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Abstract 

Background: Heart failure (HF) is characterized by a series of adaptive changes in energy metabolism. The use of 

metabolomics enables the parallel assessment of a wide range of metabolites. In this study, we appraised whether 

metabolic changes correlate with HF severity, assessed as an impairment of functional contractility, and attempted to 

interpret the role of metabolic changes in determining systolic dysfunction.

Methods: A 500 MHz proton nuclear magnetic resonance (1H-NMR)-based analysis was performed on blood 

samples from three groups of individuals: 9 control subjects (Group A), 9 HF patients with mild to moderate impair-

ment of left ventricle ejection fraction (LVEF: 41.9 ± 4.0 %; Group B), and 15 HF patients with severe LVEF impairment 

(25.3 ± 10.3 %; Group C). In order to create a descriptive model of HF, a supervised orthogonal projection on latent 

structures discriminant analysis (OPLS-DA) was applied using speckle tracking-derived longitudinal strain rate as the 

Y-variable in the multivariate analysis.

Results: OPLS-DA identified three metabolic clusters related to the studied groups achieving good values for 

R2 [R2(X) = 0.64; R2(Y) = 0.59] and Q2 (0.39). The most important metabolites implicated in the clustering were 

2-hydroxybutyrate, glycine, methylmalonate, and myo-inositol.

Conclusions: The results demonstrate the suitability of metabolomics in combination with functional evaluation 

techniques in HF staging. This innovative tool should facilitate investigation of perturbed metabolic pathways in HF 

and their correlation with the impairment of myocardial function.
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Background
Heart failure (HF) is one of the most common chronic 

diseases in the USA and Europe [1]. Approximately 

1–2 % of the adult population in developed countries suf-

fers from HF [2] and, despite the availability of innovative 

therapies, it continues to be associated with an annual 

mortality rate of 10 %.

A growing body of evidence highlights the potential 

involvement of a decrease in cardiac energy metabolism 

in the pathogenesis and progression of HF [3]. During 

this metabolic remodeling, changes in substrate utiliza-

tion, oxidative phosphorylation, and high-energy phos-

phate metabolism occur. Cardiac energy metabolism 

can be fully evaluated in animal models or in myocardial 

specimens obtained by biopsy or from explanted hearts, 

but human evaluations in vivo are limited to the assess-

ment of glucose and fatty acid turnover rates [4], oxida-

tive phosphorylation [5], and ATP transfer by PET or 

NMR [6].

Metabolomics (MBS) is the study of the complete pro-

file of small-molecule metabolites in an organism and 

may provide a metabolic overview, not only resulting 

from changes in the expression of genes and RNA, but 
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also as a result of protein activity and environmental fac-

tors, including nutrition and drug therapies [7, 8]. MBS 

has been shown to have a substantial impact on the inves-

tigation of various cardiovascular diseases [7, 8] and the 

number of studies on its application for HF assessment 

is growing [9–11], however, sometimes with conflicting 

results [9, 10]. Recently, mass spectrometry-based profil-

ing of plasma metabolites was performed in over 400 HF 

patients by Cheng et al. in order to assess the diagnostic 

and prognostic value of MBS in HF. �eir results showed 

that MBS is able to provide significant prognostic value, 

independent of brain natriuretic peptide (BNP) and other 

traditional risk factors [11].

In our study, a myocardial contractility parameter 

derived from echocardiography was used to build a 

metabolomic model of HF in which the metabolic vari-

ables are associated to systolic function, in order to bet-

ter identify metabolites linked to cardiac function rather 

than to the general metabolic status. Our aims were to 

verify the ability of this approach to discriminate HF 

patients from healthy subjects, and also to identify indi-

viduals with different degrees of myocardial dysfunction 

on the basis of their specific metabolic profiles.

Methods
Study design and population

�e study was approved by the Institutional Ethics Com-

mittee (Azienda Ospedaliero-Universitaria, University of 

Cagliari) and was performed in accordance with the Dec-

laration of Helsinki. Enrolled subjects were informed of 

the purpose and methodology of the study and their writ-

ten consent was obtained prior to inclusion.

