring
secondary metabolites found in the plant kingdom, exhibiting
a broad range of biological functions including development,
protection against abiotic and biotic stresses, modulation of
essential physiological, and biochemical processes such as signal
transduction, and transcriptional regulation (Cheynier et al.,
2013; Petrussa et al., 2013).

Structurally, metabolites of phenylpropanoid and flavonoid
pathways are phenolic compounds comprising an aromatic
ring, with one or more hydroxyl groups, and include simple
phenolic molecules to highly polymerised and conjugated
compounds (Quideau et al., 2011; Petrussa et al., 2013).
The two pathways are thus structurally highly interconnected,
with some overlap as also shown in the topological graph-
pathways generated from MetPA (Figure 5). Both pathways start
with the conversion of phenylalanine to p-coumaroyl-CoA by
phenylalanine ammonia-lyase (PAL), cinnamate-4-hydroxylase
(C4H) and 4-coumaroyl:CoA-ligase (4CL) (Petrussa et al., 2013).
The differentiation of the pathways rises with the formation
of basic ring systems, with flavonoids showing a common
three ring chemical structure (C6-C3-C6). The wide diversity of
both phenylpropanoids and flavonoids is then brought about
by efficient decoration, modification, and amplification of core
structures by a set of enzymes that are spatially and temporally
coordinated and highly regulated (Quideau et al., 2011; Petrussa
et al., 2013). The widespread presence of the phenolic compounds
(both from phenylpropanoid and flavonoid pathways) at cellular,
tissue and organ level is a clear indication of the multiple
biological—and biochemical functions in plants Quideau et al.,
2011; Petrussa et al., 2013) and sorghum is found to contain
an array of these phenolic compounds (Althwab et al., 2015;
Kang et al., 2016). Studies have shown that these phenolics
play crucial roles in plant-fungal interactions as protectants:
either as pre-formed antifungal compounds (phytoanticipins)
or induced antifungal molecules (phytoalexins; Lattanzio et al.,
2006). As presented in Figure 5, the topological characteristics
of phenylpropanoid and flavonoid pathways display some of the
phenolic compounds (in red) that exhibited dynamic changes,
also providing some insights into the relational properties.

Thus, differential metabolite changes (Table 1 and
Supplementary Figures S8, 9) observed in this study, evidently
indicate that following the perception of C. sublineolum
invasion, sorghum launched a complex arsenal of chemical
defenses. These involved changes in phytohormone levels, indole
compounds and modulation and activation of the pre-existing
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TABLE 2 | Significant metabolic pathways activated in sorghum responding to C. sublineolum infection, inferred from Metabolomics Pathway Analysis (MetPA).

