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Abstract Bacterial leaf blight (BLB), caused by Xan-

thomonas oryzae pv. oryzae (Xoo), gives rise to devastating

crop losses in rice. Disease resistant rice cultivars are the

most economical way to combat the disease. The TP309

cultivar is susceptible to infection by Xoo strain PXO99. A

transgenic variety, TP309_Xa21, expresses the pattern

recognition receptor Xa21, and is resistant. PXO994rax-

ST, a strain lacking the raxST gene, is able to overcome

Xa21-mediated immunity. We used a single extraction

solvent to demonstrate comprehensive metabolomics and

transcriptomics profiling under sample limited conditions,

and analyze the molecular responses of two rice lines

challenged with either PXO99 or PXO994raxST. LC–TOF

raw data file filtering resulted in better within group

reproducibility of replicate samples for statistical analyses.

Accurate mass match compound identification with

molecular formula generation (MFG) ranking of 355

masses was achieved with the METLIN database. GC–TOF

analysis yielded an additional 441 compounds after Bin-

Base database processing, of which 154 were structurally

identified by retention index/MS library matching. Multi-

variate statistics revealed that the susceptible and resistant

genotypes possess distinct profiles. Although few mRNA

and metabolite differences were detected in PXO99 chal-

lenged TP309 compared to mock, many differential chan-

ges occurred in the Xa21-mediated response to PXO99 and

PXO994raxST. Acetophenone, xanthophylls, fatty acids,

alkaloids, glutathione, carbohydrate and lipid biosynthetic

pathways were affected. Significant transcriptional induc-

tion of several pathogenesis related genes in Xa21 chal-

lenged strains, as well as differential changes to GAD,

PAL, ICL1 and Glutathione-S-transferase transcripts indi-

cated limited correlation with metabolite changes under

single time point global profiling conditions.
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1 Introduction

There’s a growing interest in studies that attempt to link gene

expression with metabolite profiling (Brosche et al. 2005;

Kaplan et al. 2007; Jumtee et al. 2008; Vijayendran et al.

2008). Many plant functional genomics studies have com-

bined the generation of transgenic and mutant plants with the

parallel analysis of mRNA expression, protein levels and

plant histology studies (Fiehn et al. 2000; Finkelstein et al.

2002; Oliver et al. 2002; Henikoff and Comai 2003; Farrokhi

et al. 2006; Steinberg et al. 2008). Extensive literature also

exists for metabolic perturbation of host/plant interactions

through parallel analysis of metabolomics experiments and

microarray analysis (Urbanczyk-Wochniak et al. 2003;
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Dharmadi and Gonzalez 2004; Hirai et al. 2004; Verhoeckx

et al. 2004; Matsuzaki et al. 2005; Frey et al. 2007; Cho et al.

2008; Hoefgen and Nikiforova 2008; Nam et al. 2009; Tan

et al. 2009; Yang et al. 2009). Thus, workflows to integrate

metabolic and genomic analysis will contribute to a com-

prehensive biological understanding for observed pheno-

typic differences between organisms that gene expression

studies alone would otherwise be unable to achieve.

Rice provides food for over half the world’s human

population, and the availability of its genome sequence

(2005) is important for research and development of dis-

ease resistant cultivars. Bacterial leaf blight (BLB) is

responsible for major rice production losses in irrigated and

rain-fed lowland ecosystems. The use of resistant rice

varieties continues to be the most economical and effective

way to combat this disease. Cell surface pattern recognition

receptors (PRRs) are key components of the innate immune

response in animals and plants. The rice PRR, XA21 (Song

et al. 1995), recognizes the pathogen associated molecular

pattern (PAMP), Ax21 (Activator of XA21-mediated

immunity) that is highly conserved in all tested species of

the genus Xanthomonas as well as in Xylella species (Lee

et al. 2006; Lee et al. 2009). Recently, mechanisms for

XA21-mediated resistance have been elucidated (Park et al.

2008).

We used metabolomics and transcriptomics profiling

workflows for discovery analysis to contrast the responses

of two rice varieties to Xoo: (1) TP309, the parent rice

genotype, which is susceptible to infection by the Philip-

pine bacterial Xoo strain PXO99, expressing Ax21 and (2)

TP309_Xa21, a transgenic variety of rice harboring the

Xa21 PRR, which is resistant to Xoo strain PXO99. Pro-

duction of Ax21 requires the presence of eight rax

(required for activation of Xa21-mediated immunity) gene

family members (Shen et al. 2002; Burdman et al. 2004; da

Silva et al. 2004), including raxST. Strains carrying

mutations in any of the known rax genes are no longer

recognized by XA21-containing rice lines resulting in

lesion development on XA21-lines. For example, PXO99

strains carrying a knockout in the raxST gene

(PXO994raxST) cause long lesions on TP309_Xa21 lines.

In contrast, TP309 is susceptible to both PXO99 and

PXO994raxST strains.

We developed a robust, all-in-one rice leaf sample

extraction method that uses a single organic solvent

mixture of water/acetonitrile/isopropanol for LC/MS, GC/

MS and microarray analyses. Importantly, contaminating

waxes that can potentially foul the MS source were not

extracted. Our MS data analysis workflow included post-

processing data filtering to yield higher quality results

that was required to shed further insights into metabo-

lite and transcript perturbations of this plant/parasite

interaction.

2 Materials and methods

2.1 Study design

Seven separate groups (or conditions) of rice were exam-

ined (Table 1). For the TP309 rice line, three conditions

were tested: (1) PXO99 inoculated, (2) mock-treated, (3)

non-treated (NT). For the transgenic TP309_Xa21 rice

[TP309-106-17-3-37 (Song et al. 1995)], four conditions

were studied to compare the response of TP309_Xa21 rice

to bacterial inoculation to which it is resistant or suscep-

tible: (4) PXO99 inoculated, (5) mock- treated (6) non-

treated and (7) PXO994raxST inoculated. Biological

replicates (n = 6) for each of the experimental conditions

was evaluated, except for the non-treated groups where

n = 9. PXO99, carrying Ax21 activity and PXO994raxST

strain lacking Ax21 activity were inoculated onto leaves of

the rice lines TP309 and TP309_XA21 and analyzed for

their metabolomic profiles. Appropriate mock-treated

controls were also included. PXO99 and PXO994raxST

were grown for 72 h at 30�C on peptone sucrose agar.

Six-week-old rice plants (TP309 and TP309_Xa21) were

cut approximately 4 cm from the tip of fully expanded

leaves with scissors dipped in PXO99 or PXO994raxST

bacterial suspensions at either 1 9 109 cells per ml

(Kauffman et al. 1973) or just peptone sucrose agar (mock

treatment). After inoculation, plants were maintained in a

growth chamber and allowed to grow for 4 days.

2.2 Rice sample processing and metabolite extraction

The samples were processed according to Weckwerth et al.

