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Abstract

Background: To better assess potential hepatotoxicity of nanomaterials, human liver HepG2 cells were exposed for
3 days to five different CeO, (either 30 or 100 ug/ml), 3 SiO, based (30 ug/ml) or 1 CuO (3 pg/ml) nanomaterials
with dry primary particle sizes ranging from 15 to 213 nm. Metabolomic assessment of exposed cells was then
performed using four mass spectroscopy dependent platforms (LC and GC), finding 344 biochemicals.

Results: Four CeO,, 1 SiO, and 1 CuO nanomaterials increased hepatocyte concentrations of many lipids,
particularly free fatty acids and monoacylglycerols but only CuO elevated lysolipids and sphingolipids. In respect to
structure-activity, we now know that five out of six tested CeO,, and both SiO, and CuO, but zero out of four TiO,
nanomaterials have caused this elevated lipids effect in HepG2 cells. Observed decreases in UDP-glucuronate (by
Ce0,) and S-adenosylmethionine (by CeO, and CuO) and increased S-adenosylhomocysteine (by CuO and some
Ce0,) suggest that a nanomaterial exposure increases transmethylation reactions and depletes hepatic methylation
and glucuronidation capacity. Our metabolomics data suggests increased free radical attack on nucleotides. There
was a clear pattern of nanomaterial-induced decreased nucleotide concentrations coupled with increased
concentrations of nucleic acid degradation products. Purine and pyrimidine alterations included concentration
increases for hypoxanthine, xanthine, allantoin, urate, inosine, adenosine 3’5 -diphosphate, cytidine and thymidine
while decreases were seen for uridine 5-diphosphate, UDP-glucuronate, uridine 5-monophosphate, adenosine 5™
diphosphate, adenosine 5-monophophate, cytidine 5-monophosphate and cytidine 3-monophosphate. Observed
depletions of both 6-phosphogluconate, NADPH and NADH (all by CeO,) suggest that the HepG2 cells may be
deficient in reducing equivalents and thus in a state of oxidative stress.

Conclusions: Metal oxide nanomaterial exposure may compromise the methylation, glucuronidation and reduced
glutathione conjugation systems; thus Phase Il conjugational capacity of hepatocytes may be decreased. This
metabolomics study of the effects of nine different nanomaterials has not only confirmed some observations of the
prior 2014 study (lipid elevations caused by one CeO, nanomaterial) but also found some entirely new effects (both
SiO, and CuO nanomaterials also increased the concentrations of several lipid classes, nanomaterial induced
decreases in S-adenosylmethionine, UDP-glucuronate, dipeptides, 6-phosphogluconate, NADPH and NADH).
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Background

Metal oxide nanomaterials have many uses including:
coatings, grinding, ceramics, catalysis, electronics, bio-
medical, energy and fuel additives (for CeO,); biocides,
sensor applications, catalysis and electronics (for CuO);
and additives for rubber and plastics, composites for
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concrete and other construction materials and biomed-
ical applications such as drug delivery and theranostics
(for SiOy). It is difficult to evaluate nanomaterials to de-
termine their degree and type of toxicity [1]. For nano-
materials a major determinant of their biological action
may be their surface properties, particularly their ability
to donate or accept electrons [2] and/or to generate free
radicals and to form reactive oxygen species (ROS) [3].
After the development of the genomics and proteo-
mics technologies, metabolomics has more recently been
developed and used as an analytical tool in general
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biological research [4] and toxicological studies (Kitchin
et al. [5]). The analytical platforms most commonly used
to determine cellular metabolites are liquid chromatog-
raphy tandem mass spectroscopy (LC-MS/MS), LC-MS/
MS with hydrophilic interaction liquid chromatography
(HILIC), gas chromatography-mass spectroscopy (GC-MS)
and nuclear magnetic resonance (NMR). Metabolomics
offers environmental and toxicological researchers the op-
portunity to determine the concentrations of many import-
ant cellular biochemicals in one experiment and provide
complimentary information to traditional toxicological tests
and other modern ‘omics approaches to biological questions.

In the nanotoxicology world, functional assays have
recently been proposed as a way to better predict and
connect the physical-chemical properties of nanomater-
ials and their potential adverse health outcomes [6].
Metabolomics based determinations of the altered con-
centrations of many important cellular biochemicals
offer many good possible functional assays as intermedi-
ates in the long causal chain between physical-chemical
properties of nanomaterials and eventual toxicity.

This study partnered with the Metabolon Inc. (Durham,
NC) which used four analytical platforms to measure as
many HepG2 (human liver) metabolites as possible — liquid
chromatography-tandem mass spectroscopy with positive
ionization (LC-MS/MS+), liquid chromatography-tandem
mass spectroscopy with negative ionization (LC-MS/MS-),
HILIC LC-MS/MS with negative ionization and gas chro-
matography mass spectroscopy (GC-MS) (with positive
ionization via electron impact ionization). With metabolo-
mics tools such as these, cellular biochemicals from differ-
ent metabolic classes can be determined — lipids, energy
molecules, amino acids, peptides, carbohydrates, purines,
pyrimidines and nucleotides etc. A prior metabolomics
study had discovered several interesting biochemical
changes in TiO, and CeO, exposed HepG2 cells — a large
number of lipid increases, particularly of fatty acids and
many decreases in glutathione-related biochemicals and in-
creased asymmetric dimethylarginine by two CeO, nano-
materials [5]. Because of strong interest in the prior CeO,
nanomaterial induced effects, five new CeO, nanomaterials
were selected for the current study (labelled W4, X5, Y6,
Z7 and Q) (Table 1). CeO, based materials offer the possi-
bility of Ce™* <—> Ce*? redox cycling [7] and the generation
of ROS. Additionally, atomic layer deposition (ALD) using
tris(isopropylcyclopentadienyl)cerium was attempted in an
effort to produce a CeO, coated SiO, nanoparticle with a
large amount of Ce*? on the surface (nanomaterials labelled
SiO, K1 and SiO, N2). Finally, a CuO nanomaterial was in-
cluded because of interest in the toxicity of soluble copper
ions and the oxidative stress theory of nanomaterial toxicity
(all treatment nanomaterials are summarized in Table 1).

In vitro toxicity testing allows us to link molecular,
biochemical and cellular functions to physicochemical

Page 2 of 16

properties of nanomaterials, adverse biological outcomes
and better predict risk. The specific major goals of this
metabolomics study was to replicate and/or further ex-
plore: 1) the findings of lipid elevations (e. g. fatty acids)
caused by one CeO, nanomaterial, 2) the depletion of
glutathione and gamma-glutamyl amino acids by several
metal oxide nanomaterials (both CeO, and TiO,), 3) ele-
vations in asymmetric dimethylarginine found with 2
CeO, nanomaterials and 4) to explore the metabolomics
effects of two new metal oxide nanomaterials based on
SiO, and CuO and 5) to discover possible functional
assays. Overall, functional assays can link individual
experimental data with proposed mechanisms of action
to inform adverse outcome pathway model development
in support of regulatory decisions.

To assess potential hepatotoxicity issues from oral
and/or inhalation exposure routes, 72 h exposures were
conducted in human liver HepG2 cells. Thus, human
liver HepG2 cells were exposed for 3 days to five differ-
ent CeO, (either 30 or 100 pg/ml), 3 SiO, based (30 pg/
ml) or 1 CuO (3 pg/ml) nanomaterials with dry primary
particle sizes ranging from 15 to 213 nm. Nanomaterial-
exposed cells were examined for their ability to cause
cellular toxicity and effects on the concentrations of
cellular metabolites in HepG2 cells (Table 1, from 15 to
213 nm dry size). In our study 344 cellular metabolites
were found and relatively quantified. This metabolomics
study included sufficient biochemicals to examine the
biochemical components of several major cellular sys-
tems — lipid homeostasis, cellular energetics, hepatic
conjugation and excretion, urea cycle, polyamines,
purines and pyrimidines. These metabolomics experi-
mental results are discussed in the context of systems
biology and the toxicology of nanomaterials.