No Pathway Name Total Expected Hits Impact

1 Phenylalanine metabolism 8 0.41 3 0.67

2 Stilbenoid, diarylheptanoid, and gingerol biosynthesis 10 0.51 4 0.50

3 Flavonoid biosynthesis 43 2.20 10 0.46

4 Flavone and flavonol biosynthesis 9 0.46 4 0.44

5 Tryptophan metabolism 27 1.38 4 0.34

6 Phenylpropanoid biosynthesis 45 2.31 15 0.30

7 Phenylalanine, tyrosine, and tryptophan biosynthesis 21 1.08 6 0.24

8 Riboflavin metabolism 10 0.51 1 0.20

9 Tyrosine metabolism 18 0.92 2 0.18

10 Glutathione metabolism 26 1.33 1 0.05

11 Citrate cycle (TCA cycle) 20 1.02 1 0.03

12 Carotenoid biosynthesis 37 1.90 2 0.01

13 Alanine, aspartate, and glutamate metabolism 22 1.13 1 0.01

14 Diterpenoid biosynthesis 26 1.33 1 0.01

15 Isoquinoline alkaloid biosynthesis 6 0.31 1 0.00

16 Indole alkaloid biosynthesis 7 0.36 1 0.00

17 Ubiquinone and other terpenoid-quinone biosynthesis 23 1.18 2 0.00

18 Tropane, piperidine, and pyridine alkaloid biosynthesis 8 0.41 1 0.00

19 Nitrogen metabolism 15 0.77 1 0.00

20 Alpha-Linolenic acid metabolism 23 1.18 1 0.00

21 Glycine, serine, and threonine metabolism 30 1.54 1 0.00

22 Arginine and proline metabolism 38 1.95 1 0.00

23 Aminoacyl-tRNA biosynthesis 67 3.43 2 0.00

antifungal (phenolic) metabolites, as well as de novo biosynthesis
and translocation of (flavonoid) phytoalexins. The metabolic
reprogramming was cultivar dependent and was typically
exemplified by the identification of quantitative changes in
jasmonic acid (JA)- and salicylic acid (SA) conjugates, abscisic
acid (ABA) and in the constitutive metabolites such as naringin,
quercetin, and its conjugates (e.g., quercetin 3-O-rhamnoside),
kaempferol di-glucoside and coumarate and sinapoyl conjugates,
among others (Figure 5, Table 1, Supplementary Figures S8,
9). The phytohormones coordinate multiple physiological and
biochemical processed in plants, such as growth, development
and responses to abiotic and biotic stresses. The intricate web
of crosstalk between various plant hormones, either through
synergistic or antagonistic interactions, fine-tunes the regulation
of plant immune responses, and is linked to biotrophic- or
necrotrophic pathogen lifestyles (Shigenaga and Argueso, 2016).
The occurrence of and cultivar-related changes in JA, SA, and
ABA in response to infection by hemibiotrophic C. sublineolum,
point to a multicomponent sorghum defense response (Table 1,
Supplementary Figure S8).

In previous studies of different phytopathosystems, some of
the phenolic metabolites, found to differentially accumulated
in this study, have been reported to be involved in defense
mechanisms: naringin has been documented to show antifungal
activity, acting as a defense barrier. Moreover, quercetin -
, naringenin -, and kaempferol conjugates have been shown
to exhibit biological activity against fungal pathogens and a

significant inhibition of spore germination (Lattanzio et al.,
2006; Cheynier et al., 2013). If the levels and types of pre-
existing antifungal phenolics are not enough to effectively
limit the infection process, plant cells would respond by
altering the pool of these phenolics, by increasing the levels
or structurally modifying these phenolics to biochemically
activate the compounds. This alteration in phenolics metabolism
provides adequate substrates to polyphenol oxidase-catalyzed
reactions that produce an environment unfavorable to fungal
pathogenicity (Dicko et al., 2005; Lattanzio et al., 2006; Constabel
and Barbehenn, 2008). The responses of sorghum to C.
sublineolum infection by altering the phenolic matrix (as shown
in this study—Figure 5, Tables 1, 2, Supplementary Figure S9)
thus demonstrates the onset of active defense mechanisms
by sorghum to stop the fungal invasion. This correlates to
previous studies that observed deposition of phenolics in
sorghum leaves and stalks of both resistant and susceptible
varieties post C. sublineolum infection (Dicko et al., 2005;
Anjum et al., 2013). Furthermore, the quantitative assessment
of these phenolics indicates cultivar-dependent responses:
overall, the NS5511 (bitter, BTT) cultivar had higher levels of
phenolics compared to other cultivars, whereas the Mhlope
(sweet white, MHL) cultivar showed low levels of these
defense-related metabolites (Supplementary Figure S9). This
correlates to the symptomatology observations: theMHL cultivar
appeared to be severely affected by the C. sublineolum infection
(Supplementary Figure S4).
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FIGURE 5 | The topological characteristics of phenylpropanoid and flavonoid pathways. Graphs were generated from Metabolomics Pathway Analysis using MetPA.

(A) Phenylpropanoid pathway map displaying some of the OPLS-DA selected metabolites, altered in response to C. sublineolum infection. (B) Flavonoid pathway map

showing OPLS-DA selected metabolites altered during sorghum responses to C. sublineolum infection. (*) indicate overlapping points where metabolic pathways

interconnect. Due to the limitation of the MetPA tool (considering the database used and search algorithm) not all metabolites that were chemometrically extracted

(Table 2) could be mapped in the constructed pathway graphs.