�e study population included patients with HF 

(Table  1) who were consecutively admitted to our divi-

sion, and control subjects matched for sex, age, and body 

mass index, randomly selected from patients attending 

the departmental Outpatient Clinic (Table 1). �e inclu-

sion criterion was presence of HF, diagnosed in accord-

ance with the European Society of Cardiology’s HF 

Guidelines [2]. Subjects with cachectic disease, non-con-

gestive hepatic or renal dysfunction, heritable metabolic 

disorders, or those who had previously undergone meta-

bolic therapy were excluded from the study. �e exclu-

sion criterion for controls was the presence of more than 

one cardiovascular risk factor (overweight, high low-den-

sity lipoprotein and triglycerides, diabetes, hypertension, 

or habitual smoking).

�e study population consisted of three groups: 9 

controls (Group A), 9 HF patients with mild-moderate 

impairment of left ventricle ejection fraction (LVEF 

35–50  %; Group B), and 15 HF patients with severe 

LVEF impairment (LVEF < 35 %; Group C). Patients and 

controls underwent a full cardiovascular assessment, 

including medical history evaluation, physical exami-

nation, blood pressure measurement, 12-lead electro-

cardiogram (ECG), and echocardiographic analysis. In 

addition, two blood samples were obtained by venipunc-

ture of the antecubital vein (4-mL Vacuette with EDTA 

and 10-mL Li-Heparin Vacuette, for BNP and MBS anal-

ysis, respectively).

BNP

Plasma concentrations of BNP were measured using a 

non-competitive immunofluorimetric test with high 

specificity (Triage® BNP Test, Biosite Inc., San Diego, 

CA, USA; normal values <100 pg/mL).

Conventional echocardiography and TDI and ST imaging

Echocardiographic assessments were conducted using a 

commercial system equipped with tissue Doppler imag-

ing (TDI) and speckle tracking (ST) echocardiography 

(Toshiba Artida-Toshiba Corp., Tochigi, Japan). At least 

three sets of loops, consisting of three consecutive car-

diac cycles, were stored for offline analysis. LVEF was 

measured using the modified Simpson’s biplane method 

from the apical 4- and 2-chamber view. Early filling (E 

wave) and atrial (A wave) peak velocities and E/A ratios 

were measured from transmitral flow. Using TDI, peak 

systolic (S), early diastolic (E′), and late diastolic (A′) 

mitral annular velocities were measured. Moreover, 

global longitudinal strain (GLS) and strain rate (SR) were 

evaluated using ST echocardiography.

MBS analysis

Heparinized blood samples were immediately centri-

fuged at 4000 rpm for 15 min. �en, the supernatant was 

divided into aliquots and stored at −80 °C.

Plasma chloroform/methanol/water extraction for NMR

All plasma samples were thawed and centrifuged at 

12,000  rpm for 10 min. �e supernatants were processed 

using chloroform/methanol/water extraction. Specifically, 

800  µL of plasma was processed with 2.4  mL of chloro-

form/methanol (1:1, v/v) and 350 µL of H2O, vortexed for 

30  s, and centrifuged at 4500  rpm for 30  min. After cen-

trifugation, the hydrophilic and lypophilic fractions were 

collected. Approximately 1 mL of the hydrophilic fraction 

was dried overnight using a speed vacuum concentra-

tor (Eppendorf) and stored at −80 °C until NMR analysis. 
1H-NMR acquisition parameters and further data process-

ing details are reported in the Additional file 1: Supporting 

Information.

Multivariate statistical analysis

�e multivariate statistical methods employed were: (1) 

the unsupervised principal components analysis (PCA) 
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for sample distribution overview, (2) projection to latent 

structures by partial least squares (PLS) regression, and 

(3) orthogonal partial least square discriminant analysis 

(OPLS-DA) for the identification of the most discrimi-

nant variables that characterize groups. PCA is a tech-

nique that transforms the variables in a dataset into a 

smaller number of new latent variables, known as prin-

cipal components. Each new principal component repre-

sents a linear combination of original variables, enabling 

the generation of a compact description of the variation 

within a given dataset. �e OPLS-DA model maximizes 

the covariance between the measured data of the X-var-

iable (peak intensities in NMR spectra) and the response 

of the Y-variable (class assignment) within the groups. 