(2004) with the following changes. Rice leaves were col-

lected under controlled conditions, flash frozen and stored at

-80�C. The cutting of reproducible amounts of frozen rice

leaf samples for metabolomics and gene expression analysis

is critically important. First because the solvent volume and

solvent ratios are optimized for samples in this weight range

and second because similar reproducible measurements for

all groups of samples allows inter-group comparisons of

data. 18 ± 2.2 mg segments of rice leaves were cut and

weighed. The rice leaves were placed in liquid nitrogen

Table 1 Biological study design classes with susceptibility to bac-

terial infection

TP309 rice TP309_Xa21 rice

No treatment (NT) No infection No infection

Mock treatment No infection No infection

PXO99 bacteria Susceptible No infection

PXO99_DraxST bacteria n.d. Susceptible

Non-transgenic TP309 is susceptible to both Xoo PXO99 strains, thus

treatment with PXO99_DraxST was not determined (n.d.)
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cooled, 2 ml Eppendorf tubes, each containing a 5 mm

stainless steel ball bearing from Retsch (Newtown, PA). The

tubes were transferred to MM301 Retsch mill adapter racks

that had also been pre-cooled in liquid nitrogen. Rice leaves

were ground in the homogenizer for 30 s at 25 Hz. Metab-

olites were extracted from membrane and cell wall compo-

nents in 1 ml of a single phase, 2:3:3 v/v/v solvent mixture of

water/acetonitrile/isopropanol, that had been pre-cooled at

-20�C in a Digital One RTE-7 refrigerated circulating bath

(Thermo Electron Corp., Newington, NH). This solvent

mixture minimizes the extraction of waxes that are detri-

mental to the analytical instrumentation and enables analysis

of metabolites by both LC–TOF and GC–TOF instruments.

After the samples were incubated at -20�C in the refriger-

ated circulating bath for 20 min, the tubes were centrifuged

to pellet mRNA and protein and were stored at -80�C for

subsequent mRNA processing. The liquid phase supernatant

extracts were divided equally and transferred under nitrogen

gas to autosampler vials (Agilent, Palo Alto, California,

USA) with Teflon/silicon septa, for LC–TOF or GC–TOF

analyses.

2.3 Total RNA extraction, RNA quality analysis,

amplification and labeling

Total RNA was extracted from the cell pellets using the

Agilent Plant RNA Isolation Mini Kit (Agilent Technolo-

gies, Santa Clara, CA). This phenol-free spin column

technique results in RNA with substantially reduced

genomic DNA (gDNA) contamination without the need

for DNase I treatment. Briefly, the pellet was extracted in

4 M guanidine hydrochloride, 25 mM Tris–HCl and

b-mercaptoethanol solution, spun through a pre-filtration

column and RNA was retained on a mini isolation column.

The RNA was washed, dried and eluted off the column in

10–50 ll of nuclease-free water.

The NanoDrop� ND-1000 Spectrophotometer was first

used to determine the concentration of purified RNA. The

Agilent 2100 Bioanalyzer was used with the RNA 6000

Nano LabChip� Kit (Agilent Technologies, Santa Clara,

CA), which uses fluorescent dyes to bind nucleic acids for

tracking the electrophoretic separation of total RNA. One

micro liter of each sample (25–500 ng/ll) was loaded per

well to assess ribosomal RNA quality by an accurate

reading of 5S, 18S and 28S peaks, along with any degra-

dation. The Low RNA Input Linear Amplification Kit

PLUS, Two-Color kit (Agilent Technologies, Santa Clara,

CA) generated fluorescent complimentary RNA (cRNA)

for use in hybridizing with oligonucleotide microarrays.

Briefly, for each sample, 500 ng of extracted Total RNA

was first mixed with two spike mixes from the Agilent

Two-Color RNA Spike-In Kit (Agilent Technologies,

Santa Clara, CA) according to manufacturer instructions.

Each mix contains 10 in vitro synthesized, polyadenylated

transcripts in predetermined ratios that in the subsequent

hybridization process specifically binds to control probes

on a microarray. The results are intended to provide

expected versus observed log ratios for monitoring

microarray hybridization linearity, sensitivity, and accu-

racy. After adding the two spike mixes, a primer containing

poly dT and a T7 polymerase promoter was added to the

mixture, and annealed to the poly A ? RNA. The first and

second strands of cDNA were synthesized by adding

reverse transcriptase to the mix. Next, T7 RNA polymerase

was added to synthesize cRNA from the double-stranded

cDNA, and simultaneously incorporated cyanine 3- or

cyanine 5-labeled CTP (Qiagen N.V., Venlo, Netherlands).

RNeasy mini spin columns were used to purify the

amplified cRNA samples. Fluorescently labeled cRNAs

were analyzed on a ND-1000 Spectrometer (NanoDrop-

Technologies, Rockland, DE) for determining yield and

specific activity. The yield for the rice RNA was in the

range expected for plant products, with an average specific

activity of cyanine 3- and cyanine 5-labeled cRNA targets

of 14.6 (±3.3) pmol dye/lg cRNA.

2.4 Microarray analysis

The Agilent Gene Expression Hybridization Kit (Agilent

Technologies, Santa Clara, CA) was used for hybridizing

fluorescently-labeled cRNA to the Agilent 22 K Rice oligo

microarrays according to the manufacturer instructions.

This 22,575 probe microarray contains 60-mer probes, with

broad gene coverage, representing an estimated 60% of the

rice genome (japonica race). The probes were designed

from the extensive cDNA library for rice, developed by Dr.

Shoshi Kikuchi of Japan’s National Institute of Agrobio-

logical Sciences (NIAS). Annotation for this microarray is

presented on the NIAS website at (http://cdna01.dna.

affrc.go.jp/cDNA/). The 1 9 300 glass slides were washed,

dried and scanned using an Agilent laser scanner according

to manufacturer instructions. Agilent Feature Extraction

software was used for automated processing of microarray

image files that included dye normalization using LOW-

ESS, filtering of poor, flagged pixels and determination of

feature intensities and ratios. The output files were imported

into GeneSpring-GX data analysis software, where the data

was normalized to the 50th percentile across the different

slides. The replicate dye-swapped samples were grouped

into one experiment and analyzed for statistically signifi-

cant differential genes. To find differentially expressed

genes between two different conditions, the gene lists were

further filtered using Volcano plots, which permitted the

visualization of the relationship between fold-change and

statistical significance (which takes both fold change and

P-value into consideration).
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2.5 GC–TOF mass spectrometry

A mixture of internal retention index (RI) markers was

prepared using fatty acid methyl esters of C8, C9, C10,

C12, C14, C16, C18, C20, C22, C24, C26, C28 and C30

linear chain length, dissolved in chloroform at a concen-

tration of 0.8 mg/ml (C8–C16) and 0.4 mg/ml (C18–C30).

