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Flavonoids from Actinidia arguta Sieb. Zucc. can reduce uric acid in mice.

However, the molecular basis of its biosynthesis is still unclear. In this paper, we

used a combination of extensively targeted metabolomics and transcriptomics

analysis to determine the types and differences of flavonoids in the fruit

ripening period (August to September) of two main cultivated varieties in

northern China. The ethanol extract was prepared, and the potential

flavonoids of Chrysin (Flavone1), Rutin (Flavone2), and Daidzein (Flavone3) in

Actinidia arguta Sieb. Zucc. were separated and purified by HPD600

macroporous adsorption resin and preparative liquid chromatography. The

structure was identified by MS-HPLC, and the serum uric acid index of male

Kunming mice was determined by an animal model test.125 flavonoids and 50

differentially regulated genes were identified. The contents of UA (uric acid),

BUN (urea nitrogen), Cr (creatinine), and GAPDH in mouse serum and mouse

liver glycogen decreased or increased in varying degrees. This paper reveals the

biosynthetic pathway of uric acid-reducing flavonoids in the fruit of Actinidia

arguta Sieb. Zucc., a major cultivar in northern China, provides valuable

information for the development of food and drug homologous

functional foods.
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Introduction

Flavonoids are one of the main secondary metabolites in

Actinidia arguta Sieb. Zucc. Structurally, they are mainlyflavonols,

dihydroflavonols, 3-o-flavonoid glycosides, and their derivatives.

Wojdyło and Nowicka (2019) identified the polyphenol

compounds in Actinidia arguta Sieb. Zucc. and obtained 16

flavonols, 7 flavonols, 7 phenolic acids, and 1 anthocyanin. To

explore the relationship between metabolite changes and fruit color

changes. Li et al. (2018b) carried out transcriptomics and

metabolomics analysis on the flesh of two kinds of Actinidia

arguta Sieb. Zucc. and identified a variety of flavonoids such as

bitter bracteachin, luteolin, dihydromyricetin, anthocyanin,

geranium, delphinidin, and (-) - epigallocatechin. Jang et al.

(2009) isolated two new flavonoids with g-lactams from the roots

of Actinidia arguta Sieb. Zucc., which are flavan-3,6-(2-

pyrrolidinome-5-yl)-(−)-epicatechin and 8-(2-phrrolidinone-5-yl)-

(−)-epicatechin and also get proanthocyanidin B-4.Flavonoids have

physiological functions such as antioxidant, antiviral, prevention

and treatment of cardiovascular and cerebrovascular diseases,

prevention of hyperuricemia, liver protection, and immunity

(Latocha et al., 2013; Hu et al., 2016; Jiang et al., 2020).

Hyperuricemia (HUA) is a pathological state in which UA

levels in the blood increase continuously or the blood is

supersaturated with UA. The number of patients with HUA in

China exceeded 17 million in 2017, and the data shows a rapid

increase in cases, with an annual growth rate of 9.7%. Gender,

age, race, and lifestyle habits all affect the incidence of HUA

(Lanaspa et al., 2011; Chen et al., 2022; Maruhashi et al., 2022;

Tsai et al., 2022; Yu et al., 2022). The key cause of primary HUA

is a combination of low UA excretion and high UA production.

A majority (67%) of UA in the human body is produced by the

catabolism of nuclear proteins, nucleic acids, and other

substances in the body; the remaining 33% comes from

purines in food (Lai et al., 2021; Lee et al., 2022; Mccormick

et al., 2022). Adenosine deaminase (ADA) and xanthine oxidase

(XO) are the key enzymes that regulate the production of UA

during the catabolism of purine substances to UA. ADA is a

sulfhydryl enzyme that catalyzes the reaction of adenine

nucleosides to produce hypoxanthine nucleosides .

Hypoxanthine is then produced through the action of

nucleoside phosphorylase, and hypoxanthine is finally oxidized

by the flavin protease XO to produce UA and XO is a flavin

protease (Zhang et al., 2018; Jiang et al., 2020; Le et al., 2020;

Michael et al., 2020; Xu et al., 2021).

In previous reports, ten flavonoids belonging to quercetin,

isorhamnetin, and kaempferol were detected in the leaves of

Changjiang No. 1 (CJ-1) by transcriptomics and metabolomics

methods (Tan et al., 2021). Metabolomics and transcriptomics

analyses provide us an opportunity of comprehending the

flavonoid biosynthesis of the developing seed of Tartary

Buckwheat. A total of 234 flavonoids were identified,

containing 10 isoflavones, of which 80 flavonoids accumulated
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prominently in the period of seed development (Li et al., 2019a).

The flavonoid biosynthesis of different colored flowers in

safflower was analyzed by metabonomics and transcriptomics.