Methods

Nanomaterials and their characterization and dispersion
via ultrasound

The nine nanomaterials used in this study (Table 1) were
selected to further determine the biological properties of
various forms of CeO, nanomaterials as well as some
other metal oxide based nanomaterials (SiO, and CuO).
These nine nanomaterials are being used by three re-
search laboratories at the US EPA in a coordinated re-
search effort with many different scientific disciplines
and experimental techniques.

Physical-chemical characterization of these nanomaterials
was conducted by a variety of techniques for dry primary
particle size, range of particle size, surface area and percent
purity mostly by their manufacturer (Table 1). The nano-
materials were obtained from six different vendors (Alfa
Aesar, Aldrich, Sigma, Nanoxides, US Research Nanoma-
terials and Nanostructured and Amorphous Materials).
When given, the chemical purity was high (>99.5%). The
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primary dry particle sizes ranged from 15 to 213 nm. All
nine nanomaterials in Table 1 have been physical-chemical
characterized by nine different techniques by a University
of Kentucky group led by Dr. Eric Grulke and the results
will be published elsewhere.

For dispersion prior to cell culture, measured amounts
of bovine serum albumin (BSA, Sigma-Aldrich, product
A7906) at 200 mg/ml and phosphate buffered saline
(PBS) were added to the dry nanomaterials in a glass
vial. The general protein coating recipe of Dale Porter
[8] was followed with the mass ratio of the nanomaterial
to BSA of 1/0.6. For example, in preparation of CeO,
“Z7” for study, 16.04 mg nanomaterial CeO, Z7,
9.624 mg BSA and 4.95 ml of PBS were combined. Son-
ication occurred at a nanomaterial concentration of
3.21 mg/ml and 5.0 ml of volume. Sonication was done
at room temperature with a S-4000 Misonix Ultrasonic
Liquid Processor with a 2.5 in. cup horn (part #431-A,
Farmington, NY) for two 10 min cycles of 13 s on, 7 s
off with a total power of about 131 watts and a total
energy of 166,120 joules. Excess unbound albumin was
removed by pelleting (9300 x g for 5 min) the nanoma-
terials and resuspending them in cell culture media
without any sonication of the cell culture media.

After nanomaterial dispersion, the degree of agglomer-
ation was determined by dynamic light scattering at 35°
C at each treatment concentration used for metabolo-
mics study and sometimes one lower concentration. Size
and zeta potential measurements were made both just
after sonication and 72 h later at the end of treatment
period with a Malvern Model Zen3600 Zetasizer (data in
Additional file 1: Table S1).

Chemicals and cell culture methods

The chemicals and suppliers used in this study were: BSA
(Sigma) and fetal bovine serum, GlutaMAX™, sodium pyru-
vate, fetal bovine serum, Dulbecco’s Phosphate-Buffered
Saline and phosphate buffered saline (all from Invitrogen).
Human Hepatocellular Carcinoma Cells, designation
HepG2 (ATCC catalog number HB-8065), were obtained
and expanded through passage seven using Basal Medium
Eagle (Gibco) containing 2 mM GlutaMAX™, 1 mM
sodium pyruvate and 10% fetal bovine serum and then fro-
zen in liquid nitrogen. This combined cell culture media is
called Eagle’s mimimum essential medium (EMEM). Cells
were subsequently carefully thawed and expanded before
experimentation at passages 10 and 11. Cultures were
maintained in a humidified incubator at 37 °C and 95% air/
5% CO, during the study. Cells were plated at 80,000 cells/
cm? in vented T-25 flasks (Corning) for 48 h prior to nano-
material exposure. After sonifcation, centrifugation and
resuspension, working stocks of each nanomaterial were
prepared at 1.0 mg per mL and diluted using culture
medium. Individual flasks were dosed with 200 uL per cm®
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of the appropriate nanomaterial dilution to achieve either
100 pg/ml (CeO, Q), 30 pg/ml (7 other nanomaterials) or 3
pg/ml (CuO) exposure concentrations. Cultures were then
incubated for 72 h prior to harvesting. At 72 h, the media
was vacuum aspirated and the flasks rinsed with warm
Dulbecco’s Phosphate-Buffered Saline (DPBS). The DPBS
was aspirated and cells were scraped free of the flask and
collected in labeled 15 mL tubes using 1 mL of warm DPBS
by micropipette. The cells were then centrifuged at room
temperature at 100 x g for 5 min. The supernatant was
carefully removed via vacuum aspiration and the cellular
pellet was flash frozen on dry ice before transfer to -80° C
freezer for storage prior to metabolomic analysis.

Cytotoxicity assays and kits

Many common cytotoxicity assays [MTT (3-[4,5-dimethyl-
2-thiazol]-2,5-diphenyl-2H-tetrazolium  bromide), MTS
(4-[5-[3-(carboxymethoxy)phenyl]-3-(4,5-dimethyl-1,3-thia-
zol-2-yl)tetrazol-3-ium-2-yl]benzenesulfonate), alamar blue
(resazurin), neutral red (3-amino-7-dimethylamino-2
methylphenazine hydrochloride), ATP and simple visual
examination of the cells] have been used by our laboratory
seeking to avoid or minimize interferences from the nano-
materials themselves. After 72 h of culture with various
nanomaterials, cytotoxicity assays based on MTT (Sigma-
Aldrich, St Louis, MO), MTS (Promega, Madison, WI) and
alamar blue (Cell Tier-Blue, Promega, Madison, WI) were
performed in accordance with the enclosed kit directions.
Alamar blue and MTS were used for all nanomaterial cyto-
toxicity experiments except for CeO, Q (MTT only was
used). A PerkinElmer 1420 Multilabel Counter Victor®V
plate reader was used for all cytotoxicity assays. Cytotox-
icity assays results were always checked with each other
and versus visual assessment of the cells to ensure the cyto-
toxicity assays were functioning properly.

Study design

For metabolomics study, three different exposure con-
centrations (3, 30 or 100 pg/ml) were used for the nano-
materials. Only CuO at 3 pg/ml and CeO, Q at 100 pg/
ml were not run at 30 pg/ml. The intent was (a) to give
approximately equally cytotoxic concentrations of the
nine different nanomaterials and (b) if feasible to com-
pare CeO, nanomaterials at 30 pg/ml for better com-
parison to a prior study of our group that used this
exposure dose for two prior CeO, nanomaterials [5].
The number of samples per group is either five for treat-
ments or six for controls. Two different days were used
for HepG2 culturing. On day 1 most of the CeO, (W4,
X5, Z7 and Q) and the CuO treatment groups were run.
On day 2 nanomaterials JO, K1 and N2 (the 3 SiO, based
nanomaterials) and CeO, Y6 were run together.
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Statistical analysis
Biochemical ion signals were processed by normalization
to Bradford protein concentration, log transformation
and imputation of missing values, if any, with the mini-
mum observed value for each compound. Biochemicals
that were detected in all samples from one or more
groups, but not in samples from other groups, were
assumed to be near the lower limit of detection in the
groups in which they were not detected. In this case, the
lowest detected level of these biochemicals was imputed
for samples in which that biochemical was not detected.
Then, Welch’s two-sample t-test was used to identify
biochemicals that differed significantly between experi-
mental groups [9]. In modern gene array work, using the
False Discovery Rate (FDR) is a common method of
controlling false positive (Type I) error rates. Thus, to
account for multiple comparisons in this metabolomics
testing, false-discovery rates were computed for each
comparison via the Q-value method [10]. P values and Q
value false discovery rate-values for all statistical com-
parisons are reported in Additional file 2: Table S2.
Pathways were assigned for each metabolite, allowing
examination of overrepresented pathways. The degree of
statistical significance presented in this study is both the
common P < 0.05 level used if this 0.05 criteria is met by
both P and Q statistics and the more lenient standard of
0.10 if both P and Q are <0.10, because this more lenient
standard is less likely to miss some true biological effects.
Tables 3, 4, 5, 6 and 7 and Additional file 2: Table S2 have
color high lighting to graphically display these P <0.05
and <0.10 significance levels. The text of the paper uses
the P<0.05 level of claimed statistical significance with
the P < 0.10 level mentioned only for NADPH.