Useful parameters obtained from the OPLS-DA model 

were the variable influence on projection (VIP) scores 

and coefficients that describe the metabolite influence 

over all validated components. �e model quality was 

evaluated on the corresponding partial least square dis-

criminant analysis (PLS-DA) model using a 7-fold cross-

validation and permutation test. �e generated R2 and Q2 

values described the predictive ability and the reliability 

of the fitting, respectively.

Univariate statistical analysis

A one-way ANOVA (analysis of variance) with Fisher’s 

LSD test was performed on the anthropometric, clinical, 

and echocardiographic parameters of the three groups. 

Furthermore, the same test was applied to the NMR data, 

in order to assess which spectral regions, and therefore 

which metabolites, were mainly involved in each of the 

various groups. A P value of p < 0.05 was considered sta-

tistically significant.

�e receiver operating-characteristic (ROC) curve was 

analyzed with sensitivity versus 1 −  specificity, and the 

area under the curve (AUC) was calculated using the free 

software package ROCCET: ROC Curve Explorer and 

Tester. An AUC  >  0.8 indicates a test with a good dis-

crimination between controls and patients.

Results
No appreciable differences were observed in any of the 

anthropometric parameters between the three groups 

(Table 1). In agreement with the study design, patients in 

group B were modestly symptomatic or virtually asymp-

tomatic, showing a substantial hemodynamic balance. 

Patients in group C showed clinical signs of HF. Each 

group included one subject affected by type II diabetes 

mellitus. All patients in groups B and C received optimized 

Table 1 Anthropometric and  clinical data of  the study 

population

BMI body mass index, BSA body surface area, DCM dilated cardiomyopathy

* p < 0.02 vs Group B

Group A  
(N = 9)

Group B  
(N = 9)

Group C 
(N = 15)

Age (years) 64.9 ± 8.3 66.1 ± 7.9 66.7 ± 9.9

M/F 7/2 8/2 10/5

Height (m) 1.63 ± 0.06 1.67 ± 0.51 1.67 ± 0.45

Weight (kg) 67.2 ± 12.4 74.0 ± 10.6 72.9 ±9.6

BMI (kg/m2) 25.2 ± 3.2 26.4 ± 3.9 26.04 ± 2.7

BSA (m2) 1.74 ± 0.17 1.85 ± 0.20 1.84 ± 0.26

Diabetes 1 1 1

NYHA class

 I 9 8 0

 II 0 1 2

 III 0 0 13*

 IV 0 0 0

Aetiology

 Ischaemic – 4 7

 Valvular – 1 1

 DCM – 4 6

 Hypertensive – 0 1

 Other – 0 0

Drugs

 β-blockers 9 14

 ACE-inhibitors – 6 9

 ARBs – 3 6

 Diuretics – 7 15

 Aldosterone 
antagonists

– 3 5

 Ca-antagonists – 4 1

 Antiarrythmics – 1 2

 Acetylsalicylic 
acid

– 6 10

 Antiplatelet 
agents

– 0 1

 Anticoagulants – 1 2

 Statins – 7 9

 Other hypolipi-
demic 
agents

– 0 3

 Insulin – 1 1

 Oral antidia-
betic agents

– 1 1

 Digoxin – 1 1

 Nitroderivates – 2 0

 Other antihy-
pertensive 
drugs

– 1 0
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standard therapy, in line with their functional class and rel-

ative international recommendations [2]. Additionally, no 

significant differences were found between the two groups 

in terms of pharmacological treatment (Table 1).

BNP

BNP values were in the normal range in groups A and 

B, but they were significantly increased in group C 

(p < 0.001; Fig. 1). �e fact that healthy subjects in group 

A cannot be distinguished from those of group B on the 

basis of BNP is also noteworthy.

Echocardiographic data

LVEF featured normal values in group A, a mild to mod-

erate impairment in group B vs. group A (p < 0.001), and 

a severe decrease in group C vs. group A and group B 

(p < 0.001). �e progressive deterioration of LV function 

in the transition from group A to group B, and from the 

latter to group C, was confirmed by TDI and ST (Table 2; 

Fig. 2).