1 ll of this RI mixture was added to the dried extracts.

10 ll of a solution of 20 mg/ml of 98% pure methoxy-

amine hydrochloride (Sigma, St.Louis, MO) in pyridine

(silylation grade, Pierce, Rockford, IL) was added and

shaken at 30�C for 90 min to protect aldehyde and ketone

groups. 90 ll of MSTFA.1%TMCS (1 ml bottles, Pierce,

Rockford, IL) was added for trimethylsilylation of acidic

protons and shaken at 37�C for 30 min. The reaction

mixture was transferred to a 2 ml clear glass autosampler

vial with microinsert (Agilent, Santa Clara, CA). A Gerstel

automatic liner exhange system was used in conjunction

with a Gerstel CIS cold injection system (Gerstel, Muehl-

heim, Germany). An Agilent 6890 gas chromatograph

(Santa Clara, CA) was controlled by the Leco ChromaTOF

software versus 2.32 (St. Joseph, MI). A 30 m long,

0.25 mm i.d. rtx5Sil-MS column with 0.25 lm 5% diphe-

nyl/95% dimethyl polysiloxane film and additional 10 m

integrated guard column was used (Restek, Bellefonte,

PA). Result *.txt files were exported to a data server with

absolute spectra intensities and further processed by a fil-

tering algorithm implemented in the metabolomics Bin-

Base database (Fiehn et al. 2005). Quantification was

reported as peak height using the unique ion as default,

unless a different quantification ion was manually set in the

BinBase administration software Bellerophon. A quantifi-

cation report table was produced for all database entries

that were positively detected in more than 50% of the

samples of a study design class as defined in the SetupX

database (Scholz 2007). A subsequent post-processing

module was employed to automatically replace missing

values from the *.cdf files using libraries obtained from the

open access mzmine software. Replaced values were

labeled as ‘low confidence’ by color coding.

Metabolites were unambiguously assigned by the Bin-

Base identifier numbers, using retention index and mass

spectrum as the two most important identification criteria.

Additional confidence criteria were given by mass spectral

metadata, using the combination of unique ions, apex ions,

peak purity and signal/noise ratios as given in data pre-

processing. All database entries in BinBase were matched

against the Fiehn mass spectral library of 1,200 authentic

metabolite spectra and the NIST05 commercial library

(Kind et al. 2009). BinBase entries were named manually

by both matching mass spectra and retention index and

PubChem numbers and KEGG identifiers were added. In

addition, all reported compounds (identified and unknown

metabolites) are reported by the quantification ion and the

full mass spectrum encoded as string. All raw and pro-

cessed data are downloadable at http://fiehnlab.ucdavis.

edu:8080/m1/main_public.jsp.

2.6 LC–TOF mass spectrometry

An Agilent 1100 LC equipped with a ZORBAX SB-Aq

column 2.1 9 150 mm, 3.5 lm was used to separate the

rice extracts. The LC parameters were as follows: auto-

sampler temperature, 4�C; injection volume, 2 ll; column

temperature, 20�C; and flow rate of 0.3 mL/min. The LC

solvent and time table were: a 2–98% linear gradient of

water/acetonitrile employed over 46 min followed by a

solvent hold until 54.9 min, at which time data collection

was stopped. 0.1% formic acid was used as a mobile phase

modifier. Mobile phase: A = 0.1% formic acid in water,

B = 0.1% formic acid in acetonitrile. Gradient: 2% B at

0 min., 98% B at 46 min., 98% B at 54.9 min., 2% B at

55 min. MS stop time: 54.9 min. LC stop time: 55 min.

Mass spectrometric analysis was performed on an Agi-

lent 6210 Time-of-Flight LC/MS equipped with an elec-

trospray (ESI) ion source. Nitrogen was used as the drying

gas at 35 psi. The ESI source used a separate nebulizer for

the continuous, low-level (10 ll/min) introduction of ref-

erence mass compounds: 121.050873, 922.009798 (posi-

tive ion mode) and 119.036320, 966.000725 (negative ion

mode). ESI spray voltage was 4,000 V in positive mode

and 3,500 V in negative ion mode and fragmentor at

170 V. Nitrogen was used as sheath gas at 30 psi. The

accurate-mass LC–TOF chromatograms were acquired and

deconvoluted into individual chemical peaks. The molec-

ular features were identified using the Molecular Feature

Extraction (MFE) algorithm in MassHunter
TM

software

(Agilent Technologies, Santa Clara, CA, USA). The

retention time/mass pairs generated by the MassHunter
TM

software were then exported for subsequent statistical

analysis.

2.7 Statistics

GeneSpring-MS 1.2 statistical analysis software was used

for retention time and mass abundance adjustments. The

multiple data sets were normalized to correct data for

retention time and response drift, and aligned before they

were compared. The workflow followed the following

steps: (1) Alignment and normalization of features across

all samples. (2) Data Transformation: measurements less

than 0.01 were set to 0.01; (3) Normalization: ‘‘Per Mass’’

normalized to the median, (4) Filtering: the six independent

biological replicate samples per group were analyzed as

one group after the ion intensity for each molecular ion was

averaged across the six biological replicates. The relative
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frequency of detection (number of samples a particular

feature is found in one or more groups) was varied and

compared. The highest quality features analyzed were

those that were only present in all six replicates, in at least

one or more groups.

The features were then analyzed by Volcano plots to

reveal both fold changes and statistically significant

(P \ 0.05) differential abundance profiles. The resulting

mass lists were then queried against the METLIN Personal

Metabolite database to find matches based on neutral mass,

using a 5 ppm window. This database currently contains

over 23,000 compounds, and includes links to KEGG

identifiers, CAS numbers, HMDB and LipidMaps. Because

retention time information was not used as an orthogonal

criterion for identification, a Molecular Formula Generator

(MFG) algorithm was used to calculate an independent best

fit empirical formula for each feature using the mass

spectral metadata: monoisotopic mass, isotope ratio and

abundance information. The MFG score helped in deter-

mining whether the calculated empirical formula agreed

with the formula for the compound in the database match.

Isomers and isobaric compound remained unresolved.

Statistical evaluation was performed using univariate

analyses, including the Student t-test for independent pairs

of groups, and one way ANOVA for multiple groups. The

effect of the treatment (example, mock-treated and PXO99-

infected) and rice lines (TP309 and TP309_Xa21) were

compared. Because PXO994raxST was an unpaired con-

dition that was only tested against the TP309_Xa21 line, it

was independently compared to mock-treatment in the

TP309_Xa21 line using a t-test. Values of P \ 0.05 were

considered statistically significant and the Benjamini and

Hochberg (Benjamini and Hochberg 1995) False Discovery

Rate of 5% was used for multiple testing correction. We

then investigated which of the mean(s) in the ANOVA

were different using the Tukey (Tukey 1949) multiple

comparison test. Multivariate statistical analysis was per-

formed by unsupervised principal component analysis

(PCA) with mean centering and scaling to visually dem-

onstrate the variance of the metabolic phenotypes from the

groups based on the discriminating features from the

ANOVA analysis. Hierarchical cluster analysis of metab-

olites was performed to reveal associations between repli-

cate biological samples within a group based on the

similarity of their mass abundance profiles.