Results

Dispersion and agglomeration of nanomaterials (size and
zeta potential)

By dynamic light scattering, these sonicated nanomaterial
samples displayed a fairly large hydrodynamic diameter in
both water based cell culture media (EMEM with 10%
fetal bovine serum) and PBS (Additional file 1: Table S1).
In cell culture media the mean sizes by peak intensity
ranged between 154 to 540 nm for CeO,, 312 to 554 nm
for SiO, and 148 to 188 nm for CuO (Additional file 1:
Table S1). These hydrodynamic sizes are much larger than
the dry primary particle sizes of 15, 22.5, 25, 200 and
213 nm for the five different forms of CeO, studied. In cell
culture media the mean zeta potentials ranged between
-4.4 to -10.3 mV for CeO,, -4.7 to —10.5 for CuO and
-4.7 to -8.7 for SiO, (Additional file 1: Table S1).

The coating of SiO, K1 and SiO, N2 and ICP-MS results
Our attempt to use atomic layer deposition to put a thin
layer of CeO, on the JO SiO, based particles failed. By
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ICP-OES analysis performed at both Missouri University
of Science and Technology and the US EPA, almost zero
Ce was found in nanomaterials SiO, K1 and SiO, N2
(Additional file 3: Table S3).

Cytotoxicity results

The exposure concentrations used in this metabolomics
study (3, 30 or 100 pg/ml) were below concentrations
which produced a full degree of cytotoxicity in HepG2
cells via common colorimetric and fluorimetric assays
(Table 2). At the administered dose, no sign of cytotox-
icity was observed for CeO, W4, CeO, X5 and CeO, Y6;
a low degree of cytotoxicity for CeO, Z7, CeO, Q, SiO,
K1 and SiO, N2; and a medium degree of cytotoxicity
for SiO5 JO and CuO (Table 2).

Metabolomic results

For the metabolomics results the nanomaterial exposure
concentrations were 3 pg/ml for CuO, 30 pg/ml for
CeO, W4, CeO, X5, CeO, Y6, CeO, Z7, SiO, JO, SiO,
K1 and SiO, N2 and 100 pg/ml for CeO, Q.
Additional file 4: Table S4 presents the number and
direction of statistically significant metabolite concentra-
tion alterations following nanomaterial treatments.
Overall, the number of P < 0.05 total metabolite concen-
tration changes, increased and decreased biochemical
concentrations versus concurrent controls were: 75, 59
and 16 for CeOy W4; 117, 99 and 18 for CeO, X5; 67,
19 and 48 for CeO, Y6; 157, 115 and 42 for CeO, Z7;
124, 70 and 54 for CeO, Q; 52, 43 and 9 for SiO, JO; 9,
3 and 6 for SiO, K1; 1, 1 and 0 for SiO, N2; and 226,
145 and 81 for CuO, respectively. With the exception of
CuO (226 altered metabolite concentrations at a
medium degree of cytotoxicity), the number of signifi-
cantly changed metabolite concentrations did not correl-
ate with degree of cytotoxicity observed for the other
eight nanomaterials.

Altered lipids

In Tables 3, 4, 5, 6 and 7, the displayed numbers are the
ratio of the treatment metabolite concentration mean
divided by the concurrent control metabolite concentra-
tion mean. Increased concentrations of medium and
long chain fatty acids, polyunsaturated fatty acid (n3 and
n6), fatty acid branched, fatty acid dicarboxylate and
monoacylglycerols were observed after treatment with
several CeO, (W4, X5, Z7 and Q), SiO, (JO only) and
CuO nanomaterials (Tables 3 and 4). In this study far
fewer increases were noted with fatty acid metabolites,
lysolipids, carnitine, inositol metabolites, phospholipid
metabolites, phospholipidserine, diacylglycerol and
sphingolipid metabolites, showing the selectivity of this
lipid effect (Tables 3 and 4). CuO was the only nanoma-
terial to induce many increases in these classes of less
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Table 2 Cytotoxicity of the CeO,, SiO, and CuO nanomaterials in HepG2 cells

Nanomaterials

Exposure (pg/ml)

1 3 10 30 100 300 1,000
CeO, W4 - K lowCT  mediumCT | highCT
Ce0Q, X5 - lowCT lowCT highCT
CeO, Y6 ' ' = . - mediumCT | highCT
CeO, Z7 ' ' | - lowCT % highCT highCT | highCT
CeQ,Q . . . lowCT lowCT highCT
Sio, Jo - - mediumCT ¥ | highCT highCT highCT
Sio, K1 . . . . | lowCT * .mediurnCT highCT highCT
8i0, N2 HNE e lowCT # | mediumCT | mediumCT | highCT
cu0 [ e [ | mediumCT ¥ . highCT. highCT .
Key:
--- = Not cytotoxic
lowCT = One or two cytotoxicity parameters are beginning to respond, other parameters are not yet
responding
mediumCT = substantial evidence of cytotoxicity in 2 or more parameters
highCT = clearly cytotoxic by 2 or more responding parameters with high degree of change
% = single dose used for the metabolomics study

Both the number and degree of response was considered for each of the eight parameters germane to “cytotoxicity”
The eight cytotoxicity parameters are visual microscopic cellular appearance, alamar blue, MTS, cellular protein and microalbumin concentrations and release of

lactate dehydrogenase, alanine aminotransferase and aspartate aminotransferase

responsive lipids (Tables 3 and 4). The most active lipid-
elevating nanomaterials were W4, X5, Z7 (all are CeO,),
SiO, JO and CuO. CeO, Y6 and the two ALD coated
SiO, based nanoparticles (K1 and N2) did not elevate as
many lipid metabolite concentrations. P and Q numbers
are tabulated for all 344 biochemicals for every nanoma-
terial treatment comparison with concurrent controls in
Additional file 2: Table S2.

Hepatic conjugation systems (methylation,
glucuronidation and glutathione)

Treatment of HepG2 cells with nanoparticles from the
day-1 set (CeO, X5, CeO, Z7, CeO, Q and CuO)
resulted in declines in S-adenosylmethionine (SAM) and
several increases in S-adenosylhomocysteine (SAH) (by
CeO, X5 and CeO, Z7) (Table 5), though methionine
levels were largely unchanged. In the liver methylation
capacity is required to support Phase II methylation of
xenobiotics to facilitate clearance. The lower SAM levels
were accompanied by a sharp decline in serine (by CeO,
X5, CeO, Z7, CeO, Q and CuO), in day-1 nanomaterial
treated cells. Serine is consumed in the regeneration of
methionine from homocysteine, in the one-carbon
metabolism pathway. Most of the day-1 nanoparticle-
treated samples had SAM below the limit of detection,
however 5 of 6 day-1 control cell samples had SAM
levels above the lower limit of measurement. SAM levels
were relatively unchanged with exposure to the day-2

nanoparticles (CeO, Y6, SiO, JO, SiO, K1 and SiO, N2)
and declines in serine were also limited and not statisti-
cally significant.