A statistically significant difference in E/E′ ratio was 

observed in group C vs. group A, while no difference 

was found between group B and either group A or C 

(Table  2). However, E/E′ revealed a trend of moderate 

diastolic dysfunction in group B.

Intraobserver variability was previously reported for 

our EchoLab [12].

1H-NMR

�e representative 1H-NMR spectra of plasma hydro-

philic extracts of each of the three groups of samples are 

shown in Fig. 3. �e spectral peaks were assigned to indi-

vidual metabolites on the basis of literature research and 

using the 500  MHz library from Chenomx NMR suite 

7.1 (Chenomx Inc., Edmonton, Alberta, Canada). Major 

peak assignments of plasma samples are illustrated in 

Fig. 3 and chemical shifts of all metabolites are summa-

rized in Additional file 1: Table S1.

An unsupervised PCA was initially applied to the whole 

dataset to visualize possible metabolic differences among 

the groups, while at the same time identifying potential 

outliers. �e first three PCs described 64.8 % of the vari-

ance, and all the samples were within the Hotelling’s T2 

confidence ellipse. �e PC2 vs. PC3 score plot (Fig.  4a) 

shows a clear tendency of samples to cluster on the basis 

of systolic function. In particular, along PC2, group C is 

separated form groups A and B, while these two are sepa-

rated along PC3. �ese results clearly show that the three 

classes of samples have different metabolic profiles.

To investigate which metabolites significantly contrib-

ute to the observed separation, an OPLS-DA was applied 

to the spectral data. �e score plot of the first and sec-

ond predictive latent variable is shown in Fig.  4b. As 

illustrated, a good separation was observed between the 

three groups of samples. OPLS-DA modeling produced 

a model with three components, with R2(X)  =  0.64, 
Fig. 1 BNP values in the three groups

Table 2 Echocardiographic data in the three groups

LVEF left ventricle ejection fraction, S systolic peak velocity, GLS global 

longitudinal strain, E early ventricular �lling peak velocity, A atrial (late) peak 

velocity, E′ early mitral annular velocity, A′ late mitral annular velocity

* p < 0.05 vs Group A; # p < 0.01 vs Group A; ##p < 0.001 vs Group A; ∫p < 0.05 vs 

Group B; ∫∫p < 0.001 vs Group B

Group A Group B Group C

Systolic function

 LVEF (%) 61.3 ± 5.8 41.9 ± 4.0## 25.3 ± 10.3##,∫∫

 S (cm/s) 7.63 ± 3.0 5.42 ± 1.91# 4.62 ± 1.84##,∫

 GLS (%) 15.6 ± 3.2 9.9 ± 1.5## 4.9 ± 2.2##,∫∫

Diastolic function

 E/A 0.89 ± 0.30 0.74 ± 0.30 1.79 ± 1.70

E′/A′ 0.78 ± 0.30 0.78 ± 0.38 0.79 ± 0.45

E/E′ 9.83 ± 3.78 12.50 ± 5.95 21.07 ± 12.21*

Fig. 2 Longitudinal SR values in the three groups (one way ANOVA 

p < 0.0001)
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R2(Y)  =  0.59, and Q2(Y)  =  0.39, thereby indicating a 

good capacity for fitting and prediction. Additional 

information was obtained from the OPLS-DA model, 

through the study of the VIP scores and regression coef-

ficients. In particular, VIP analysis allowed the identifi-

cation of the metabolites contributing to the separation. 

�e VIP value was used to reflect variable importance. 

Variables with a VIP score >1 were taken into considera-

tion and the corresponding coefficient values for each 

class were studied to attribute discriminant metabolites 

to a specific group. �e positive or negative value of the 

coefficient was used to determine upward or downward 

variation of the metabolite in the investigated spectral 

regions. �e most significantly characterizing metabo-

lites are reported in Table  3 and shown in Additional 

file 1: Fig. S1.