For GC–TOF data, statistical evaluations were per-

formed by Statistica DataMiner versus 7.0 (StatSoft, Tulsa,

OK). For univariate statistics, data were log(10)-trans-

formed to reduce weight of outliers and to render the data

sets more normal-distributed. Two-tailed Student t-tests

were performed with significance thresholds of P \ 0.05.

Ratios were calculated from antiloged class averages. For

PCA and Partial Least Square (PLS) analyses, variables

were scaled to unit standard deviations and components

were calculated with the Non Linear Iterative PLS algo-

rithm using 50 iterations and a 0.0001 convergence crite-

rion with a 7-fold cross-validation for supervised PLS.

PCA was carried out on unit variance scaled data in

unsupervised mode for dimension reduction purposes.

3 Results and discussion

The susceptible cultivar TP309 was compared to the

TP309_Xa21 transgenic variety in the absence of infection

to see whether the transgenic event itself triggered meta-

bolic differences leading to resistance. We further inves-

tigated metabolomic data to study if the TP309_Xa21

plants show specific metabolic responses after infection

that might contribute to the resistance. As a positive control

we used PXO994raxST bacteria that are virulent on

TP309_Xa21 plants in order to discriminate metabolic

differences due to the transgenic host and perturbations that

are caused by the infection.

3.1 The number of detected peaks or features increases

linearly with class frequency threshold reduction

Often, biological replicates of individual plants grown

under otherwise identical conditions nevertheless show

biological variability that is larger than the pure technical

data acquisition variability. We therefore calculated the

relationship between the ‘‘class frequency threshold’’ (%

relative frequency of features detected across replicates in

at least one group), in reverse phase LC–TOF and liquid

injection GC–TOF analyses, and the number of reported

features. Table 2 shows the number of features roughly

increases linearly with decreasing of the class frequency

threshold. The reduction in feature numbers with higher

threshold stringency certainly improves the confidence

in subsequent statistical investigations by limiting the

dimensionality problem and by generally de-noising the

data.

In total, 514 unfiltered features were detected in

LC–TOF runs in positive ion mode and 474 in negative ion

mode. Upon filtering, the features were reduced to 355

(50% threshold) or 186 (100% threshold). Secondly, it was

apparent that after comprehensive peak picking and con-

straining result files, a similar total number of peaks for GC

were calculated for GC–TOF files, suggesting the com-

plementary nature of these technologies. Furthermore, a

similar number of peaks were obtained from negative

ionization and positive ionization LC–TOF analyses,

indicating that both modes are necessary for discovery

metabolomics. In principle, it should be possible to com-

bine negative/positive LC–TOF data files to a non-
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redundant list of mass features using the retention time/

accurate mass information concomitant with lists of ion

adducts in both modes. Unfortunately, the software did not

support this strategy at the time of analysis. GC–TOF data

can be classified to identified and structurally annotated

metabolites (via retention index and mass spectral match-

ing to reference libraries), in comparison to structurally

uncharacterized unknown metabolites. In a similar manner

to the total number of metabolic signals, the number of

identified metabolites linearly increased from 104 to 154

non-redundant metabolites with decreasing of relative fre-

quency threshold levels. This finding confirmed that setting

the positive relative frequency threshold at 50% was rea-

sonable for comprehensive metabolomics. The fact that

only around one-third of all peaks were structurally

assigned is typical for unbiased metabolomics screening,

suggesting that functional annotation of plant genes would

greatly benefit from improved algorithms and libraries used

for compound identifications.

3.2 Rice cultivar TP309 and its Xa21 transgenic

variant differ in metabolic phenotypes

In order to determine whether inherent differences exist

between the two untreated (NT) rice genotypes even before

bacterial challenges, we examined their metabolic pheno-

types by classic dimension reduction using unsupervised

Principal Component Analysis (PCA, Supplement 1). The

NT rice line TP309_ XA21 already exerts subtle differ-

ences in metabolite expression compared to its genetic

background which were apparent using the first three

vectors for negative ionization LC–TOF data (60.7% of

explained total variance of 80 variables, Supplement S1A)

as well as for GC–TOF data (48% of explained total var-

iance of 441 variables, Supplement S1B). Using ANOVA,

the measured metabolite abundances for a range of sugar

alcohols, some TCA intermediates and miscellaneous

compounds were differential between the two genotypes.

This was interpreted as a pleiotropic effect of the primary

genetic alteration but was not found in pathways that were

later determined to be involved in resistance to bacterial

infection. As part of our exploratory phase we performed

Hierarchical Cluster Analysis (HCA) by grouping the

samples into clusters based on the similarity of their

metabolite abundance profiles. Figure 1 presents the

resulting heat map for all detected metabolites in all sam-

ples by LC–TOF under positive electrospray mode. The

heat map reveals good clustering of sample replicates and

the correlation coefficients emphasize the separation of the

different groups, particularly between the two rice geno-

types. Interestingly, the samples for the Xa21_genotype

infected with PXO994raxST were divided between TP309

and Xa21 genotypes infected with PX099, indicating a

distinctive metabolite profile.

3.3 Unsupervised and supervised classification tools

clearly discriminate TP309_Xa21 challenged

bacterial strains

The most interesting question in this study was whether

PX099 challenge induces different metabolic responses in

susceptible TP309 versus the resistant TP309_Xa21

genotype, and secondly, if TP309_Xa21 samples respond

differently to PXO994raxST versus PX099.

Although GC–TOF results showed that untreated (NT)

TP309 and TP309_Xa21 metabolic phenotypes exerted a

number of differences at t-test significance levels of

P \ 0.05, for example in sugar alcohols, trehalose, raffi-

nose, pipecolic acid, fumaric acid and maleic acid (Sup-

plement S2), none of these compounds were found to be

relevant when exploring metabolic responses in the

TP309_Xa21 towards PX099 (resistant) and PXO994rax-

ST (susceptible) bacterial challenges, for which clear met-

abolic phenotypes were found using both unsupervised and

supervised multivariate statistics.