The three observed UDP-glucuronate fold decreases
were rather large, 0.12 (CeO, Z7), 0.12 (CeO, Q), and
0.11 (CeO, Y6) of concurrent control values (Table 5).
Glucuronate itself was significantly decreased by nano-
materials CeO, Z7, CeO, Q and CuO (Table 5). Uridine
diphosphate (UDP) is an important metabolite for cellular
glycogen synthesis, protein glycosylation and glucuronida-
tion. After treatment with several nanoparticles, a de-
creases in UDP as well as the measured UDP-sugars
UDP-glucuronate, UDP-N-acetylgalactosamine and UDP-
N-acetylglucosamine were also observed (Table 5).

It is quite surprising that reduced glutathione (GSH)
levels were below detection limit in most control and
treated samples in this study (some GSH was detected
in three of our samples). Similar to prior results with 4
TiO, and 2 CeO, nanomaterials [5], there were de-
creases observed in gamma-—glutamyl amino acids with
several CeO, and SiO, based nanomaterials (Table 5).
Most effected were gamma-—glutamylthreonine, gamma-—
glutamylvaline and gamma-glutamylgluatamate. In con-
trast, the CuO nanomaterial caused large fold increases
in four gamma-glutamyl-amino acid compounds —leu-
cine (9.0 fold increase), —isoleucine (10.2), —threonine
(7.1) and —valine (9.2) but not —glutamine (0.66) or —
glutamate (1.07) (Table 5).
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Table 3 Nanomaterial effects on responsive lipids
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wa A3 i Q il CuQ K1 Wz
Sub Pathway Biochemical Name cutt cult cutt cunt culz cul cul2 cui2
. laurate (12-0) 1.25 0.89 1N 0.96 1.06

Madium Chain Fatty Acid
S-dedecenoate (12-1n7) 094 128 0.9% 1.02
myristate (14:0) 1.03 092 107 114
myristoleate (14:1n5) 0y 123 117
palmitate {16:0) 107 0.94 1.26 0.98 1.07
palmitoleats {16:1n7) 08 1.13 115
margarate (17:0) 0493 141 mm m
10-heptadecencate (17 1n7) 092 134 11
stearate (18-0) 1.28 093 1 104 108

Long Chain Fatty Acid

oleate (18:1n3) 104 1.07 1.1
cigvaccenate (18:1nT) 109 0.96 1.03 1.16
nonadecanaate (19.0) 095 146 119 1.06
10-nonadecencate (19:1n3) 095 128 1.2
arachidate (20:0) 118 118 043 119 1M
eicasencate (20:1) 1.4 047 1.26 125
erucate (22:1n%) i 163 137 0.92 0.95 1.27 11
P (EPA; 20:5n3) m 112 1.02 121 122
docosapentaenoate (nd DPA; 22:5n3) 101 143 135
docosahexaenoate (DHA; 22:6n3) 0.98 136 132
inoleate {18:2n5) 1.06 0.86 1.1 108
;?Iuleﬂale [alpha or gamma:; {18:3n3 or 107 0.86 1.06 104
:r';g o 06 Fatty Acd | ook (20:3n3 or nE) 119 12 0.0 0.96 132 0.94 0.47
arachidonate (20 4nf) 112 094 102 123 119
adrenate (22 4n6) 1.29 09 089 B 123 134
docosapentaencate (6 DPA, 22 5n6) 099 1147 12
docosadiencate (22-2n6) 107 0.96 1.83 14 1.15
dihamo-linoleate (20:2n) 1.4 0.98 0.92 1.1 1.08
mead acid (20.3n9) 09 oar 1.3 1 1.06
Fatty Acid, Branched 15-methylpalmatate 108 0.86 125 099 102
17-mathylstearate 093 imn 132 118
Fatty Acid, 0 2-hydroxyglutarate 0rs 1.18 1.09 102 M 09 0TS
| 2-hydroxcyadipate 129 1.3 08 111 129 128
Fatty Acid Metaboksm (aiso |butyrylcamitine 146 159 149 135 112 1.18 1.08 118
BCAA Metabolism) propionylcaniting 195 116 15 13 15
1-mymistoyighyceral (14:0) 094 13 135
[2-myristoylghycenl (14:0) 0.88 1147 126
1-palmitoyglycerl {16:0) 0.98 121 1.4
2-palmitoyighyceral (16.0) 104 0.93 1.09 1.2
1-margarcylglycerol (17-0) 13 0.8 1.74 1.24 125
1-stearnyighycerol (18:0) 1.04 0.87 1.02 119
2-stearnyighycerol (18:0) 11 1.06 0.96 156 144
T-leaylghyesrcl (18:1) 0.98 1.58 1.46
[2-cleaylghyceral (18.1) 136 114 1.03 B 143 142
| 1-inoleoyighycerol (18:2) 0.86 1.35 13
2-inoleaylghyceral (18:2) 132 172 117 1.04 215 11
1-arachidonylghycerol (20:4) 148 113 0.9% 142 116
| 2-arachidonoyiglycerol (20:4) 13 1.35 0.88 1 243 218 113
sicasencylglycescl (20.1) 19 118 106 0.95 133 122
1-docosahexasnoyighyceral {22:6) 0.98 1.79 12
1-dihamo-nolenylghyceral (20:3) 1.1 0.98 17 135
2-monodocosahexaencn® 128 129 1.1 0.ar 28 21 1.27
1-palmitoleaylghyesral (16.1)" 1.03 167 1.32
2-paimitoleaylghyceral (16:1)" 1.08 1.96 1.47

Darker shading (red for increases, green for decreases) means P and Q are both <0.05; Lighter shading means P and Q are both <0.10

The numbers are the ratio of the treated mean divided by the control mean

Cellular energetics, reducing capacity and oxidative stress
(maltotriose, 6-phosphogluconate, NADPH, NADH and
NAD* and dipeptides)

Seven out of nine nanomaterial treatment groups (only
CeO, Y6 and SiO, N2 did not) increased maltotriose con-
centrations ranging from 3.45 to 24.4 fold of concurrent con-
trol values. Three increases were above 10 fold increases
(134 by CeO, W4, 14.8 by CeO, X5 and 24.4 by CuO).
Maltotriose levels can represent a measure of glycogen deg-
radation, from which maltotriose is derived. The first step in
conversion of glucose 6-phosphate to 6-phosphogluconate
generates NADPH. 6-phosphogluconate was  significantly
depleted by four of the 5 day-1 set of nanoparticles (Table 6).
NADPH concentrations were numerically decreased in all

nine nanoparticle treatments (range 0.34 to 0.81) (Table 6),
achieving statistical significance for nanoparticle CeO, Y6 at
the P <0.05 level, while the CeO, Z7, CeO, Q and SiO, JO
particles were statistically significant at the lower P<0.10
level, relative to controls. NADH concentration was signifi-
cantly decreased (P < 0.05) by CeO, Y6 (0.45). No significant
elevations were seen for NADH or NADPH. Both nicotina-
mide (2 decreases) and NAD" were significantly decreased
by three nano CeO, treatments (CeO, Z7, CeO, Q and
CeO, Y6) (Table 6). Nicotinamide riboside (a NAD™ precur-
sor) was significantly elevated in all three cases where NAD*
was depleted (CeO, Z7, CeO, Q and CeO, Y6) (Table 6).
CuO nanomaterial exposure decreased (P <0.05) the
concentrations of all 16 dipeptides ranging from 0.07 to
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Table 4 Nanomaterial effects on less responsive lipids