To understand the actual trend of the metabolites 

highlighted in Table 3, their relative concentrations were 

determined using Chenomx NMR and spectral regions 

were normalized and subjected to a one-way ANOVA 

test. Four metabolites (2-hydroxybutyrate, glycine, meth-

ylmalonate, and myo-inositol) showed significant varia-

tion. �e performance of these metabolites was evaluated 

individually in the three groups with box-and-whisker 

plots (Fig.  5). Interestingly, group C exhibited a lower 

2-hydroxybutirate content, but a higher content of gly-

cine and myoinositol than groups A and B. Conversely, 

the methylmalonate content was higher in group B 

than in groups A and C. �e combined performance of 

2-hydroxybutyrate, glycine, and myo-inositol was evalu-

ated using ROC curves. �e levels of the three metabo-

lites allowed to distinguish patients with severe HF, both 

Fig. 3 Spectral area assignments of a representative 1H NMR spectra of plasma obtained from a group A, b group B, and c group C. Peaks 

2-hydroxybutyrate (2-HB), 3-hydroxybutyrate (3-HB), 3-methyl-2-oxovalerate (oxoVal), 4-aminobutyrate (4-AB), acetate (Ac), alanine (Ala), choline 

(Cho), citrate (Cit), creatine (Cr), creatinine (Crn), fucose (Fuc), glucose (Glc), glycine (gly), glycero-3-phosphocholine (G-PCho), glutamate (Glu), 

glutamine (Gln), guanidoacetate (GAc), isobutyrate (IsoB), isoleucine (Iso), lactate (Lac), leucine (Leu), methionine (Met), methylmalonate (MMal), 

methylhistidine (MHis), myo-inositol (myo-I), N-acetyl groups (A-groups), phenylacetylglycine (PAgly), phosphocholine (PCho), proline (Pro), trimeth-

ylamine N-oxide (OTMA), tryptophan (Trp), and tyrosine (Tyr)
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from those with mild to moderate disease and from 

healthy controls with an AUC  >  0.80 (Additional file  1: 

Fig. S2).

Finally, a PLS regression analysis was carried out in 

order to evaluate the relationship between different meta-

bolic profiles and longitudinal SR (Fig. 6). �e good over-

all correlation resulting from PLS regression [R2 = 0.750, 

and the R2(Y) and Q2(Y) values of 0.746 and 0.58, respec-

tively] indicates the efficiency of the regression fitting and 

predictability of the resulting PLS mode. �e permuta-

tion test, used to evaluate the statistical significance of 

the estimated predictive power of the model, shows an 

R2(Y) intercept of 0.293 and a Q2(Y) intercept of −0.222, 

thus confirming the validity of the PLS model.

Discussion
�is study focused on the MBS investigation of two 

groups of HF patients with mild-to-moderate and severe 

impairment of systolic function. �e two groups of 

patients were compared with a control group using lon-

gitudinal SR as a landmark continuous variable of systolic 

function in order to try to trace metabolic alterations 

Fig. 4 PCA scores (a) and OPLS-DA scores plots (b) of 1H NMR spectra of plasma samples: group A (circle), group B (box), and group C (triangle)
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linked to myocardial contractility. �e results show that: 

(a) MBS can identify a metabolic fingerprint specific for 

each HF stage, independent of BNP levels, which were 

similar in controls and patients with mild-to-moderate 

HF, and (b) different metabolic profiles are related to 

contractile function, as determined by longitudinal SR.

Cardiac metabolic abnormalities in HF may reflect 

both an increase in energy demand, and an impaired 

ability to generate a sufficient amount of ATP. Given that 

the heart is highly dependent on ATP, impairment of this 

process can rapidly induce contractile dysfunction [13, 

14]. In order to recruit its residual contractile reserve, 

the failing heart consumes a disproportionate amount of 

energy, which is associated with worse clinical outcomes 

[15]. On this basis, longitudinal SR was used as an index 

of cardiac contractility and was correlated with metabolic 

Table 3 Metabolites identi�ed to have a VIP score greater than 1 through the OPLS-DA model of the three sample classes 

and corresponding regression coe�cient values

Higher value of the coe�cients indicates higher comparative level of the corresponding metabolite in the class