One-way ANOVA with Tukey post-hoc testing on

LC–TOF data resulted in many statistically significant

masses between the three different conditions in the

TP309_Xa21 cultivar (Supplement S3). A total of 44

compounds (Supplement S3A) were significantly different

Table 2 Application of different stringency filters to the processing of raw mass spectrometry data files significantly affects interpretation of

global metabolite profiling analyses

Class frequency

threshold (%)

LC–TOF

total

GC–TOF

total

LC–TOF positive

ESI

LC–TOF negative

ESI

GC–TOF

unknowns

GC–TOF

identified

50 355 441 194 161 287 154

75 271 322 149 122 197 125

100 186 214 106 80 110 104

LC–TOF data were processed by MassHunter Qual with relative frequency of detection thresholds set in GeneSpring-MS. GC–TOF data were

deconvoluted by ChromaTOF and constrained by BinBase (see Supplement S2). The number of detected peaks increases proportionally to

lowering the threshold of positive detection for a feature in at least one study design class, e.g. present in 6/6 samples replicates rice leaf extracts

per one or more classes (100% threshold) or lower thresholds (50 and 75%). A total of 514 unfiltered metabolites were detected by LC–TOF

positive ESI and 474 by negative ESI
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between all pair wise comparisons by LC TOF–MS (?),

and 39 compounds (Supplement S3B) by LC TOF–MS

(-). The results are graphically divided into cells showing

the number of statistically significant (or not significantly

different) masses. The largest difference was in positive ion

mode between mock and PXO99 challenge, showing 27

significantly different compounds. The ANOVA results for

the metabolic phenotypes were then visualized by per-

forming PCA that revealed clear discrimination between

the three groups of samples (Fig. 2a).

For GC–TOF analysis, where we benefited from the

BinBase database of known, structurally identified com-

pounds, supervised partial least squares classification was

used to distinguish metabolic responses between bacterial

challenged and the corresponding mock-treated controls. In

both cases, distinct metabolic phenotypes were clearly

discriminated (Fig. 2b), showing that responses in

TP309_Xa21 were indeed different depending on the strain

of bacteria used to infect the plant. Interestingly, the results

for both LC–TOF and GC–TOF platforms more of the

variance was explained by the general difference of mock-

treated and PXO99 challenged plants (vector 1) than

between PXO99 versus PXO994raxST inoculations, dis-

criminated by vector 2. This finding indicates that Xoo

infection results in metabolic adaptations even if the strain

used does not cause long lesions, and is consistent with

observations that Xoo can grow to fairly high levels in the

early stages of infection even in resistant Xa21 cultivars

(Song et al. 1995; Lee et al. 2009).

Next, detailed pair wise comparisons were performed

between the different groups that included fold change and

significance analysis based on unpaired t-test. The results

are summarized in Table 3. The number of significant

metabolic differences between PXO99 and mock-chal-

lenged TP309 cultivar was clearly lower than observed for

TP309_Xa21. This observation was especially evident for

those significant differences that had a larger than 2-fold

differences. In GC–TOF and LC–TOF (-) data sets, but

not for LC–TOF (?) data, PXO994raxST-inoculated

plants showed a higher number of significantly different

metabolites than for PXO99-versus mock-challenged con-

trols. This result was not dependent on the relative fre-

quency of detection thresholds (50, 75 or 100%). Similarly,

metabolic differences were higher in LC–TOF (?) than in

negative ion mode analyses for the infected TP309 plants.

Taken together, the LC–TOF data suggests that compound

classes detected in the negative ion mode, such as the

organic acids, do not appreciably change in response to

PXO99. In addition, PXO994raxST results imply differ-

ential abundance levels for different classes of metabolites

compared to the PXO99 strain.

The results of METLIN personal metabolite database

matching are summarized in Supplement S4. For each of

these compounds, the majority of MFG scores were high

confident matches, typically greater than 75%, indicating a

good correlation between the MFG derived formula (based

on isotopic mass, abundance and spacing) and the MET-

LIN database formula. The result provided the extent of

metabolite coverage that currently can be annotated in rice

samples using exact mass LC–TOF analysis. Because iso-

meric and isobaric compounds cannot be differentiated by

database query alone, only one representative compound

was annotated. Several compounds were significantly ele-

vated in the TP309_Xa21 rice line, after challenge with

PXO99 or PXO994raxST-. These included Rutin, several

pigments, fatty acids and lipids. For example, levels of m/z
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Fig. 1 Hierarchical cluster analysis of LC–TOF (?) data of six

biological replicates for the seven rice genotype/infection classes. The

mass trees (dendrograms) reveal the relationships between the

different conditions based on their abundance levels with each

rectangle or cell representing an accurate mass, colored by its

abundance intensities on a normalized scale from 0 (low) to 5 (high).

Masses with similar abundance patterns are placed closer to each

other. The mass tree branches at the top of the figure are colored by

each condition, and shows the correlations for the main clades or

branches. The bottom of the figure shows that the tree branches for

each group of conditions are separated based on rice genotype. The

* denotes four out of six Xa21-PXO994raxST samples clustering

with the TP309 genotype
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174.1112 (Supplement S4), matching Arginine, was highly

increased (14.6 fold) in Xa21-PXO99 relative to mock-

treated rice leaves. Arginine has an important role in plant

metabolism via the urea cycle, for example for polyamine

biosynthesis (Bassie et al. 2003). Free arginine is derived

from endogenous synthesis and in the turnover of proteins.

Although synthesis of arginine from citrulline can occur in

many cell types (Eagle 1959; Eagle et al. 1959; Jackson

et al. 1986), in cases of catabolic stress, such as infection,

the levels of endogenous synthesis may not be sufficient to

meet metabolic demands. Arginine homeostasis is accom-

plished by modulation of arginine catabolism rather than

synthesis (Morris 2007). Thus one hypothesis to explain

this observation is an increased free pool of arginine,

generated due to catabolism of pathogen-derived proteins.

Ornithine, citrulline, tyrosine, phenylalanine, lysine

(determined by GC–TOF) and arginine (determined by

LC–MS) all showed increased levels in the (resistant)

PXO99-challenged Xa21 genotype compared to mock-

treated controls, but not in other (infection-susceptible)

comparisons (Fig. 3; Supplement S2). GC–TOF analysis of

proline levels were unaffected, which is different to other

biotic stress studies, e.g. rice infection by the Tungro virus

(Mohanty and Sridhar 1982). The Increases in these

metabolite pools suggests that some metabolic pathways

may be directly involved in the XA21-mediated defense

against pathogen infection.