Page 8 of 16

Kt N2
Sub Pathway Biochemical Name ci2 cir2
113 134
nydroxybutyrylcamitine” 163 161
Fatty Acid Metabolism |hexanoyloamitine 235 075 0.93 077
(Acyl Camitine) myristoylcamitine 1.09 1.27 1.05 1.23
0.86 128 0.69 0.86 0.1 1.24 125 112 119
stearoylcamitine 0.82 101 0.81 122 112 083 127 113 122
ot Metabotom deoxycamitine 107 1.28 09 0.69 087 0.1 105 103 101
camitine 112 o 116 1.22 1 112 1.08 114 107
Fatty Acid Monohydroxy_|2-hydroxystearate 118 112 8 06 6 128 119 102
oleic ethanolamide 0.6 0.62 0.8 0.78 1.09 4 4 121 1.07
paimitoy! ethanolamide 0.48 0.6 0.82 ) 076 o 1.12 0.02 072
myo-inositol 0.99 127 115 0.98 0.0 138 101 0.08 0.98
Inositol Metabolism scyllo-nositol 07 18 0.3 0.88 104 125 0.68 09
inositol 1-phosphate (11P) 121 1.06 107 1 113 125 0.04 118
choline 1.08 108 105 0.91 106 106 0.09 101
choline phosphate 0.81 0,66 0.96 101 0.88
cytidine 5-diphosphocholine 07 107 0.88 0.76 054
glycerophosphoryicholine (GPC) 0.98 104 084 078 0.81
ethanolamine 1.39 125 124
phosphoethanolamine 118 0.66 0.95
cytidine-5'diphosphosthanolarmine
glycerophosphoethanolamine 1
glycerophosphoinositol” 103
1,2dipalmitoy-GPC (16:0/16:0) 113 0.09
pholipid Metabolism 11t caroyl-2-oleoy-GPC (18:0/18:1) 114 0.97 09 0.92
(1‘rz‘aulr,n‘v;owy)l:z—pa\mwmleny\rGPC 100 ot 085 00
Séizzvgy;)zaracmdmy\rGPl o o st o1
o ;(npyr\wsgt?;glsy"zdecosahexasmy\ ; 008 s o
(1 stearyh )2 arachidonoyl-GPE 0.86 093
E P
Tleor Zdocosahoxaency GPE o ™ oo
1-stearoyl-2-oleoy}-GPE (18:0/18:1) 1.09 034 0.98
®s) |1 -2-oleoy-GPS (18:0/18:1) 0.97 0.84 09
T-palmitoy-GPC (16:0) 0.3 123 1 113
2-palmitoyl-GPC (16:0)° 075 123 116 141
T-palmitoleoyl-GPC (16:1)° 077 128 103 123
2-paimitoleoyl-GPC (16:1)” 0.76 123 0.08 127
1-stearoyl-GPC (18:0) 1.82 184 123
2-stearoyl-GPC (18:0)° 071 175 155 171
T-oleoyl-GPC (18:1) 077 125 106 128
t-inoleoyl-GPC (18:2) 08 147 083 103
T-arachidonoy -GPC (20:4)" 1.08 163 101 1
T-palmitoyl-GPE (16:0) 107 107 0.03 09
T-stearoy-GPE (18:0) 123 117 08 112
2-stearoy|-GPE (18:0)" 116 105 065 12
Lysolipid T-oleoyl-GPE (18:1) 112 105 0.03 0.98
T-inoleoyl-GPE (18:2)" 125 115 082 0.92
T-arachidonoy -GPE (20:4)" 132 111 077 0.93
T-palmitoyl-GP (16:0)" 127 6 139 152
1-stearoyl-GPI (18:0) 1.26 12 122
T-oleoyl-GP (18:1)" 1.68 149 162
Tinoleoyl-GP (18:2)" 129 065 0.99
T-arachidonoy -GPI (20:4)" o 126 0.03 102
T-stearoyl-GPS (18:0)" 1.01 0.98 133 114 116
T-oleoyl-GPS (18:1) 0.04 078 135 147 175
T-palmitoy-GPG (16:0)" 119 122 1558 126 153
1-palmitoyl-GPS (16:0)° 0.93 072 1.49 126 146
T-oleoyl-GPG (18:1)" 1.48 3 143 154
glycerol 6 1.38 134 123 12
(Glycerolipid Metabolism  [glycerol 3-phosphate 0 06 0.95 09 0.88
glycerophosphoglycerol 112 102 0.9
N 1,2dipaimitoylglycerol 4 1.02 152 132 157
1,3-dipalmitoylglycerol 111 113 171 125 126
sphinganine 0.66 0.04 124 119 121
palmitoy! sphingomyelin (¢18:1/16:0) | 1.16 122 1.06 0.1 0.9
stearoyl sphingomyelin (d18:1/18:0) 112 121 108 0.93 103
;"’g';‘,’f;gr”" (@s:/18:1, 113 113 122 1.03 100
sphingosine | oes XD 105 0.84 001
Sphingolipid Metabolism
N-palmitoyl-sphingosine (d18:1/16:0) | 0.67 106 0.02 0.84 0.82
i 18:114:0,
:?2"1%?5?”" (@18:1/14:0, 113 111 1.03 098 1.01
:?g’;?;ruy:“" (18:1724:1, 1.05 125 1.02 086 1
onreemyeln (61527160 @ | 2 | te |

Darker shading (red for increases, green for decreases) means P and Q are both <0.05; Lighter shading means P and Q are both <0.10

The numbers are the ratio of the treated mean divided by the control mean

0.55 fold change. With the exception of CeO, W4, CeO,
X5 and CeO, Z7 induced decreases in the dipeptide gly-
cylleucine, few other dipeptides were decreased by
CeQO,, or SiO, based nanomaterials. CuO was also the
only nanomaterial that caused a large decrease in the
concentration of cysteine (0.07) while elevating cystine
(2.26) (Table 5). This cysteine-cystine redox perturbation
suggests oxidative stress caused by CuO exposure.