Class Variables VIP Coe�cient values Metabolites

Group A Group B Group C

Group A 1.94 2.46 0.14 −0.07 −0.06 Acetate

0.9 2.40 0.07 0.05 −0.11 2-Hydroxybutyrate

0.98 2.27 0.11 −0.02 −0.08 Leucine/isoleucine

0.94 1.92 0.08 −0.01 −0.07 Leucine/isoleucine

1.66 1.88 0.05 0.03 −0.08 2-Hydroxybutyrate/leucine

1.18 1.67 0.09 −0.04 −0.04 3-Hydroxybutirate/ fucose

1.46 1.52 0.06 −0.01 −0.05 Alanine/isoleucine

1.5 1.44 0.04 0.03 −0.06 Alanine/isoleucine

2.42 1.26 0.06 −0.06 0.01 3-Hydroxybutirate/glutamina

1.1 1.22 0.05 0.01 −0.05 3-Methyl-2-oxovalerate

1.7 1.20 0.04 −0.05 0.01 2-Hydroxybutyrate

1.22 1.18 0.04 −0.05 0.01 3-Hydroxybutirate/ fucose

Group B 3.38 3.45 −0.22 0.13 0.08 Proline/methanol

3.9 2.12 −0.08 0.07 0.01 Glucose

3.22 1.78 −0.05 0.11 −0.06 Glycero-3-phosphocholine

3.94 1.76 −0.06 0.07 −0.01 Glucose/creatine

1.9 1.71 −0.07 0.11 −0.04 4-Aminobutyrate

3.42 1.54 0.03 0.08 −0.10 Glucose

3.74 1.45 −0.01 0.01 0.00 Glucose

1.26 1.44 −0.04 0.09 −0.05 Methylmalonate

1.86 1.25 −0.01 0.06 −0.05 4-Aminobutyrate

2.34 1.17 −0.03 0.07 −0.04 3-Hydroxybutirate/glutamate

3.98 1.07 −0.08 0.04 0.04 2-Hydroxybutyrate

2.7 1.01 −0.07 0.05 0.02 Citrate

1.34 4.43 0.00 −0.23 0.22 Lactate

3.7 3.05 −0.15 0.01 0.12 Glucose

Group C 3.66 2.52 −0.12 −0.02 0.13 Glucose/glycero-3-phosphocholine

3.62 2.50 −0.11 −0.03 0.13 Myo-inositol/glycero-3-phosphocholine

3.58 2.40 −0.07 −0.05 0.11 Myo-inositol/glycine

3.82 1.94 −0.03 −0.06 0.08 Glucose/guanidoacetate

4.14 1.65 0.00 −0.09 0.08 Lactate

3.3 1.51 −0.03 −0.05 0.07 Myo-inositol/glycine/OTMA

4.02 1.48 −0.08 0.01 0.06 2-Hydroxybutyrate

2.06 1.36 −0.06 −0.04 0.10 N-acetyl groups

4.06 1.09 −0.05 −0.01 0.05 Myo-inositol/creatinine

3.14 1.02 −0.08 0.03 0.04 Methylmalonate
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changes that occur in HF. Several studies have shown 

that this parameter deteriorates precociously in cardiac 

disease, prior to the onset of clinical symptoms and LVEF 

reduction [16]. In addition, longitudinal SR is predictive 

of death or hospitalization for HF and adds an additional 

value in predicting death from any cause beyond LVEF 

Fig. 5 Box-and-whisker plots of the metabolite levels in patients with mild-moderate and severe HF (groups B and C groups) relative to healthy 

controls (group A). P values from one-way ANOVA with Fisher’s LSD test are displayed in the upper right corner of each plot

Fig. 6 Predicted vs. measured longitudinal SR from PLS regression with NMR metabolic profiles of the three groups [group A (circle), group B (box) 

and group C (triangle)] as X-variables and longitudinal SR as the Y-variable
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[17]. �e use of this parameter as the Y-variable in a mul-

tivariate analysis enabled us to identify the fingerprints of 

two well-separated stages of HF, that are associated with 

compensated myocardial function and advanced cardiac 

failure, highlighting the different metabolic frameworks 

correlated with the corresponding clinical features, and 

with increasing functional and metabolic impairment.