In addition to the other observed changes in the flavonoid
pathways, the de novo biosynthesis of 3-deoxyanthocyanidin
phytoalexins, apigeninidin, and luteolinidin, together with
the related flavonoids such as apigenin, apigenin conjugates,
luteolin and luteolin di-glucoside (Figures 5, 6; Table 1,
Supplementary Figure S9) were observed. As infographically
captured by the unsupervised color-coded-PCA scores plot
(Figure 7A), for instance, the presence and abundance
(expressed as integrated peak area in the data matrix X) of
the apigeninidin molecular feature started appearing from 3
d.p.i. with a clear increase over time. This evidently showed that
in non-infected sorghum plants (at 0–9 d) there was no detectable
presence of apigeninidin, and only infected plants were seen
to have synthesized this phytoalexin, with increasing levels
over time. The accumulation of these antifungal phytoalexins—
apigeninidin and luteolinidin—was further confirmed by gene
expression analysis of flavonoid 3′-hydroxylase (F3′H), which
showed a time-related increasing expression profile (Figure 7B).
The F3′H gene encodes one of the key enzymes responsible for
the biosynthesis of these 3-deoxyanthocyanidin phytoalexins,
unique antifungal compounds synthesized by sorghum (and
related plants such as sugar cane) after fungal infection. The

F3’H enzyme is responsible for the multi-step biochemical
formation of 3-hydroxyantocyanidins from naringenin (Boddu
et al., 2004; Liu et al., 2010; Poloni and Schirawski, 2014).
Flavonoid hydroxylases are microsomal cytochrome P450
enzymes responsible for hydroxylation patterns of flavonoids.
The expression of F3’H gene is induced by fungal infection and
responsible for the biosynthesis of 3-hydroxylated flavonoids,
as shown in Supplementary Figures S1, S2 (Boddu et al.,
2004; Petrussa et al., 2013). Thus, the expression of the F3’H
gene in sorghum responding to C. sublineolum supports
and confirms the metabolic results, that is the presence and
accumulation of these 3-deoxyanthocyanidin phytoalexins.
Previous studies have also indicated that sorghum responses to
fungal infection are characterized by the accumulation of an
array of phenolic compounds, with major components being
the phytoalexins—apigeninidin and luteolinidin—and their
conjugates, arabinosyl-5-O-apigeninidin, 7-methylapigeninidin,
and 5-methoxyluterolinidin (Liu et al., 2010; Poloni and
Schirawski, 2014). These experiment-based observations
correlate with our results regarding the biosynthesis of
phytoalexins apigeninidin, luteolinidin, and other related
flavonoids (Figure 7, Table 1, Supplementary Figure S9).
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FIGURE 6 | Metabolic network analysis: A biochemical and empirical network displaying metabolic relationship patterns between metabolites indicated by OPLS-DA

as signatory biomarkers. Metabolites are connected based on biochemical relationships (red, KEGG RPAIRS) or structural similarity (blue); as also indicated on the

network descriptive legend (left-side). Metabolite color represents relative change (red: increase; green: decrease) in infected plants compared to non-infected

sorghum plants. The different shapes indicate the metabolites’ molecular classes or biochemical domains. The graph was visualized with Cytoscape version 3.5.0.

Applying a Tanimoto coefficient ≥0.7 for structural similarity, the resultant graphic representation and computed network parameters (e.g., clustering coefficient of

0.695; network density of 0.573) revealed a high interconnectivity of the OPLS-DA selected metabolites.

Functionally, these unique class of flavonoid phytoalexins are
initially synthesized in the cytoplasm of epidermal sorghum
cells following fungal infection, and accumulate in inclusion
bodies. These are translocated toward the site of fungal invasion,
where they are then released in active form and kill both the
fungus and cells that synthesized them (Poloni and Schirawski,
2014; Meyer et al., 2016). The kinetics and intensity of this
response appear to be cultivar-dependent, as reflected by the
results in Figure 7C (and Supplementary Figure S9), showing
comparative cultivar-related differences in the fold change of
apigeninidin and luteolinidin, respectively.