Cellular effects (urea cycle, polyamines, purine and
pyrimidine metabolism, nucleotide sugars)

Several urea cycle, creatinine and polyamine pathway
biochemicals were significantly increased by nanomater-
ial treatment, such as creatine (4 increases), creatinine (5
increases), creatine phosphate (4 increases), putrescine
(4 increases) and 5-methylthioadenosine (5 changes with
3 increases) (Table 7). Levels of putrescine, spermidine
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Table 5 Nanomaterial effects on SAM, SAH, glutathione-related and nucleotide sugar metabolites

wa x5 ol ] i
Sub Pathway Biochemical Name Cuht Cult Gt Cutt Cui2
metheoning 0.96 108
N-acetyimathionine 09 1
M-farmiydmathionine 081 083
meshianing sufone 1 0.72
methoning suloide 132 085 0.7 1 0.83 0.87
g‘":";:h“‘r'l‘:e Cysleine, SAM [ ethionine [SAM) 0.44 101 0.8 nsd [T
{S-adenosythomacysieing (SAH) 108 099 112 097 107
2-aminobutyrate 16 08 "o | o0 | i
cystene 1.06 09 0.95 093 088
cystine 103 1.03 118 0.88 1 [E] 106
tausine 05 0.57 058 1.34 073 1.08 107 11
ahvcine 0.67 051 0.92 089 085 086
betaine 061 109 050 0.56 11 [E] KX 115 105
Giycing, Serina and sanng 043 116 os [ k] 093
Threcaine Metaboksm N-acetysering 095 08 0.88 0.97 0.86 075 1.02
threceine 094 086 038 0.8 098 097 067 nar
H-acetykheeaning 083 an 073 [ 103 0.9 09 1
Ghutathione Metabalism  |S-cooproline 1 1.36 1.08 1.1 0.97 0.88 0.9
gamma-ghiamylghramate 101 m 088 101 1.07 [ EL] 46
gamma-ghaamyigitamine 084 14 1 092 1.05 0.5 106
gidamyl Amina | i . 147 147 0.57 101 1 096
Acid gamma-ghatamylisucing 089 0,91 0.83 083 087 1.03 102 101
gamma-ghatamyithreoaine” 0.56 09 .59
gamma-ghutanmyhalne 109 131 0.40 073 065 (X
LUDF glucuonats EEBRE 081 053 0.3 e
guanosing §'-diphospho-fucose 081 1.03 049 0.5 148
LDP-H-acetylglicasamine 0.87 147 017 066 053 0.5
Hucleotids Sugar LD 1e-acetylgalactasamine 096 125 096 066 [ 048
TPl 075 062 126 109 063 08
|gucuronste 1-phosphate” 0.36 .81 11 113 084 054
|gucosamne.6.phosphats 151 036 0,66 054 056 053 059 067
|ghicuranate 0.76 082 098 1.08 031 034
N-acetyiglucosamine 1 0.91 08 112 0.9 105
A I &-ghasphate 1.49 1.16 12 099 0.87 0.57 124 106 113
N-acely-gucosamne 1-phosphate 13 1.48 09 0.96 1.03 13 11 118
MN-acetyineuraminate 109 113 115 10 106 121 108 11
14 0.88 1.04 102 0.92
Ascorbate and Mdarste threcaate 072 103 b 065 134 064
Metabolizm gulonic acid” 114 081 1 07 071

Darker shading (red for increases, green for decreases) means P and Q are both <0.05; Lighter shading means P and Q are both <0.10
The numbers are the ratio of the treated mean divided by the control mean

Table 6 Nanomaterial effects on maltotriose, 6-phosphogluconate, nicotinamide metabolites and dipeptides

Sub Pathway Biochemical Name
Ghycogen Matabolism |maticinosa
E-phosphogluconate
ribose 6-phosphats
S::::;Phnsd!a!e 5-phosphoribosyl diphosphate (PRPP) i i bl
sedoheptuinse T-phosphate 0.82 088 1
ribuloseixylulose S-phosphate 132 123 13
rcotinarude: 093 089 294
ricotinamide rbonuclactide (HMN] 117 1.3
recotinamude nboside 1.06 0.82
Hictnatesnd tcoinamice e e e et 054 156
. e S derine e 103 11 1 0.56 068 061
"“‘::"“! g i 081 0,66 ] 043 0s 042
trigorselling (W-methylnicotinate) 15 118 132
alanylieucine 136 103 128
ghutamine leucing 162 105 129
ghycyliscteucing 1 087 133
ahycyllsucing 1 o8z 1.12
gtycyhaiing 082 [F: 084 098
i=nleucydglyeing 088 [15::] 09 1.06
leucyiglycing 071 138 1 IR
lysylieucine 035 21 167 1.9
Dipeptide =
[phenylalanylalanine 087 1 08T 11
phenylatanmylglycine osr 1 081 102
ctylglyeins 0.86 085 098 0.99
tryptophyigheme. 086 106 101 122
valylghutaming 067 17 087 107
vatylgtycing 058 08 117
valylleucine .64 m 098 1.07
e | 114 0.4 17

leucylghtamme*

Darker shading (red for increases, green for decreases) means P and Q are both <0.05; Lighter shading means P and Q are both <0.10
The numbers are the ratio of the treated mean divided by the control mean
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Table 7 Nanomaterial effects on urea cycle, polyamines, purine and pyrimidine metabolites

o Hz
Sub Pathway Hame Culz Cui2
argnine 081 0.59
orrathane 132 166
proine 085 089
carulline 142 1.4
:.J.:::“?:f"' feganeand | ociruline 124 117
dimathytanginine (SOMA + ADMA] 081 09
N-dalta-acetylornithine 0.98 1.03
trans-4-hydroxypriing 0E | 0B
pro-hydeocy-pro 103 (14
craating 1.3
Creatine Mataboksm [ Bl
creating phosphate r
putrescng 0T 081
speimiding 076 LRE]
¥ h 5 (MTA) 0.5 0.5
N-acetylputrescine [ 102
4-acatamidobutanaate 155 1.09
inosing 0.92 058
hypoanthine 095 [
Puiing xanthme 131 1.32
i 5. [ 075 093
containing xanthosing 159 18
et 12 054
slanten 093 089
adenosine &'diphosphate (ADP) 085 086
adenosine & -maonophasphate (AMS) a57 0.51
adenosine T-manophosphate (T-AMF) 099 121
adenosing Z-monophasphate (7-AMP] 0.7 & m 126
T — ?ﬁﬁme ¥ S-cyclic morophosphate 084 m 092 076 142
filenin® containing adencsine ¥ 5 .diphosphate 131 1 114 101 125
sdensine 175 072 175 077 [
adening N 08 088 [
M1-methyladenosine .05 ot 17 115
NE-methyladenosine 16 0.81 0 1.02 1.02
ME-succmyladencsine 108 161 122
lggt:sme &- monophosphate (5- 0B 029 039 034
guanosine 3-monophasphate (T-GMP)|  0.54 105 0.82
i b : quanosine 11 089 0.91
Guanina comaining quaning 0.8 082
M1-methyiguanosine 175 134 12
NZ-mathylguanasine 15 08 0.95
F-decyguancsing 0.35 10 122
?&:‘::‘:r:g“l’m"g"" orctate 0.67 0.8 101
unidine §-chphasphate UDF) 035 027
uridne: §-monophosphate [UMP) 0.4
uiidne 3-menophosphate (T-UME) 12 0.96
Pysimidine Metabalism idne ] 10
Uracil containing
uracil 1.04 1.06
pseudauriding 085 082
beta-alaning 0.77 08
M-acetyl-bata-alanine 088 099
cytidine &-manaphosphate (5-CMP) 056 0.62
Pyrimiding Matabalism
Cytidne containng cytiding F-manophosphate (3-CMP) 1.58 152
cytdine 0.85 0el
Pyrimiging thymrudine 101 114
Thymine containing thymne 113 149
Punine and Pynmidine |y iohgsphste on 086
Orsidatie Phasg [ % i) 0.75 L]
phasphate 1.06 0.85 043

Darker shading (red for increases, green for decreases) means P and Q are both <0.05; Lighter shading means P and Q are both <0.10

The numbers are the ratio of the treated mean divided by the control mean

and 5-methylthioadenosine were significantly elevated
for many of the CeO, nanoparticles in the day-1 set, but
these biochemical were not elevated in the day-2 nano-
materials (Table 7). CuO exposure increased putrescine
22.7 fold and N-acetylputrescine 63.3 fold, among the
highest elevations observed in this data set. Following
CuO exposure, high putrescine concentration (22.7 fold)
coupled with low ornithine concentration (0.27 fold)
suggest that the enzyme activity of the rate limiting step

of polyamine synthesis, ornithine decarboxylase, may
have been increased. To a much lesser extent this pat-
tern also occurred with CeO, X5 (putrescine (3.58) and
ornithine (0.38)) CeO, exposures.