�e use of MBS in HF has been recently evaluated in 

several studies, sometimes with contrasting results. In 

2013, Tenori investigated the metabolomic fingerprint of 

the disease and its relationship with the levels of N-ter-

minal of the prohormone brain natriuretic peptide and 

New York Heart Association (NYHA) classes in patients 

with chronic HF. He concluded that MBS is able to iden-

tify a metabolic cluster of HF, which correlates with the 

presence of disease, irrespective of its severity [10]. On 

the other hand, a study similar to ours classified HF 

patients in three groups of progressive disease severity, 

each characterized by a specific metabolic fingerprint [9]. 

�e authors used the level of myocardial energy expendi-

ture (MEE) as an index of cardiac performance. However, 

MEE is derived from the stroke volume and is based on 

the assessment of global LV performance. Parameters 

derived from regional and global LV function are not very 

sensitive, because they are highly dependent on loading 

and are likely to produce abnormal results if obtained 

under unusual load conditions, as is the case in HF [18]. 

More recently, Cheng et al. performed a mass spectrom-

etry-based profiling of plasma metabolites in over 400 

HF patients and 114 control subjects in order to evaluate 

the diagnostic and prognostic value of metabolomics in 

HF. �e metabolic fingerprint resulting from this critical 

study consisted of histidine, phenylalanine, spermidine, 

and phosphatidylcholine C34:4, and has been shown to 

have a diagnostic value comparable to that of BNP. In 

addition, using the combined endpoints of death or HF-

related rehospitalization, a metabolic panel, including 

the asymmetric methylarginine/arginine ratio, butyryl-

carnitine, spermidine, and the total amount of essential 

amino acids, revealed a prognostic value independent of 

traditional risk factors, and more robust than that of BNP 

[11].

BNP is a widely used biomarker for the diagnosis and 

management of patients with recognized HF and an 

extensive body of evidence supports its use [2]. It is there-

fore important to emphasize that, while the OPLS-DA 

model based on different metabolic profiles in our study 

showed a significant cluster among the three groups, 

BNP levels were unable to differentiate patients with 

mild-to-moderate HF (group B) from control subjects 

(group A). �e normal values of BNP that we found in 

patients with mild-to-moderate LV impairment probably 

reflect the balanced clinical condition of these patients. 

�ese findings seem to be consistent with the results of 

Cheng et al., as stated above [11].

�e OPLS-DA model identified a set of metabolites 

that were decisive in determining the clustering of data 

originating from our subjects: glycine, myo-inositol, 

2-hydroxybutyrate, and methyl-malonate. Beyond the 

diagnostic and clinical implications, the identification 

of the metabolic parameters in this study can lead to 

a deeper understanding of the pathophysiology of HF. 

In this respect, the broad spectrum of metabolites and 

their particular combination in MTB fingerprints could 

promote a more accurate interpretation of the adaptive 

metabolic response of the failing heart.

In myocardial hypertrophy and chronic HF, there is a 

decline in total creatine (Cr), due to a mismatch between 

the need for ATP and its actual production. �e loss of 

Cr is myocardial-specific and occurs approximately one 

order of magnitude faster than that of ATP. Cr is synthe-

sized primarily in the liver and pancreas from the amino 

acids glycine and arginine [19]. In accordance with this 

finding, we observed an increase in the levels of glycine 

in HF patients compared to controls, as well as a greater 

presence of this amino acid in group B than in group 

A. In patients with end-stage HF, there was an elevated 

myocardial activity of arginine-glycine aminotransferase, 

which decreases during recovery, due to therapy with 

left ventricular assist devices. �is suggests that a spe-

cific metabolic response to HF involves high rates of local 

Cr synthesis [20]. In addition to its role in Cr synthesis, 

intracellular glycine has a protective effect against reoxy-

genation injury in mitochondria of cardiomyocytes sub-

jected to ischemia or Ca2+-stress under normoxia [21]. 

Moreover, a role of this metabolite has been suggested 

in preserving energy production in the mitochondria of 

cancer cells or myocytes during acute cellular stress [22].