Metabolic analysis showed that there are great differences in

flavonoid metabolites among different colored safflower (Wang

et al., 2021)

Natural bioflavonoids have a small molecular weight and can

penetrate adipose tissue, pass through the blood-brain barrier,

and are quickly absorbed by the human body these are the

material basis for bioflavonoids to play a pharmacological role

(Zuo et al., 2012; Yu et al., 2015). In recent years, scholars both

domestically and internationally have carried out research into

the active components and functional mechanism of such

botanical drugs and found that flavonoids such as morin,

quercetin, luteolin, and kaempferol have significant effects in

treating hyperuricemia (HUA) and gout (Mo et al., 2007;

Ouyang et al., 2021). Studies have shown that flavonoids can

prevent HUA by inhibiting the activity of xanthine oxidase (XO)

and by promoting the excretion of uric acid. Gouty arthritis can

be prevented by inhibiting the release of inflammatory

transmitters by neutrophils and by inhibiting the expression

and secretion of inflammatory cytokines, which are induced by

urate crystallization (Martin et al., 2010; Li et al., 2022a). Making

full use of Actinidia arguta Sieb. Zucc. flavonoids to develop

flavonoid products has broad application prospects in the field of

medicine and food homology. At present, the uric acid-reducing

activities and biosynthetic pathways of its flavonoids, aspen,

rutin, and daidzein, have not been systematically analyzed.

Some scholars ana lyzed the metabo lomes and

transcriptomics of the flesh of two kinds of Actinidia arguta

Sieb. Zucc. at different fruit development stages, namely “Hong

Bao Shi Xing” and “Yong Feng No. 1”. The results showed that

AaF3H, AaLDOX, AaUFGT, AaMYB, AabHLH and AaHB2

were the most likely candidate genes to regulate the biosynthesis

of flavonoids. Meanwhile, in another study, it was found that the

AaLDOX gene may be the key gene controlling anthocyanin

biosynthesis in the flesh of “Tian Yuan Hong” Actinidia arguta

Sieb. Zucc., which promotes anthocyanin accumulation and

eventually leads to red flesh (Li et al., 2018a; Li et al., 2018b).

They then screened miR858 involved in anthocyanin

biosynthesis through high-throughput sequencing of

microRNA and proved miR858 was a negative regulator of

anthocyanin biosynthesis by inhibiting the target gene

AaMYBC1 in red Actinidia arguta Sieb. Zucc. (Li et al., 2019b;

Li et al., 2020).Studies have shown that two interacting

transcription factors AcMYB123 and AcbHLH42 and another

AcMYB10 have a regulatory effect on the biosynthesis of tissue-

specific anthocyanins in the endocarp of Actinidia arguta Sieb.

Zucc. (Wang et al., 2019b; Yu et al., 2019).Yanfei Liu et al.

showed the cMYBF110-AcbHLH1-AcWDR1 complex directly

targeted the promoter of the anthocyanin synthesis gene and

promoted the activities of AcMYBF110, AcbHLH1, and

AcWDR1. The AcMYBF110-AcbHLH4/5-AcWDR1 complex
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amplified the regulatory signal of the first MBW complex by

activating the promoter of AcbHLH1 and AcWDR1 and

indirectly participated in the regulation of anthocyanin

synthesis (Liu et al., 2021).

In this study, the uric acid-lowering effect of flavonoid

extract from Actinidia arguta Sieb.Zucc. was evaluated in vitro.

Furthermore, the types, quantities, and differences between

flavonoids in the fruits of two important varieties of Actinidia

arguta Sieb.Zucc. cultivated in Northern China were determined

through a combination of extensive targeted metabolomics and

transcriptomics analyses. The biosynthetic pathways and

structural genes involved in regulating the flavonoid

compounds Chrysin (Flavone1), Rutin (Flavone2), and

Daidzein (Flavone3), which have uric acid-reducing activity,

were analyzed and identified. This provides valuable

information for further improving the fruit quality of

Actinidia arguta Sieb.Zucc., breeding new varieties, and

developing food and drug homologous functional foods from

Actinidia arguta Sieb.Zucc.
Materials and methods

Plant Materials and sampling

8-year-old Actinidia arguta Sieb.Zucc. the mature fruit of

Qssg and Lc varieties was obtained from North China, which

mature from August to September. Fresh fruit was quickly

frozen for the next experiment.

95% ethanol, petroleum ether, n-butanol, rutin standard,

HPD600 macroporous adsorption resin, and absolute ethanol

are all analytical pure. Allopurinol sustained release capsule,

purchased from Heilongjiang aolidanede Pharmaceutical Co.,

Ltd; Ethambutol hydrochloride tablets, purchased from

Hangzhou Minsheng Pharmaceutical Co., Ltd; Adenine,

purchased from American sigma company; Acetaminophen

sustained release tablets, purchased from Shanghai Johnson &

Johnson Pharmaceutical Co., Ltd; UA (uric acid) kit, bun (urea

nitrogen) kit, Cr (creatinine) kit, GAPDH (glyceraldehyde 3-

phosphate dehydrogenase) kit and glycogen kit were purchased

from Quanzhou konodi Biotechnology Co., Ltd.