In the general area of purine and pyrimidine metabol-
ism, there were many nanomaterial induced changes
with both increases and decreases in concentrations
observed. Phosphate ion concentration was significantly
increased in four of the nine comparisons (3 with nano
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Ce02 and 1 with CuO). Nanomaterial exposures often
decreased nucleotide concentrations: adenosine 5’-diphos-
phate (ADP) (2 decreases), adenosine 5’-monophophate
(AMP) (3 decreases), uridine 5’-diphosphate (UDP) (5
decreases), uridine 5'monophosphate (UMP) (4 decreases),
cytidine 5'monophosphate (5'-CMP) (3 decreases) and
cytidine 3’-monophophate (3'-CMP) (3 decreases).

However, there were many examples of increased
nucleic acid degradation products: inosine (4 changes
with 3 increases), hypoxanthine (4 increases), xanthine
(5 increases), urate (5 increases) and allantoin (4
changes, 3 increases). Thus, the overall purine and
pyrimidine pattern is one of decreased nucleotides and
increased nucleic acid degradation products.

In the six component nucleotide sugar biochemical
sub pathway (Table 5), all six members of the group
showed statistically significant (P < 0.05) decreases in 3
or more of the nine treatment groups (often following
CeO, 77, CeO, Q, CeO, Y6, SiO, K1 and SiO, N2 ex-
posure). The nucleotide sugars are important in Phase II
glucuronidation and glycation reactions. Most active
nanomaterials were CeO, Z7, CeO, Q and CeO, Y6;
least active were CeO, X5, SiO, JO, SiO5 K1, SiO, N2
and CuO. There is a major data imbalance here with no
significant increases and 19 significant decreases ob-
served in 54 nucleotide sugar observations (Table 5).
Moreover, some of the treated-to-control ratios were
quite low for three nucleotide sugars — between 0.09
and 0.13 for UDP-glucuronate (by CeO, Z7, CeO, Q
and CeO, Y6), UDP-N-acetylglucosamine (by CeO, Z7
and CeO, Q) and UDP-N-acetylgalactosamine (by CeO,
77 and CeO, Q).

Discussion

Altered lipids

Comparison of the results of this study with prior results
from one CeO, nanomaterial (M from Nanoamour, dry
size 8 nm) [5] shows that the results of the two studies
are similar in respect to CeO, nanomaterial-induced ele-
vations in fatty acids and monoacylglycerols. There were
additional elevations in lysolipids, diacylglycerols and
sphingolipids caused by CuO (this study) and by CeO,
M [5], but in the current study the other five CeO,
nanomaterials did not cause these particular lipid eleva-
tions. Possible explanations of the lipid increases seen
with 3 CeO,, 1 SiO, and 1 CuO nanomaterial include: a)
increases in lipolysis of complex lipids, b) increased syn-
thesis of fatty acids, c) decreased utilization in -
oxidation or complex lipid assembly or d) greater uptake
of lipids from the cell culture media containing 10% fetal
bovine serum because of nanoparticle uptake through
endocytosis or nanomaterial induced cell membrane
leakage. The major fatty acids of fetal bovine serum are
palmitic, stearic and oleic [11]. However, these fatty
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acids were not particularly elevated over other fatty
acids, thus arguing somewhat against the “greater uptake
of lipids” interpretation.

A literature search showed elevated free fatty acids
mentioned as a biomarker in ozone toxicity studies and
ethanol-induced liver injury. Free fatty acids have been
proposed as an “emerging biomarker” of nonalcoholic
steatohepatitis [12]. From 1 to 48 h after exposure to
hepatic irradiation, rat hepatic fatty acid concentrations
were elevated [13]. Ozone exposures to both rats [14]
and humans [15] elevated serum fatty acid concentra-
tions. In addition, rat serum, brain and liver fatty acid
concentrations were elevated by ethanol-induced liver
injury [16]. In one in vitro study, exposure to quantum
dots caused the down-regulation of beta-oxidation of
fatty acids in PC12 cells (rat pheochromocytoma) [17].
In both PC12 cells and primary mouse hypothalamic cell
culture, Zn-S coated quantum dots induced the accumu-
lation of lipid droplets [17].

Glycerol levels were higher in several of nanoparticle-
treated cells relative to controls (Tables 3 and 4). Re-
duced glycerol 3-phosphate concentration was observed
with each of the day-1 nanoparticles that elevated lipid
concentrations (Tables 3 and 4). Glycerol 3-phosphate is
utilized in the assembly of free fatty acids into triacylgly-
cerides. A decline in glycerol 3-phosphate concentra-
tions may be an indication of increased complex lipid
assembly for storage [18]. Alternatively, a partial block-
age in the transformation of glycerol into glycerol 3-
phosphate might reduce the synthesis of triglycerides
and thus elevated free fatty acids, exactly what is
observed in many cases (Tables 3 and 4).

Hepatic conjugation systems (methylation,
glucuronidation and glutathione)

An important role of the liver is to conjugate various
molecules with methyl, glucuronic acid or glutathione
groups often as part of Phase II “drug metabolism” path-
ways [19]. Nanoparticle exposure may result in an
increase in trans-methylation reactions and thus explain
the observed SAM depletion.

One potentially important consequence of an insuffi-
cient supply of hepatocyte UDP-glucuronate would be a
lack of glucuronidation capacity for Phase II metabolism
of xenobiotic substances. Thus, even if nanoparticle
clearance does not require glucuronidation per se,
nanoparticle-induced UDP-glucuronate depletion may
impair glucuronidation and clearance of other medicinal
or toxic substances. Thus, with declines in both UDP-
glucuronate (Table 5) and SAM (Table 5), hepatocytes
may have a diminished capacity to methylate, glucuroni-
date and excrete xenobiotics. In many animals, but not
humans or guinea pigs, UDP-glucuronate is also a syn-
thetic intermediate in the biosynthesis of ascorbic acid,
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an important cellular antioxidant. Gulonic acid, another
biochemical intermediate in ascorbic acid biosynthesis
was also decreased by prior administration of nanoma-
terials CeO, Z7, CeO, Q, and CuO (Table 5).

In this study, no useful GSH concentrations informa-
tion was obtained because the measured GSH concen-
trations were often below the quantitation limit. In the
sample preparation for metabolomics profiling, there
was no added acid, chelators or deoxygenation of solu-
tions, all well established factors that preserve GSH in
the reduced oxidation state [20]. The size of the cell
pellet was about 1/3 of that in our previous study so the
factor of small cell pellet size also probably contributed
to GSH being below the lower limit of measurement in
most samples. It seems that the LC-MS/MS parts of the
analytical procedure were working properly because
other cell based studies run the following day and 2 days
previous to our study measured GSH at typical levels for
a cell based assay.