3.4 Important precursors for alkaloid metabolism are

significantly higher in the resistant TP309_Xa21

genotype challenged with the PXO99 strain

Phenylalanine and tyrosine had been found before to be

inducible in response to biotic stress, for example by fungal
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Fig. 2 Supervised multivariate statistics to differentiate bacterial

challenge phenotypes for TP309_Xa21 transgenic rice plants. Left
panel: LC–TOF (positive ionization) with one-way ANOVA analysis

of 212 masses present at a 50% class frequency threshold in three

TP309_Xa21 classes. Subsequent dimension reduction and PCA

visualization of 44 statistically different (ANOVA) masses (see

Supplement S3A). Right panel: GC–TOF analysis of 441 metabolites

present at a 50% class frequency threshold. Non Linear Iterative PLS

supervised discrimination of TP309_Xa21 classes

Table 3 Univariate ANOVA statistics on bacterial challenge comparisons for TP309 and TP309_Xa21 rice plants

Class frequency

threshold (%)

TP309_PXO99

versus TP309_Mock

Xa21_PXO99

versus Xa21_Mock

Xa21_PXO99DraxST

versus Xa21_Mock

GC/TOF 100 53 (15) 39 (25) 65 (42)

GC/TOF 75 71 (21) 53 (29) 92 (59)

GC/TOF 50 96 (25) 71 (37) 125 (85)

LC/TOF (?) 100 35 (5) 44 (15) 38 (10)

LC/TOF (?) 75 55 (9) 73 (21) 62 (20)

LC/TOF (?) 50 68 (11) 106 (31) 92 (26)

LC/TOF (-) 100 17 (1) 30 (5) 31 (10)

LC/TOF (-) 75 21 (1) 57 (9) 64 (25)

LC/TOF (-) 50 21 (1) 83 (12) 90 (31)

The number of differential peaks or features at greater than 2-fold change is shown for various comparisons with decreasing class frequency

thresholds for peak (GC/TOF) or feature (LC/TOF) detections. Parentheses indicate the number of compounds having both greater than 2-fold

change and P \ 0.05
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attacks on plant leaves (Khan et al. 2003). Both compounds

are precursors for alkaloid biosynthesis or, alternatively, for

the production of phenylpropanoids which are furthered

into lignins. Therefore, up-regulation of phenylalanine and

tyrosine levels may help the resistant TP309_Xa21 trans-

genic rice to defend against bacterial infection by alkaloids

and partial cell wall lignifications. The induction of phen-

ylalanine- and phenylalanine/tyrosine ammonia lyases

(PAL and PTAL, Os04g0518400 and Os02g0626100) is a

hallmark of plant responses to bacterial infection and fre-

quently used as indicator or even elicitor of cellular

response mechanisms in rice (Bera and Purkayastha 1999;

Vidhyasekaran et al. 2001; Jayaraj et al. 2004). Ornithine,

citrulline and arginine are all member of the urea cycle that

salvage ammonia, which is released by the phenylalanine/

tyrosine ammonia lyase reaction, but are also precursors

in alkaloid biosynthesis via putrescine or cadaverine

intermediates. Hence, it can be concluded that several

important precursors for alkaloid metabolism were found to

be significantly up-regulated in the resistant PXO99-chal-

lenged TP309_Xa21 genotype in comparison to all other

test cases including the PXO994raxST-challenged

TP309_Xa21 genotype. A range of further metabolites were

significantly differentially regulated when comparing the

PXO994raxST-challenged TP309_Xa21 to both the

PXO99-challenge and the mock-treated TP309_Xa21

plants. Some metabolites such as glutamine (Fig. 3) and

phenol, ala-ala, 5-hydroxynorvaline and hydroxylamine

(Supplement S2) were more than 2-fold higher in the

PXO99-challenged Xa21 plants than in the susceptible

PXO994raxST challenge. Concomitantly, in the

PXO994raxST treatment, a range of metabolic differences

were apparent that did not occur in any of the other treat-

ments. Figure 3 details a down-regulation of glutamate

tyrosine
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Fig. 3 Box-whisker plots of GC–TOF data of metabolic differences

in transgenic TP309_Xa21 rice leaves infected with PXO99 (resis-

tant) or PXO99_DraxST (susceptible), compared to mock-treated and

to susceptible PXO99-infected TP309 plants. Median levels with

whiskers of 1.969 S.E. are given, n = 9 for infected plants and n = 6

for mock controls. Differentially expressed metabolites are listed as

Supplement data in S2 for GC–TOF data
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levels that was found concurrent with up-regulation in two

glutamate products, oxoproline and N-acetylglutamate.

Oxoproline is formed from glutamyl-cysteine using the

cyclizing (5-L-Glutamyl)-L-amino-acid 5-glutamyltransfer-

ase (EC 2.3.2.4), yielding cysteine and the cyclized amino

acid product. Interestingly, a second cyclized product was

observed, butyrolactam, for which yet no enzyme has been

identified in rice but which might be produced from GABA

(4-aminobutyric acid) using the same enzyme but the

hypothetical GABA-cysteine as substrate. Indeed, cysteine

was found more than 2-fold up-regulated in the

PXO994raxST treated Xa21 plants (susceptible) compared

to both mock-treated and PXO99-treated plants, albeit less

significant (P = 0.1). This finding supports the assumed

cyclization reaction via EC 2.3.2.4 with cysteine as

by-product. The intermediate Glu-Cys is also an important

precursor in the biosynthesis of glutathione (Glu-Cys-Gly)

which requires glycine as further substrate, and indeed,

3-fold higher levels of glycine were found at P \ 0.05 in the

PXO99-challenged Xa21 plants (resistant) than in the

PXO994raxST treated or the mock-treated Xa21 plants

(Supplement S2). Taken together, these data indicate that

the resistance phenotype in transgenic Xa21 plants upon

PXO99-challenge is manifested in up-regulation of pre-

cursors for alkaloid biosynthesis as well a potential higher

flux into glutathione biosynthesis than into the alternative

reaction towards cyclization into oxoproline.

3.5 The virulence signal acetophenone is absent

in TP309_Xa21-infected rice plants but abundant

in mock-treated controls

Upon bacterial challenges, a range of further compounds

were found to be differentially regulated in TP309_Xa21

plants (Supplement S2) which do not seem to be directly

involved in the resistance phenotype itself. For example,

the phytosterols stigmasterol and beta-sitosterol were found

at 30% lower levels in PXO99 challenged Xa21 plants

compared to PXO994raxST challenged Xa21 plants or the

corresponding mock-treated Xa21 plants, but the same

difference was found in susceptible PXO99-challenged

TP309 plants, lacking Xa21. In the transgenic Xa21-plants,

a 2-fold reduction in the cell wall component sinapinic acid

(but not ferulic acid) was found upon treatment with either

PXO994raxST or PXO99, compared to the mock control.

Most strikingly, however, was that acetophenone and its

reduction product 2-phenylpropanol were both completely

absent in Xa21 plants challenged with either PXO99 or

PXO994raxST (Fig. 4). In contrast, these compounds

were detected in TP309 and TP309_ PXO99-treated plants

as well as Xa21 mock-treated plants at abundant levels, as

well as in TP309 and TP309_Xa21 untreated plant (NT,

data not shown). Acetophenone derivatives had previously

been implicated as signaling molecules in bacterial viru-

lence pathways and gene expression modulators in Sola-

naceae species but not in monocotyledonous species

(Spencer 1991). Therefore, the complete lack of aceto-

phenone in TP309_Xa21 rice plants challenged with either

PX099 strain suggests that Xa21 responds to both Xoo

strains differently than it responds to mock treatment. This

result indicates the need for additional investigation into

the mode of action and biochemical pathways triggered by

PRRs, and into acetophenone-related response pathways.