Kunming white mice, weighing 19-21g, were purchased

from Shenyang Changsheng Biology Co., Ltd.Before starting

the experiment, they were settled in the laboratory environment

for seven days. 6 animals for one cage (320× 180 × 160 cm),

according to the 12-hour/12-hour light and dark schedule.

Temperature: 22 ± 2 °C; Relative humidity: 55 ± 5% and food

and water were given in the standard. Our experiments were

conducted based on the requirements of the institutional animal

care committee of Nanjing University and the China Animal

Care Council of Nanjing University [SYSK (SU) 2009 – 0017].
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Flavonoids analysis in two Actinidia
arguta Sieb.Zucc. varieties

A UPLC-MS/MS analysis conducted by Metware

Biotechnology Co., Ltd. (Wuhan, China) detected 786

metabolites. To prepare the biological samples for analysis, they

were first freeze-dried in a vacuum freeze dryer (Scientz-100F).

Next, the samples were ground (30 Hz, 1.5 minutes) to powder.

Then 100mg of the resulting powder was dissolved in 1.2ml of 70%

methanol extract and vortexed 6 times, once every 30 minutes for

30 seconds, and placed into a 4°C refrigerator overnight. Samples

next underwent centrifugation (rotating speed 12000 rpm, 10

minutes) followed by absorption of the resulting supernatant.

Finally, the samples were filtered through a 0.22 mM microporous

membrane and stored in an injection bottle for UPLC-MS/MS

analysis. Using a self-built MWDB (metal database), a qualitative

analysis of substances was carried out based on the secondary

spectrum information using triple quadrupole multiple reaction

monitoring (MRM) mass spectrometry (Fraga et al., 2010).

Software Analyst 1.6.3 was used to process mass spectrometry

data. We employed principal component analysis to preliminarily

explore the general metabolic differences and variabilities between

samples. The PCA results display a trend of metabolomics

separation between groups, suggesting metabolomics differences

between sample groups (Chen et al., 2009). The metabolomics data

were analyzed according to the OPLS-DA model, and score maps

were drawn to further show the differences between each group

(∣log2 (fold change) ∣ ≥ 1) (Thévenot et al., 2015). Metabolites in

each sample were analyzed, with three independent

biological replicates.
Flavonoid isolation, identification, and
uric acid-lowering activity test

Take the frozen Actinidia arguta Sieb.Zucc. and wash it with

distilled water after melting. Dry it in the air, slice it, and grind it

in a homogenizer until it is homogenized. After ethanol

extraction, centrifugation, filtration, and concentration, the

crude extract of total flavonoids of Actinidia arguta Sieb.Zucc.

was obtained, which was used for standby.

A Rutin standard curve was generated to determine the

concentration of flavonoids in the crude extract. Macroporous

resin and preparative liquid chromatography were then used for

separation and purification. In this experiment, flavonoids were

identified by electrospray spray mass spectrometry.

Thirty-six male Kunming mice were separated into six

groups at random after seven-day adaptive feeding in the

laboratory environment at 22 ± 2°C and a 55 ± 5% relative

humidity. The groups were as follows: blank control group,

model control group, positive control group (Allopurinol),
frontiersin.org
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Chrysin(Flavone1), Rutin (Flavone2), and Daidzein (Flavone3).

The blank group was gavaged with distilled water, and the

animals in all other groups were gavaged with a 2.5% PAPA

suspension for seven consecutive days. Then the mouse model of

hyperuricemia was induced by gavage with 100 mg/kg adenine

and 250 mg/kg ethambutol. Animals in the treatment groups

(i.e., groups other than the blank and model controls) were given

the same volume of distilled water, and the appropriate drugs

were administered by gavage. The dose of flavonoids was 550

mg/kg. The dosage of allopurinol tablets was 33.3 mg/kg

(administration volume: 1 ml/100 g) for 23 consecutive days.

One hour after treatment administration on the 7th and 15th

days, eyeball blood was collected. The serum was centrifuged and

serum levels of uric acid (UA), urea nitrogen (BUN), creatinine

(Cr), glyceraldehyde 3-phosphate dehydrogenase (GAPDH),

and hepatic glycogen were measured using kits.
RNA extraction, library construction,
and sequencing

mRNAwith PolyA tail was enriched using Oligo (dT) magnetic

beads, and then chemically fragmented. Using the resulting short

segment RNA as a template, the first strand of cDNA was

synthesized with six base random primers/hexamers.