The observations from this study and supported by the
literature, point clearly to a complexly coordinated and
highly regulated dynamic (and cultivar-dependent) metabolic
reprogramming in sorghum responding to C. sublineolum
infection. The functionally altered sorghum metabolism
involved a range of different metabolic pathways (Table 2),
which exhibit a complex interconnection as illustrated by the
phenylpropanoid and flavonoid pathways (Figure 5). Pathway
enrichment and overrepresentation analyses with the MetPA
tool thus facilitated biochemical interpretation by integrating
biological domain knowledge (i.e., biochemical pathways) with
experimental results, revealing underlying relevant metabolic
pathways (Figure 4 and Table 2). However, these pathway-based

methodologies rely on predefined pathways, and fail for instance
to capture linkage information of metabolites belonging to
multiple pathways. This may not accurately represent the
complexity of biological systems, subsequently providing limited
insights into underlying mechanisms in the crowded cellular
milieu, and spatial and temporal regulation of organismal
reprogramming (Kruger and Ratcliffe, 2012; Toubiana et al.,
2013; Barupal et al., 2018).

Hence, to gain more insights into possible global biochemical
and molecular frameworks that choreograph the response
of sorghum to C. sublineolum infection, a network analysis
approach was adopted. This methodology uses the high degree of
correlation (biochemical and empirical, in this study) existing in
the experimentally generated metabolomic results to construct
networks that characterize the complex relationship in measured
metabolites (Kruger and Ratcliffe, 2012; Toubiana et al.,
2013). Unlike pathway analysis, correlation-based approaches
build metabolite networks according to relational patterns
observed in the experimental data, and help identify altered
graph neighborhoods, which do not depend on any predefined
biochemical pathways. Such mathematically constructed
cartography allows the characterization of the molecular and
cellular states induced by pathway interconnections under
given experimental conditions. In the computed network, each
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FIGURE 7 | De novo biosynthesis of 3-deoxyanthocyanidin phytoalexins: (A) A color-coded PCA scores plot showing occurrence and increasing level of apigeninidin

in infected sorghum plants. (B) Time-course analysis of relative expression of the F3′H gene (one of the key enzymes in the biosynthesis of 3-deoxyanthocyanidins) in

infected sorghum plants (* and ** indicate significance at p < 0.05 and p < 0.001, respectively). (C) Relative fold changes of apigeninidin and luteolinidin, respectively,

in the three sorghum cultivars at 7 d.p.i.

metabolite is represented by a node, and in contrast to pathway
analysis, the links between nodes correspond to the level of
mathematical correlation between each pair of metabolites
(Kruger and Ratcliffe, 2012; Toubiana et al., 2013; Rosato et al.,
2018). A biochemical/chemical similarity network analysis was
accordingly applied to calculate and display relationship patterns
between precursor and product metabolite reactant pairs, and
molecules sharing a high degree of structural similarity, with
Tanimoto coefficient ≥0.7. The resultant graphic representation
and computed network parameters (e.g., clustering coefficient of
0.695; network density of 0.573) revealed a high interconnectivity
of the OPLS-DA selected metabolites (Figure 6). These were
statistically shown to explain class separation (e.g., infected
vs. non-infected), thus describing the metabolic changes in
sorghum revealed by the PCA and HCA models (Figures 2 and
Supplementary Figure S6). Phenylpropanoids and flavonoids
appear to form a central hub in the topology of the network, also
maintaining high interactions with other metabolite categories,
such as indolic or amino acid related metabolites (Figure 6).

Furthermore, the network analysis showed that separate
from the major cluster, there were other small clusters that
were formed: (i) luteolinidin, indole, indole-3-acetalamide, and
hesperidin, (ii) kaempferol-diglucoside and p-coumaroylquinate,
and (iii) jasmonate and jasmonic acid methyl ester (Figure 6).
This differential clustering may possibly suggest different

regulation of these metabolites in the concerted metabolic
reprogramming of sorghum defense responses to the fungal
infection. The computed high interconnectivity of nodes
in the network demonstrates highly correlated biochemical
and structural metabolic relationships that coordinate the
altered sorghum metabolism in sorghum: C. sublineolum
interactions. The significant metabolic pathways underlying
sorghum responses to the fungal infection as revealed by
pathway analysis with MetPA (Figures 4, 5 and Table 2),
are highly interconnected, as demonstrated by the network
topology (Figure 6). This points to regulatory hubs in the
biochemical network (different clusters in the network), because
the correlation matrix of metabolite pairs is a fingerprint
of the enzymatic and regulatory reaction networks (Kruger
and Ratcliffe, 2012; Toubiana et al., 2013). Furthermore, the
results from both pathway and network analyses emphasize the
centrality of the phenylpropanoid and flavonoid metabolic
pathways in the sorghum responses. Although more
sophisticated approaches (e.g., Gaussian graphical models
and Bayesian networks; Kim et al., 2011; Kayano et al., 2013) may
be needed to decouple direct from indirect variable associations,
thus helping the identification of conditionally independent
pairwise metabolic relationships, the methodology used in this
study comprehensively captured essential features of sorghum
defensive metabolism against C. sublineolum infection.
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FIGURE 8 | Gene expression analyses—relative expression of selected marker genes. Time-course studies of relative expression of PAL, PPO, PR3, and PR10 genes