When investigating specifically which metabolites occur

only in the XA21 mediated response to PX099, i.e. signals

that were specific to XA21/PXO99 but are not found in any

of the other combinations, we found an unknown with the

BinBase database identifier number 203611 (quantification

m/z 128, FAME-based retention index 223571). The

closest annotation was cyclohexylamine, but the identity

was not further validated. In follow-up investigations, the

hypothesis of an involvement of this tentatively annotated

compound in the Xa21-mediated defense response needs to

be examined.

3.6 Microarray analysis

Microarrays were used to profile gene expression in TP309

and Xa21 rice lines exposed to PXO99 or PXO994raxST.

Features showing less than 10% variation between replicate

dye-swaps were used for analysis. Scanned electrophero-

grams (Supplement S5) display the quality of total RNA in

the pellet from 15 to 20 mg of rice leaf after metabolites had

been solvent extracted. Discrete ribosomal RNA bands
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Fig. 4 Box-whisker plots of GC–TOF data of metabolic differences

in infected transgenic TP309_Xa21 rice leaves, compared to mock-

treated and to PXO99-infected TP309 plants. Median levels with

whiskers of 1.969 S.E. are given, n = 9 for infected plants and n = 6

for mock controls. Differentially expressed metabolites are listed as

Supplement data in S2 for GC–TOF data
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(represented as peaks in the electropherogram) were present

in all samples, reflected by the presence of 18s and 28s

RNA, with little indication of degradation. Figure 5 shows

Volcano plots based on the differential abundances between

pair-wise conditions, using fold-change and P-values for

visualization. In an analogous way to LC–TOF data anal-

ysis, subsets of significantly differential genes were iden-

tified at P \ 0.05 and fold-ratios [2.0. Clearly, the largest

number of differentially expressed genes was between

TP309_Xa21, mock-treated and PXO99-treated conditions

(Fig. 5b). There were over 260 differentially expressed

genes between TP309_Xa21_PXO99 and mock-treated; 39

between TP309_Xa21_PXO994raxST and Mock-treated;

and only 16 between TP309_PXO99 and mock-treated.

Interestingly, this was over 15-fold higher number of dif-

ferential genes between Xa21_PXO99 than the same com-

parison in TP309, and was corrected for the same amount of

intact cRNA used in the hybridization. Similar differences

in the number of responses were found for metabolite reg-

ulation (Table 3), indicating the importance of metabolism

in pathogen responses. A summary table highlighting some

of the significant differentially expressed genes is included

in Supplement S6.

3.7 Correlating the results of transcriptomics

and metabolomics provides several clues

towards explaining which pathways are responsible

for Xa21 resistance to PXO99

Next, we summarize the results of our profiling analyses by

focusing on a few examples that highlight the challenges of

interpreting two or more ‘omics’ profiling experiments

(Table 4). Significantly differential genes were compared

to the levels of metabolite products, associated with the

corresponding enzymes, or to metabolite products along a

particular pathway. For example, Isocitrate lyase (ICL1)

was differential at the transcriptional level, but we were

unable to correlate any significant change in levels of the

associated substrate and product. Although the ICL1 tran-

script was induced in PXO99 compared to mock infected

TP309, it was not differential in the Xa21 lines. LC–TOF

analysis, however, revealed highly elevated levels of

C6H8O7, likely to be citric acid or isocitrate, in both Xa21

lines but not in TP309. ICL1 catalyzes the formation of

succinate and glyoxylate from isocitrate, a key reaction of

the glyoxylate cycle most prominently known for germi-

nation, but also generally functioning at a branch point of

carbon metabolism by diverting isocitrate through a car-

bon-conserving pathway, the glyoxylate cycle, thus pre-

venting the oxidation steps in the TCA cycle. Expression of

ICL1 is induced by growth on ethanol and repressed by

growth on glucose (Fernandez et al. 1992; Luttik et al.

2000). In comparison to the upregulation of ICL1, gly-

colysis rates were found to be decreased in PXO99-chal-

lenged plants compared to mock-treated controls resulting

in higher glucose and lower pyruvate levels (GC–TOF data

Supplement S2). Consequently, pantothenic acid, an

important co-factor for further oxidation of pyruvate to

acetyl-CoA, was also found to be decreased in PXO99-

challenged plants for both TP309 and Xa21 genotypes

(Supplement S2).

Other over-expressed genes included b-1,3-glucanase

and chitinase (Table 4) in PXO99 compared to mock

infected Xa21. Conversely, these genes were suppressed in

the PXO99 challenged susceptible strain versus TP309

Fig. 5 Gene expression differences in infected rice leaves. Volcano

plot in Genespring-GX with P-values and intensity ratios (infected

versus mock) as log-scaled axes. Significant differences at P \ 0.05

with[2-fold intensity ratios are shown. Quality control for microarray

data is given as Supplemental data S5 and Tables of differentially

expressed genes are given as Supplemental information S6.

a TP309_Mock versus TP309_PXO99. b TP309_Xa21-Mock versus

TP309_Xa21-PXO99. c TP309_Xa21-Mock versus TP309_Xa21-

PXO994raxST
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mock. Both Chitinases and b-1,3-glucanases catalyze a

broad series of substrates and products. Transgenic rice

plants that contain one or more fungal disease-resistant

gene(s) have previously been reported to control fungal

diseases of rice (O’Toole 2001). Chitinases and Beta-1,3-

glucanases are fungal cell wall degrading enzymes and can

be found in plants and microbes. Genes encoding different

chitinases and b-1,3-glucanases have previously been

cloned and used to transform tobacco, resulting in

increased survival relative to control plants in the presence

of pathogenic fungi (Benhamou et al. 1993; Collinge et al.

1993). Indeed, b-1,3-Glucanases are commonly found

throughout the plant kingdom and there is abundant evi-

dence that they are involved in the defense mechanism of

plants against pathogen infection, and have been proposed

to be involved in physiological processes such as the stress

response (Simmons 1994). Apparently these genes, in

addition to being induced by fungi, are also induced in

TP309_Xa21 in response to PXO99 but not in Xa21-

PXO994raxST.

Perhaps the most compelling observation was the com-

parison of transcriptomics data and metabolite data for the

putative transcript for Glutamate decarboxylase (GAD),

which codes for an enzyme that catalyzes the decarboxyl-

ation of glutamate to c-aminobutyric acid (GABA) and

CO2. The decrease of glutamate was confirmed by GC–TOF

data, in accordance to the induction of GAD in both strains

that were challenged with PXO99 and PXO994raxST.

GAD was particularly elevated in the Xa21 line (Table 4).