Subsequently, the double-stranded cDNA was synthesized by

adding buffer, dNTPs, and DNA polymerase I, and purified with

ampure XP beads, and then was subjected to end repair, A-tail

addition, and connect sequencing connector, and fragment size was

selected with ampure XP beads. PCR enrichment yielded the final

cDNA library. Qubit2.0 was used for preliminary quantification,

Agilent 2100 was used to detect the insert size of the library, and the

Q-PCR method quantified the effective concentration of the library

(> 2nm). After passing the library inspection, the libraries were

pooled according to the target offline data volume, and Biomarker

Technology Co., Ltd. (Beijing, China) conducted the sequencing

using the Illumina novaseq platform.
RNA sequencing data analysis

Clean reads for subsequent analysis were obtained following

raw data filtering, sequencing error rate inspection, and GC

content distribution inspection. The clean reads were spliced

with Trinity (Grabherr et al., 2011), and stored in FASTA

format. Unigene corset (Davidson and Oshlack, 2014)

hierarchical clustering was used to obtain the longest cluster

sequence, which was then compared with the KEGG, NR, Swiss-

Prot, GO, COG/KOG, and Trembl databases using DIAMOND

(Buchfink et al., 2015) BLASTX software. After predicting the

amino acid sequence, HMMER software was used to compare

the sequence with the Pfam database to obtain the Unigene

annotation information. RSEM (Li and Dewey, 2011) software
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and bowtie2 (Langmead and Salzberg, 2012) were used to

compare the statistical results. FPKM (fragments per kilobase

of transcription per million fragments mapped) was taken as an

index to detect the level of transcripts or gene expression.

DESeq2 (Love et al., 2014; Varet et al., 2015) was used to

obtain the differential expression between the two biological

conditions. The FDR (false discovery rate) value was <0.05 and ∣
log2 (folding change) ∣ ≥ 1 was used as the threshold of

significant expression difference. Through GOannotation and

KEGG pathway analysis, the identified DEG was further

enriched and analyzed.
qRT-PCR

To validate the RNA-Seq data and examine the expression of

flavonoid biosynthesis-related genes, qRT-PCR was carried out

as described in the previous literature. The amplification cycle

procedure was as follows: the reverse transcription operation

was carried out using an Aidlab company’s kit (TUREscript 1st

Stand cDNA SYNTHESIS Kit), and the 20ul reaction system was

adopted. The reverse transcription reaction conditions were 42 °

C for 40min and 65 °C for 10min, and the fluorescent

quantitative PCR procedure was 95 °C for 3min, 95 °C for 10s,

and 60 °C for the 30s. The relative gene expression of each

sample and group was calculated by using 2-△△Ct with actin as

the internal reference. Each sample was performed in triplicates.

Table S1 lists the primers used in qRT-PCR.
Correlation analysis between metabolites
and transcripts

The correlation coefficient was calculated for the content of

flavonoids and the transcriptional changes of both differentially

expressed flavonoids and differentially expressed genes. Both are

rich in biosynthesis pathways of flavonoids, the flavonol (ko00941),

flavonoid (ko00942), and secondary metabolite (ko00943).

Cytoscape2.8 was used to visualize the interaction network

between DEGs and differentially accumulated flavonoids to

identify the structural genes involved in the regulation of

flavonoids, such as Chrysin (Flavone1), Rutin (Flavone2), and

Daidzein (Flavone3), with uric acid reducing activity.
Results and analysis

Flavonoid composition and uric acid-
reducing capacity of two varieties of
Actinidia arguta Sieb. Zucc.

A total of 125 flavonoids were identified by qualitative and

quantitative analysis of the Qssg and Lc metabolite spectrum.
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The mature fruits of Qssg and Lc are shown in Figure 1 (Table

S2). PCA revealed these two varieties to be significantly different;

68.61% of the differences between the samples could be

explained by PC1 (40.7%) and PC2 (27.91%), suggesting their

pattern change of flavonoid accumulation (Figure 2A).

Hierarchical cluster analysis (HCA) further confirmed the

difference between the two main samples (Figure 2B). Chrysin

(Flavone1), Rutin (Flavone2), and Daidzein (Flavone3) in both

Qssg and Lc fruits were isolated and purified. A male Kunming

mouse animal model was used to carry out a uric acid lowering

activity test (Figures 2C–G).

Compared with the model control group, the three selected

flavonoids significantly reduced UA after one week (p < 0.01)

(Figure 2C). At two weeks, Daidzein significantly reduced UA

(p < 0.05), but there was no significant difference in UA activity

between Chrysin and Rutin. Daidzein had relatively stable biological

activity in reducing UA. Compared with the blank control group,

BUN was not significantly increased in the model control group

(Figure 2D). Compared with themodel control group, only Daidzein

significantly reduced BUN (p < 0.05), and there was no significant

difference in the BUN-reducing activity of the other two flavonoids.