in sorghum plants infected by C. sublineolum. M = Mhlophe/MHL, B = NS 5511/BTT, and S = NS 5655/SWT cultivars. Bars indicate the mean values and error bars

indicate the standard deviation. Results were analyzed using ANOVA, with confidence level of 95% and significance level at p = 0.05.

Expression Analyses of Selected
Defense-Related Genes in Sorghum

bicolor
The observed expression of these genes evidently indicates a

multiphase defense state in the plants over time. Furthermore,

these gene expression results clearly corroborate the information

from metabolomics analyses and chemometric models that

sorghum responses to C. sublineolum infection is time- and

cultivar-related. The significant metabolic pathways underlying

the response to the fungal infection were found to be the same
in all the three cultivars investigated in this study (Figure 4
and Tables 1, 2). However, it is apparent that the kinetics,
magnitude, and timing of the responses vary with cultivars:
different levels of significant metabolites (expressed as fold
change—Table 1) and differential levels and kinetics of gene
expression (Figure 8).

Both PAL and PPO are essential enzymes in phenylpropanoid

and flavonoid metabolism, leading to the biosynthesis of

structural barrier components such as lignin, formation of

antimicrobial phenolics such as phytoanticipins and de novo
biosynthesis of phytoalexins in plant defense events (Mengiste,
2012; Anjum et al., 2013). In the case of the BTT (B)
cultivar, the PAL gene expression exhibited a bi-phasic pattern,

with an initial response at days 3–5, decreasing at day 7,

followed by a strong increase at day 9. Similar bi-phasic
responses have been reported in plants exhibiting a high
level of resistance to pathogen attack (Ding et al., 2011)
and in this case might be related to the biotrophic vs.
necrotrophic stages of the infection. In the case of the SWT
(S) cultivar no similar early PAL response was observed.
For both cultivars, the highest expression of the PAL gene
was observed from 7 d.p.i. onwards, corresponding to the
necrotrophic stage of infection that is accompanied with cell
destruction and eventual death. In the case of MHL (M),
PAL expression levels were very low compared to other two
cultivars (Figure 8), suggesting that this cultivar is unable to
launch an effective defense response which correlates with
the phenotypic observations as described earlier. A clear
expression of PPO was also observed, with highest levels
at 1 d.p.i. in the SWT cultivar, 5 d.p.i. in BTT, and 9
d.p.i. in MHL (Figure 8). Here, no obvious correlation with
the type of phytopathogenic interaction could be deduced.
However, the substantial expression of both PAL and PPO
genes in sorghum plants responding to C. sublineolum clearly
correlates and supports the metabolic alterations elucidated by
metabolomic analyses, particularly changes and accumulation
of phenolic compounds, and including de novo biosynthesis of
the phytoalexins: apigeninidin and luteolinidin (Figures 4, 5,
Tables 1, 2). The general relative low levels of PAL and PPO (up
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to 5 d.p.i) expression in the MHL cultivar (Figure 8) corresponds
to the low level of observed defense-related phenolics (Table 1,
Figure 7). Some previous studies have also reported significant
expression levels of both PPO and PAL in sorghum plants
responding to fungal infection, with substantial accumulation
and channeling of phenolic compounds to combat the fungal
proliferation and colonization (Basavaraju et al., 2009; Anjum
et al., 2013).