Group C was also characterized by higher levels of 

myo-inositol, an essential component of the plasma 

membrane that acts as an intracellular second messenger 

[23]. A rapid turnover of myo-inositol and of its phos-

phate compounds was identified after adrenergic stimuli 

[24] and was associated with sarcoplasmic calcium over-

load and the development of cardiomyopathies in rats 

[25]. Although a recent report of Santulli showed that 

leaky ryanodine, but not inositol-trisphosphate (I3P), 

receptors/calcium channels are able to determine mito-

chondrial Ca2+ overload and dysfunction in HF [26], Go 

et  al. previously has demonstrated a decrease in ryano-

dine receptors mRNA by 31 % in the left ventricle of fail-

ing hearts, while IP3 receptors and the relative amount 

of IP3 binding sites were increased by, respectively 123 % 

and approx. 40 % [27]. �erefore, the observed increase 

in the levels of myo-inositol could be part of a compen-

satory response in advanced stages of HF. On the other 
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hand, the same IP3 receptors may play a role in cardio-

myocyte apoptosis and, therefore, in the progression of 

HF [28, 29].

�e significance of changes in circulating and intracar-

diac ketone bodies in HF is still under investigation. Alex-

ander et al. found high serum levels of 2-hydroxybutyrate 

in dilated cardiomyopathy patients. On the contrary, 

we observed lower concentrations of this metabolite in 

group C than in the control group. Previous MBS stud-

ies showed that the extraction of cardiac ketone bodies 

from the plasma depends on their concentration in cir-

culation [30, 31], rather than on the presence and degree 

of LV dysfunction [29]. �ese results were confirmed by 

Psychogios, who reported higher levels of 2-hydroxybu-

tyrate in healthy subjects than in patients who underwent 

heart transplantation [32].

�e last metabolite identified in the univariate analy-

sis, methylmalonate, was higher in patients from group B 

than in the other two groups. Kang and Chung, in 2011 

and in 2012, respectively, demonstrated the presence of 

high levels of methylmalonate in urine samples of HF 

patients. Methylmalonate is an intermediate of one of 

the anaplerotic pathways, thus helping to maintain the 

efficiency of the Krebs cycle. Changes in the Krebs cycle 

precede the deterioration of systolic function [33] and 

a correlation between efficiency of the citric acid cycle 

and systolic function was detected [34]. On the basis of 

our data, it is conceivable that in HF patients in hemo-

dynamic equilibrium, the increase of methylmalonate is 

caused by the activation of the anaplerotic pathway, in an 

attempt to maintain the necessary production of chemi-

cal energy through the Krebs cycle. �is ability could 

have helped to maintain the functional capacity and 

hemodynamic compensation of these patients.

Taken together, the findings of our study describe 

a unique metabolic profile, discriminating not only 

between HF patients and controls, but also between 

HF subjects with mild-to-moderate and severe systolic 

dysfunction, suggesting that a progressive depletion 

of energy reserves could be the cause of the develop-

ment of cardiac impairment. �erefore, MBS associated 

with functional data, such as longitudinal SR, appears 

to accurately reflect the metabolic changes underly-

ing myocardial dysfunction in HF. Our data suggest a 

boosted energetic metabolism in early/compensated HF 

states, and a depletion of metabolic capacity that leads 

to a progressive systolic impairment in more severe HF 

cases.

Limitations of the study
�e small number of samples included in this study rep-

resents a considerable limitation. However, the sensitivity 

of the technique, together with the complimentary 

approaches used (clinical, echocardiographic, and MBS) 

enabled us to construct a promising model.

Conclusions
MBS, in association with more traditional cardiac param-

eters, could be a valuable method for performing a thor-

ough examination of the pathophysiology of HF and the 

metabolic alterations that accompany its deterioration.

From a practical point of view, the characterization of 

a myocardial impairment that is still free of symptoms 

could enable a more careful monitoring of at-risk individ-

uals, allowing the anticipation of systolic function impair-

ment and/or the development of an episode of overt 

failure. Clinical applications could be various: (1) moni-

toring chronic HF patients, including those waiting for a 

heart transplant, as well as relatives of subjects affected 

by heritable cardiomyopathies, and (2) early detection of 

cardiac involvement during cardiotoxic treatments (e.g., 

anthracycline therapy).

In addition, recognition of the metabolic pathways 

involved in the progression of the disease may help to 

identify new therapeutic targets at the molecular level, 

which could in the future enable medical providers to 

stop or reverse the myocardial and systemic adaptations 

of cardiac insufficiency.
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