LC–TOF analysis also revealed elevated levels for

C4H9NO2. This empirical formula includes annotation as

GABA in the METLIN database. An overlay of the EICs for

the corresponding m/z revealed a clear increase in the

abundance for Xa21_PXO99 samples relative to

Xa21_mock (data not shown). Although the role of GABA

in plants remains controversial (Bouche et al. 2004; Bouche

and Fromm 2004; Bown et al. 2006), environmental per-

turbations of oxygen, water, and temperature, is reported to

prompt the accumulation of GABA in plant cells (Shelp

et al. 1999). GC–TOF data indicated that GABA might be

Table 4 Correlations between microarray and associated metabolites for selected differential genes

ID Gene Name/Metabolite TP309_PXO99/mock TP309_Xa21-PXO99/mock TP309_Xa21-PXO99DraxST/mock

Microarray GC LC Microarray GC LC Microarray GC LC

AK063353 Oryza sativa isocitrate lyase (ICL1) ?

CID 311 Citric aid ? ???

CID 1110 Succinate -

CID 760 Glyoxylate

CID 24749 Glucose ?

CID 1060 Pyruvate - -- --

AK104472 b-1,3-glucanase --- ??

AK070067 Chitinase - ??

CID 343911 N-Acetyl-D-glucosamine

AK071556 Glutamate decarboxylase (GAD1) ? ?? ???

CID 119 GABA (4-amino butyric acid) ? ??

CID 33032 Glutamic acid ? ??

AK102817 Phenylalanine ammonia-lyase (PAL) ??

CID 6140 Phenylalanine ?

AK102196* Glutathione S-transferases -** ? ??

CID 65359 Oxidized glutathione - ?

AK058921 Lipid transfer protein b1 ?

AK064395 UDP-glucose:salicylic acid

glucosyltransferase (SA-GTase)

- ??

CID 6031 Uridine 50 diphosphate

CID 8629 UDP-glucose ??

CID 338 Salicylate ?? -

For each gene the GeneBank accession number, and for each metabolite a PubChem ID (CID) is shown. A Gene Name with more than a single

detected GeneBank accession number is represented by * (AK063773, AK063104, AK064620) and their ratios for each of the three comparisons

in Table 4 were included in calculating induction/repression for each significantly differential features (P \ 0.05). The exception ** only

included AK103316. Induction (?) or repression (-) was always relative to mock infection. Differentially expressed metabolites are listed in

Supplement S2 for GC–TOF data and S4 for LC–TOF data
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furthered into cyclization to butyrolactam as outlined

above, but the significance of this process for pathogen

response is not established in literature.

Phenylalanine metabolism was significantly affected in

PXO99 challenged XA21 rice variety, but not in the wild-

type variety. Phenylalanine ammonia lyase (PAL), a key

defense-related enzyme of the phenyl propanoid pathway,

has recently been associated with disease resistance in rice

plants via synthesis of isoflavones, phytoalexins, and lig-

nin, compounds (Lin et al. 2008). Indeed rapid accumula-

tion of PAL mRNA following inoculation with a pathogen

has been described for maize (Cui et al. 2002). Moreover,

rice leaves inoculated with Magnaporthe grisea signifi-

cantly increased the enzyme activity of PAL (Cai et al.

2008). The PAL transcript in our study was significantly

induced only in Xa21_PXO99 compared to Xa21_mock

(Table 4; Supplement S5). Taken together, these results are

consistent with our GC–TOF data for Phenylalanine where

it was elevated.

A large number of glutathione and putative glutathione

S-transferases (GST), as well as a glutathione transport

protein were either detected or significantly induced in

PX099 challenged relative to mock Xa21. In TP309, the

induction/repression response to PXO99 was dependent on

the GST––or putative GST––and on average, both in the

magnitude and number of GSTs cancelled out any differ-

ences between PXO99 challenged and mock. The Xa21

line challenged with PXO994raxST showed many GSTs

to be significantly induced relative to mock. Interestingly,

however, although several GSTs were detected, no signif-

icant differences were observed between Xa21_PXO99

compared to Xa21_Mock. GSTs detoxify endogenous

compounds such as peroxidised lipids, they bind to toxins,

or function as transport proteins, all of which might indi-

cate a general response to stress. Oxidized glutathione

levels were significantly different by LC–TOF analysis in

the PXO994raxST Xa21 line, detected but not altered in

PXO99 challenged Xa21, and reduced in the wild-type

TP309. This is an interesting result suggesting that PXO99

challenged Xa21 is not stressed and that the oxidized form

of glutathione in response to PXO99 may be depleted in

TP309 wild-type cells. Such hypotheses would need to be

validated by target analyses of GSH/GSSG ratios.

Lipid Transfer Proteins (Ltp) reversibly bind and

transport hydrophobic molecules in vitro and are likely to

play a role in key processes of plant physiology. The

induction of Ltp gene expression has been previously

characterized in a fungus, and coincides with a transient

increase in the expression levels of phenylalanine ammo-

nia-lyase (PAL) gene, as well as salicylic acid (SA) gene in

mycorrhizal roots (Blilou et al. 2000). Although we were

able to detect induction of Ltp b1 transcripts in TP309

cells, we did not find it to correlate with co-expression or

differential expression with either PAL or phenylalanine

and salicylic acid levels in PXO99 challenged TP309

condition (Table 4). However, these metabolites were

detected in PX099_Xa21 challenged plants instead and can

be due to factors including that our system was non-fungal,

limitations of assay sensitivity, as well as offsets between

maximal expression of transcripts and metabolites.

4 Conclusions

An optimized sample processing protocol, starting from the

same leaf sample of average weight of 15–20 mg FW,

yielded sufficient material for parallel analysis by LC–TOF,

GC–TOF and microarrays. This protocol is useful for

investigation of complex processes such as plant infection

and immunity, in leaf samples at different distances from

the location of the infection. Unbiased, discovery-based

metabolomics and transcriptomics analyses yielded novel

insights into the rice response to Xoo. Our results reveal

global metabolic and transcriptomic changes in leaf tissues

of the XA21 transgenic variant challenged with PX099 but

not to PXO994raxST. While central carbon catabolism is

reduced in correlation between gene and metabolite

expression in both Xa21 and TP309 rice genotypes, genes

and metabolic precursors for alkaloid biosynthesis are

increased specifically in the XA21-mediated response to

PX099 but not to PXO994raxST. The outcome of ‘omics’

studies such as these will aid in a better understanding of

complex response to pathogen infection (Tarpley et al.

2005). Although our analyses shows the robustness of our

system, enabling differentiation of metabolite and transcript

responses of two different rice genotypes and bacterial

strains, coherent interpretation of transcriptomics and met-

abolomics results is very challenging, requiring carefully

designed experiments, a large number of biological repli-

cates and inclusion of time course studies to provide the

appropriate context for further biological conclusions.
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