Thus, Daidzein had a higher biological capacity to reduce BUN than

Chrysin or Rutin did. Daidzein also significantly reduced Cr

compared to the model control group (p < 0.05), but there was no

significant difference in Cr reducing activity between the other two

Flavone treatment groups (Figure 2E). Compared with the model

control group, Rutin, Daidzein, and the positive control group

(treated with allopurinol) all had significantly lower levels of

GAPDH activity (p < 0.01), meaning that only the Chrysin

treatment group showed no significant difference (Figure 2F).

Daidzein also significantly increased liver glycogen compared to

the model control group (p < 0.01); in contrast, Rutin significantly

decreased liver glycogen (p < 0.01), and there was no significant

difference in liver glycogen in those treated with Chrysin (Figure 2G).
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Differences of flavonoids in Qssg and
Lc fruits, enrichment analysis of
KEGG pathway, and structural
verification results

Orthogonal signal correction (OSC) and PLS-DA techniques

were used to identify variable differences. Abundances between

samples of the 125 flavonoids were compared using an OPLS-

DA model. The model was able to discriminate between the two

varieties as both samples fell outside the confidence interval,

with the Lc samples to the left and the Qssg samples to the right

of the interval.

The OPLS-DA yielded two principal components with

contribution rates of 62.1% and 9.74% (R2x = 0.807, R2y =

0.998 [p = 0.29], Q2 = 0.869 [p < 0.005]). This result was verified

by 200 replicate analyses. The differential flavonoids were

screened according to VIP analysis (Figures 3A, B).

The pathway enrichment analysis of flavonoids was carried

out through KEGG (Kyoto Encyclopedia of genes and genes)

database. The results showed that the 125 identified flavonoids

were mainly distributed in three metabolic pathways,(1)

flavonoid and flavonol biosynthesis pathways, primarily for

kaempferol-3-o-neohesperidin Luteolin-7-o-neohesperidin,

quercetin-3-o-sangbu diglycoside, quercetin-3-o-(2”-o-

xylosyl)-rutoside, and kaempferol-3-o-rutoside;(2) flavonoid

biosynthesis pathways, mainly including naringin-7-o-

glucoside, isolyceride, and chrysin;(3) secondary metabolite

biosynthesis pathways, primarily kaempferol-3-o-rutoside and

daidzein (Figure 3C).

In a mass spectrum graph, the mass charge ratio (M/z) of the

ion increases from left to right, and the abscissa of an ion with a

single charge is the mass of its ion; the ordinate represents the

intensity of the ion current, usually expressed in terms of relative

intensity. The elution rate is 68.8% for 50% ethanol, 51.2% for 60%
FIGURE 1

Qssg and Lc of two main cultivars of Actinidia arguta Sieb.Zucc.in Northern China.
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ethanol, and 48.2% for 70% ethanol. Based on our test data, the peak

value of flavonoids eluted by 50% ethanol was more and the elution

rate was higher. Therefore, only positive ion mode mass spectra of

flavonoids eluted by 50% ethanol are discussed here. The mass

spectrum information for full scanning mode was m/Z 609, 301,

and 175, the multi-reaction detectionmode wasm/Z [609/301], and

the neutral loss was 308u. By comparing the retention times, multi-

stage mass spectrum fragments, excimer ion peaks, and other

information with reference substances, we determined that the

molecular ion peak was m/z 609 for Rutin, m/z 254 for Chrysin,

and m/z 254 for soybean isoflavone (Figures 3D–F).
Frontiers in Plant Science 06
Transcriptome analysis of two Actinidia
arguta Sieb.Zucc. varieties

Nine cDNA libraries were generated for high-throughput

RNA-Seq analysis to further examine the potential molecular

mechanisms of flavonoid biosynthesis in Actinidia arguta

Sieb.Zucc. Each library obtained 281,758,296 clean reads from

439,776,908 to 43,580,384 and 269,732,354 from 41,844,326 to

41,708,692 (Table S3). The Q30 percentage (including sequences

having an error rate < 0.1%) for each library exceeded 91%, with

47.47% GC content on average. Among the clean reads, between
B

C

D E

F G

A

FIGURE 2

Composition of flavonoids and uric acid reducing analysis results in Qssg and Lc Actinidia agruta Sieb.Zucc. (A) PCA score map of metabolites in Qssg
and Lc fruits, each point representing an independent biological repeat. (B) Clustering heat map of metabolites in Qssg and Lc fruits. There are obvious
differences between the two samples. (C) Effect of adenine combined with UA levels in mice with hyperuricemia. (D) Effect of adenine combined with
ethambutol tablets and acetaminophen on BUN levels in mice with hyperuricemia. (E) Effect of adenine combined with ethambutol tablets and
acetaminophen on Cr levels in mice with hyperuricemia. (F) Effect of adenine combined with ethambutol GAPDH levels in mice with hyperuricemia.
(G) Effect of adenine combined with tablets and acetaminophen on hepatic glycogen levels in mice with hyperuricemia. "*" Indicates significant, “**”
indicates extremely significant.
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78.54% and 80.76% could be mapped to the reference genome. A

total of 43,686 unique genes wereidentified, supplying high-

quality RNA-Seq data for further analyses
Differential gene expression in two
Actinidia arguta Sieb.Zucc. varieties