The two pathogenesis-related genes (PR3 and PR10) were
substantially expressed in all cultivars after the pathogen
inoculation, with time- and cultivar-dependent expression
profiles: early increased expression levels of PR3 in all cultivars
followed by a decrease over the time-course of infection
(expect in MHL-cultivar); a Gaussian-type expression profile
for PR10 in both BTT (B) and SWT (S) cultivars, with
BTT showing the highest expression levels of PR10 (at 3–
5 d.p.i.) compared to other cultivars, which then decreased
(Figure 8). Generally, plants are known to express chitinases
(PR3) soon after infection for endolytical hydrolysis of microbial
cell walls (Heil, 2002). Studies have shown that in plant:
hemibiotrophic pathogen interactions, early defensemechanisms
are characterized by a transient induction of chitinase (PR3)
genes with the onset of the biotrophic interaction, which
are suppressed with the progression of the infection into the
necrotrophic phase (Münch et al., 2008; Vargas et al., 2012).
This evidently correlates to the expression profiles of PR3 in
this study—an early significant expression of the gene followed
by a remarkable decrease at 5 d.p.i. (Figure 8), which points
to an asymptomatic interaction phase. However, the MHL
cultivar showed a different profile with a second increase of
the PR3 expression, which could imply a multiphase response
or simply other underlying cellular processes. On the other
hand, PR10 is a member of a group of intracellular defense-
related proteins with ribonuclease-like activity. The PR-10
group is a multigene family having cis regulatory elements
responsive to various signals like ABA, SA and JA (Sudisha
et al., 2012). In general, the PR-10 gene family shows non-
specific induction patterns to pathogen and pathogen-derived
molecules. These defense-related proteins are widely spread
and conserved within the plant kingdom, and are induced
following pathogen attack in a wide variety of plant species
(Mcgee et al., 2001). Furthermore, the PR10s also exhibit similar
amino acid sequence to food and pollen allergens, which point
to diverse biological functions (Mcgee et al., 2001; Edreva,
2005). Activation and accumulation of PR10 gene transcripts
have previously also been observed in sorghum infected by C.
sublineolum, exhibiting increasing expression levels over time
(Anjum et al., 2013). Such gradual increase of PR10 expression
levels corresponds to the upregulation patterns observed in this
study (Figure 8).

CONCLUSION AND PERSPECTIVES

A systems biology understanding of biochemical and molecular
mechanisms which determine the plant immune responses is
an essential condition route in the search for new strategies

to aid plants to defend themselves against ever-evolving
pathogens. Sorghum, one of the most important cereal
crops, is greatly threatened by biotic stresses, particularly the
hemibiotrophic fungus, C. sublineolum. Recent studies have
provided insights into key features characterizing sorghum
defense responses to Colletotrichum infection, ranging from
identification of specific defense-related genes (PAL, PRs,
F3H, etc.), to pinpointing induced resistance events such as
production of lignin and accumulation of phenolics. However,
a comprehensive description of biochemical and molecular
mechanisms that functionally determine and coordinate the
events that comprise sorghum’s multi-layered immune response
is still limited.

The present study, using a LC-MS-untargeted metabolomics
approach supported with gene expression analyses, was
aimed at obtaining a comprehensive understanding of
the defensive metabolism of sorghum in response to C.
sublineolum inoculation. Multivariate data analysis identified 72
discriminatory/signatory biomarkers of statistical importance.
Moreover, the study revealed 23 potential metabolic pathways,
with nine being the most significant pathways (phenylalanine
metabolism, stilbenoid and gingerol biosynthesis, flavonoid
biosynthesis, tryptophan metabolism, riboflavin- and tyrosine
metabolism, and phenylpropanoid biosynthesis), and collectively
defining themetabolic state of the induced resistance in sorghum.
Both metabolic pathway and correlation-based network analyses
evidently demonstrated the centrality of the phenylpropanoid
and flavonoid pathways in this altered metabolism, involving
the modulation and mobilization of phenolic compounds and
de novo biosynthesis of 3-deoxyanthocyanidin phytoalexins
(apigeninidin, luteolinidin), apigenin, luteolin as well as some
of the associated conjugates. Furthermore, network analysis
revealed some qualitative characteristics of the induced defense
response: (i) a high interconnectivity between perturbed
metabolites of pathways spanning the defensive metabolism, and
(ii) metabolic hubs displaying tight biochemical and structural
relationships. These metabolic characteristics suggested
coordinated regulatory mechanisms that could be investigated
further by future studies.
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