To identify the DEGs in the mature fruits of two kinds of

Actinidia arguta Sieb.Zucc., the correlation coefficient between
Frontiers in Plant Science 07
gene expression profile clustering and biological duplication was

first analyzed (Figure 4A), indicating there was a large number of

differential expressions between different samples. The gene

expression correlation coefficient level between biological

replication of all samples were greater than 0.8, indicating that

biological replication is very good, and the data can be further

used to determine DEG. According to the FDR (false discovery

rate) values <0.05 and ∣ log2 (fold change) ∣ ≥ 1 between the two

sample groups as the threshold of significantly different gene

expression, it was determined that 6497 was up-regulated and
B

C

D

E F

A

FIGURE 3

Difference of flavonoids in Qssg ang Lc Actinidia arguta Sieb.Zucc., enrichment analysis results of KEGG pathway and structure diagram of Rutin,
Chrysin and Daidzein. (A) Opls-da score map of metabolites in Qssg and Lc fruits, and each point represents an independent biological repeat.
(B) OPLS-DA S-plot of metabolites in Qssg and Lc fruits(p<0.05).(C) KEGG classification map of differential metabolites in Qssg and Lc fruits.
(D) Rutin ionization and mass spectrum.e ionization and mass spectrum of populin. (E) Chrysin ionization and mass spectrum. (F) Daidzein
ionization and mass spectrometry.
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5153 was downregulated between the two sample groups

(Figure 4B). The most abundant items among the 25 biological

process categories were metabolic processes, cellular processes,

and single biological processes. The most representative terms

among the 13 cell component categories were cell part, cell, and

organelle. Among the 10 molecular functional categories, the

most common terms were catalytic activity, binding, and

transporter activity (Figure 5A and Table S4).

4024 DEGs were allocated to 142 KEGG paths (Table S5). The

flavonoid (ko00941), flavonol (ko00944), and secondary metabolite

(ko01110) biosynthesis pathways were all enriched, with the

flavonoid and secondary metabolite pathways being significantly

enriched. Flavonoid biosynthesis and secondary metabolite

biosynthesis are present in the significant enrichment pathway

(Figure 5B and Table S6). The enriched pathways could be further

divided into five categories: cellular processes, genetic information

processing, environmental information, metabolism, and tissue

systems. The metabolism category contained the most pathways

and the highest number of DEGs were involved in amino acid

biosynthesis (ko01230; 185 genes), carbon metabolism (ko01200; 190

genes), and sucrose and starch metabolism (ko00500; 207 genes).
Regulatory analysis of flavonoid
biosynthesis and differential gene
expression in two kinds of mature
Actinidia arguta Sieb. Zucc.

KEGG analysis and gene functional annotations were two

strategies to determine which DEGs encode enzymes related to

flavonoid biosynthesis, flavonoid and flavonol biosynthesis, and

secondary metabolite biosynthesis. The results showed that 50 DEG
Frontiers in Plant Science 08
genes, including 6 UGT9491 genes, 16 LOC genes, 2 AT2 genes, 2

CHS, 3 C4Ha genes, 1 HCT gene, 1 CCoAOMT gene, 1 F3H gene, 2

LAR2 genes, 2 4CL, 1 VIT, 4 PAL, and 1 GSCOC gene, were

significantly up-regulated in the two varieties, 2 CFOL genes, 1

CHIa gene, 1 C4Ha gene, 1 DFR gene, 1 LAR2 gene,1 LOC gene,

and 1 LSAT gene were significantly down-regulated in the two

varieties (Table S7).
qRT PCR was used to confirm the results
of DEGs related to flavonoid biosynthesis

To test the expression of DEGs related to flavonoid biosynthesis

in the fruits of the two varieties at maturity, Twenty structural genes

(1 CsUGT134, 1 LAR2, 2 C4H, 1 CFOL, 1 CHI, 2 LOC, 1 GSCOC, 1

CCoAOMT, 1 DFR, 1 AT2,2 4CL,1 VIT,4 PAL,1 CHS) were

quantified by qRT-PCR. The detected genes were highly consistent

between the RNA-Seq and qPCR results according to Reverse

transcriptase polymerase chain reaction results(Figure 6). The

relative expression of CFOL, CsUGT134, PAL, C4Ha, CHS, and

LOC in Lc was significantly higher than that in Qssg; the relative

expression of CHIa, LAR2, GSCOC, and CCoAOMT in regulating

flavone content in Qssg varieties was significantly higher than that in

Lc varieties. The result confirmed the transcriptomics-derived data.
Correlation between transcripts and
flavonoid derivatives

To comprehend the pathway and regulatory structural genes

of flavonoid biosynthesis in the two main varieties of Actinidia

arguta Sieb.Zucc. fruit, the quantitative changes of flavonoids and

transcripts in the fruit ripening stage of Actinidia arguta
BA

FIGURE 4

Differential gene expression between Qssg and Lc Actinidia arguta Sieb.Zucc.. (A) MA map of differential genes between Qssg and Lc fruits.
(B) Columnar chart of the differential gene number in Qssg and Lc fruits.
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Sieb.Zucc. were tested and analyzed by studying the interaction

between transcriptomics and metabolomics. Based on the results

of DEGs and Dems rich in flavonoid biosynthesis pathway, it was

annotated that 20 structural genes and regulatory groups show a

higher correlation with the biosynthesis pathway of flavonoid

compounds Chrysin, Rutin, and Daidzein (Table S8). Their

interaction network is shown in (Figures 7A–C). According to

the analysis of the pathway diagram in Figure 7A, DFR, F3’H, and

FLS compete with the substrate dihydrokaempferol DHK.

According to the gene expression analysis in Figure 7C, FLS has
Frontiers in Plant Science 09
relatively high expression and high activity of its coding enzyme,

which boosts the synthesis of Rutin. It was also found that the

relative content of Rutin accumulated in the sample was high

(Figure 7B). The LOC expression was comparatively low, and the

accumulated Chrysin and Daidzein substances were relatively low.

According to the analysis in the pathway diagram in

Figure 7A, DFR, F3’H, and FLS compete with the substrate

dihydrokaempferol DHK. According to the gene expression

analysis in Figure 7C, FLS has relatively high expression and

high activity of its coding enzyme, which finally promotes the
B

A

FIGURE 5

Classification of secondary entries of Qssg and Lc fruit difference genes. (A) Column chart of quantitative statistics of Qssg and Lc KOG
functional classification. (B) Statistical map of the number of differential genes contained in the secondary go entries of Qssg and Lc.
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synthesis of Rutin. The relative content of Rutin accumulated in

the sample was high (Figure 7B); the expression of LOC and the

relative contents of Chrysin and Daidzein was relatively low.
Discussion

Flavonoids are substances that have been studied in depth

and at length in traditional Chinese medicine. They exist widely

throughout the kingdom Plantae. Many studies have focused on

the abilities of flavonoids to reduce blood lipid levels, inhibit
Frontiers in Plant Science 10
lipid peroxidation, relieve coughs, eliminate phlegm and asthma,

and exert anti-tumor, anti-hepatotoxicity, anti-inflammatory,

analgesic, antibacterial, and antispasmodic effects. Substances

known to reduce uric acid include quercetin, luteolin, apigenin,

puerarin, catechins, and dyestuffs, but there have been few

studies into the uric acid-lowering activities of Rutin, Chrysin,

and Daidzein.

In this study, extensive targeted metabolomics methods were

used to compare the flavonoids present in the fruit of two varieties

of Actinidia arguta Sieb.Zucc. cultivated in Northern China. 9

classes and 125 kinds of flavonoids were detected in the fruits of
BA

FIGURE 6

qRT PCR confirmation map of the differential flavonoid-related gene expression in Qssg and Lc Actinidia arguta Sieb.Zucc. fruits. (A) The relative
expression levels of 16 structural genes regulating flavonoids in Lc varieties were higher than those in Qssg varieties. (B) The relative expression
levels of the four structural genes regulating flavonoids in Lc varieties were lower than those in Qssg varieties. Most of the selected genes
showed a high correlation between the qPCR and RNA-seq datasets, thus validating the transcriptome data. ( 2^-△△Ct data value of the
internal reference gene is ACTIN).
BA

C

FIGURE 7

Flavonoid biosynthesis pathway.Metabolite content and regulatory structure gene network in Qssg and Lc fruits. (A) Biosynthetic pathway of
Rutin, Chrysin, and Daidzein in Qssg and Lc fruits. (B) Determination of gene expression in Rutin, Chrysin, and Daidzein biosynthesis pathway in
Qssg and Lc fruits. (C) Determination of metabolites in Rutin, Chrysin, and Daidzein biosynthesis pathway of Qssg and Lc fruits.
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the two varieties; these included 39 kinds of differentially

accumulated flavonoids, accounting for 31.2% of the total

flavonoids detected. This demonstrated that there were

significant differences in flavonoid composition and

accumulation between different varieties. The types and

proportions of different flavonoids found in the fruits were as

fo l lows : 51 .2% flavonol s , 14 .4% flavonoids , 9 .6%

dihydroflavonoids, 9.6% flavonols, 1.6% chalcones, 2.4% flavone

carboglycosides, 4.8% dihydroflovonols, 0.8% isoflavones, and

5.6% procyanidins. They are mainly distributed in 3 metabolic

pathways, among which the flavonoid and flavonol biosynthesis

pathways mainly include kaempferol-3-O-neohesperidin,

luteolin-7-O-neohesperidin, quercetin- 3-O-Sambubiglycoside,

quercetin-3-O-(2”-O-xylosyl)rutinoside, kaempferol-3-O-

rutinoside; quercetin-3-O-rutinoside (Rutin); the flavonoid

biosynthesis pathway mainly includes naringenin-7-O-glucoside,

isoflavin, and Chrysin; the secondary metabolite biosynthesis

pathway mainly includes kaempferol-3-O-rutinoside, Daidzein.

The relative content of flavonoids in the fruit of the variety Lc was

increased by comparing it with the fruit of the variety Qssg

Actinidia arguta Sieb. Zucc.These data provide a strong basis for

the enrichment study of flavonoids in Actinidia arguta Sieb. Zucc.

and also provide a valuable theoretical and practical basis for

breeding new varieties of Actinidia arguta Sieb.Zucc. and

developing food and drug homologous functional foods.

The flavonoids Rutin, Chrysin, andDaidzein were isolated from

the fruit of the main variety of Actinidia arguta Sieb. Zucc.

cultivated in northern China and tested for their uric acid-

reducing activity. The results showed that Chrysin, Rutin, and

Daidzein could reduce serum levels of UA, BUN, Cr, and

GAPDH in mice to varying degrees. We, therefore, speculate that

uric acid production in mice (in response to purine-rich food

ingestion or catabolism of substances such as nuclear proteins and

nucleic acids) may be inhibited by reducing the activities of ADA

and/or XO. Increases in liver glycogen content in mice may be due

to inhibition of glycolysis by flavonoids through the promotion of

gluconeogenesis, reduction of free glucose in the blood, promotion

of the remedial synthesis pathway of nucleotides, and decreases in

serum uric acid content. This study, therefore, has strong practical

significance for the prevention and control of humanHUA through

the comprehensive development of Actinidia arguta Sieb.Zucc. as

a treatment.

There are two general kinds of genes involved in the

biosynthesis of plant flavonoids: structural genes, which encode

enzymes that catalyze the flavonoid biosynthesis, and regulatory

genes, which regulate the structural genes’ expression levels (Gupta

et al., 2011; Li et al., 2012; Chen et al., 2017). Transcriptomics

analysis identified 43,686 genes involved in flavonoid biosynthesis

in the fruits of two Actinidia arguta Sieb. Zucc. varieties, including

11,650 differentially expressed genes. These genes regulate

metabolism, cellular processes, genetic information processing,

environmental information, and tissue systems in the Actinidia

arguta Sieb. Zucc. fruit. KEGG enrichment analysis and gene
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function annotation identified 20 structural genes encoding 50

known flavonoid biosynthesis-related enzymes, with most of the

genes highly correlated between the qPCR and RNA-seq datasets.

The correlation analysis between the transcriptomics and

metabolic spectrum revealed the expression level of some

structural genes to be bound up with the accumulation of

particular flavonoids, indicating that the expression of these

flavonoid biosynthesis genes contributed to the accumulation of

flavonoids in the fruit ripening of the two main Actinidia arguta

Sieb. Zucc. cultivars. Across many plants, naringin, kaempferol,

kaempferol, myricetin, dihydromyricetin, and dihydro quercetin

are catalyzed by positively regulating the expression of CHS,

CHI, F3H, F3’H, and FLS (Liu et al., 2002; Deavours and Dixon,

2005; Liu et al., 2016; Wang et al., 2017; Matsui et al., 2018;

Wang et al., 2019a; Jin et al., 2022; Li et al., 2022b). In addition,

CHS, CHI, F3H, CFoL, LOC, LSAT, FNSI, DFR, F3’H, FLS, and

HIDHmay play structural or regulatory roles in the biosynthetic

pathways of the flavonoid compounds chrysin (Flavone1), rutin

(Flavone2) and daidzein (Flavone3). DFR, F3’H, and FLS

compete with the substrate dihydrokaempferol (DHK). FLS

expression and the encoded enzyme activity were high, which

ultimately promotes Rutin accumulation. LOC expression and

the levels of Chrysin and Daidzein were relatively low.

In conclusion, the research results will continue to expand our

further development of Actinidia arguta Sieb. Zucc. resources in

northern China, and will further promote our exploration of the

molecular basis of using flavonoids in Actinidia arguta Sieb. Zucc. to

prevent and control hyperuricemia and its biosynthesis.
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