Cellular energetics, reducing capacity and oxidative stress
(maltotriose, 6-phosphogluconate, NADPH, NADH and
NAD™ and dipeptides)
Maltotriose, a trisaccharide consisting of three glucose
moieties with alpha 1->4 glycosidic bonds between
them is not known to be connected to toxicology or en-
vironmental health in any major way. However, malto-
triose might be valuable as a biomarker of exposure for
some metal oxide nanomaterials (e.g. 24.4 fold elevation
by CuO). In yeast, exposure to either HO, or CuSO,
leads to increased maltotriose concentrations (https://
www.wikipathways.org/index.php/Pathway:WP478).
Most nano forms of copper give off Cu” and/or Cu*"
ions [21]. The single peptide bond of all dipeptides is
capable of reducing Cu** to Cu" (the biuret reaction). In
the presence of H,O, and Cu*, hydroxyl radical can be
generated (the Fenton reaction) [22]. Such hydroxyl rad-
icals are capable of destroying molecules within a short
diffusional distance, such as the dipeptides binding site
at which the Cu’ may have been generated. This could
explain why all 16 dipeptide concentrations were
decreased (0.07 to 0.55 fold) by CuO nanomaterial ad-
ministration. Neither CeQ,, SiO5 (Table 6) or TiO, [5]
nanoparticles caused large numbers of decreases in the
dipeptide concentrations. After CuO exposure, 17 out of
20 single amino acids also exhibited decreases in con-
centration but not to as large an extent as observed for
dipeptides (Additional file 2: Table S2). It does not seem
as if CuO administration causes selective reductions of
primary amine or carboxy group containing biochemical
concentrations as there is substantial evidence against
this possibility. For example, two primary amines con-
taining biochemicals are significantly increased by CuO
nanomaterial administration, namely putrescine (22.7
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fold) and N-acetyl putrescine (63.3) (Additional file 2:
Table S2). Three carboxy group containing biochemicals
were also significantly increased by CuO nanomaterial
treatment namely trans-4-hydroxyproline (1.8 fold), 4-
acetamidobutanoate (3.6) and pro-hydroxy-pro (proline-hy-
droxyproline, CAS 18684-24-7) (3.1 fold) (Additional file 2:
Table S2).

Thus, CuO nanomaterials produced three effects at
very high frequency of occurrence — elevation of certain
lipids (Tables 3 and 4), decrease of most dipeptides
(Table 6) and decreases in many single amino acids
(Additional file 2: Table S2). Thus, even if dissolution of
CuO to copper ions produces hydroxy radicals, dipep-
tides and single amino acids are showing the large,
consistently decreased cellular concentrations while
other similar biochemicals are not showing decreases.
An alternative explanation of the observed dipeptide de-
creases would be that protein breakdown was decreased.

Cellular effects (urea cycle, polyamines, purine and
pyrimidine metabolism, nucleotide sugar)

Among the CeO, nanoparticles from the day-1 set,
CeO, Z7 stood out for its elevation of citrulline, orni-
thine and dimethylarginine, relative to controls and the
other CeO, nanoparticles in the set. The higher levels of
citrulline and ornithine in CeOy Z7-treated cells were
not accompanied by a decrease in arginine, relative to
control or the other CeO, nanoparticles. Dimethylargi-
nine (both asymmetric and symmetric dimethylarginine
were quantified together) were highest in CeO, Z7
treated cells and, given the inhibitory properties of
asymmetric dimethylarginine towards iNOS, it is pos-
sible that less arginine gets converted directly to citrul-
line through iNOS and instead is converted to ornithine.
There were fewer dimethylarginine increases observed in
this data set than in the preceding metabolomics study
in which 2 CeO, nanomaterials increased asymmetric
dimethylarginine [5]. In addition, this study determined
asymmetric and symmetric dimethylarginine together
(Table 7) so this might have masked some asymmetric
dimethylarginine increases.

Changes in urea cycle metabolites were also observed
in the prior study with two forms of CeO, [5], with
changes being more pronounced in the current study.
The levels of creatine were correlated with creatinine
and creatine phosphate (Table 7). Glycine is consumed
in the synthesis of creatine. Glycine levels are decreased
with several nanoparticle exposures (CeO, Z7, CeO, Q,
and CuO) (Table 5).

Among the day-1 nanomaterials, CuO caused the
greatest amount of purine nucleotide degradation, as
judged by the urate and allantoin levels. Metabolites
connected with pyrimidine nucleotide degradation, such
as thymidine and cytidine were elevated with several
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day-1 nanoparticle treatments (Table 7). Other purine
nucleotide degradation metabolites were also increased.
Hypoxanthine (4 increases) oxidation to xanthine (5 in-
creases) and subsequent xanthine oxidation to urate (5
increases) by the enzyme xanthine oxidoreductase can
produce superoxide or hydrogen peroxide, under some
conditions. This can result in redox stress if sufficient
anti-oxidants such as glutathione are not present.

Our first study with TiO, and CeO, and this current study
with CeO, and SiO, agree in respect to the metabolite iden-
tity and direction of changes (increase or decrease) for sev-
eral biochemicals notably NAD*, 6-phosphogluconate, UDP-
glucuronate, UDP-acetylglucosamine, UDP-galactosamine
and gamma-glutamlyglutamate. In summarizing the results,
there does not appear to be a single, obvious cause of some
of the metabolomics effects observed (Additional file 5: Table
S5). The single CuO nanomaterial studied was quite different
in number and some types of metabolomics effects it caused.
This could be because of the different nanomaterial elemen-
tal composition (Cu rather than Ce or Si), higher degree of
cytotoxicity observed with 3 pug/ml of CuO and the ability to
form toxic copper ions via dissolution.

Pattern of significant effects within biochemical pathways
Table 8 presents a summary of the treatment effects of
the CeO,, SiO, and CuO particles for 13 of the more
important altered biochemical pathways. Table 8 shows
the direction of significant changes (up or down) for
some of the altered biochemicals in each pathway. The
number of significant changes observed per biochemical
pathway was one in the glycogen pathway (maltotriose),
two in the ascorbic acid synthesis pathway (gulonic acid
and UDP-glucuronate), six in the glucuronidation-related
pathway (glucoronate, UDP-N-acetylgalactosamine, UDP-
N-acetylglucosamine, UDP-glucuronate, uridine 5°-di-
phosphate (UDP), and uridine 5’-monophosphate (UMP))
and over 40 in the lipid pathways (e. g. oleate, sterate and
palmitate).

Dosimetry

In in vitro nanomaterial toxicology there are large num-
bers of complex factors involved in the pharmacokinet-
ics and dosimetry between administered dose (expressed
as pg/ml in this study) and internalized dose to the
cultured HepG2 cell. Some of the major factors that
determine in vitro intracellular dose of nanomaterials
include particle dose, shape, surface chemistry, size,
charge, density, binding of molecules to the particle
surface (protein corona), agglomeration, diffusion and
gravitational settling [23—25]. In our nanomaterial stud-
ies we have collected ICP-OES data on Ce and Cu cellu-
lar concentrations from CeO, and CuO exposed HepG2
cells. Eventually this cellular Ce and Cu dosimetry data
may be useful in more deeply understanding the
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complex relationship between administered dose, in-
ternal cellular dose and various biological effects.

Conclusions

Altered lipids

This study confirms and extends the prior observation
that a single CeO, nanomaterial (M) caused concentration
increases in large numbers of several classes of lipids in
HepG2 cells (most notably fatty acids and monoacylgly-
cerols) [5]. In this study 4 CeO,, 1 SiO, and 1CuO nano-
materials were also shown to have this property of
increasing lipid concentrations (Tables 3 and 4). In respect
to structure-activity, we know that five out of six tested
CeO,, and both SiO, and CuO, but zero out of 4 TiO,
nanomaterials have caused this elevated concentration of
lipids effect (Tables 3 and 4 and [5]). Thus, cellular lipid
concentration increases may be a general property of
exposure to many metal oxide nanomaterials and may
impact hepatocyte and systemic lipid homeostatis.

Hepatic conjugation systems (methylation,
glucuronidation and glutathione)

Metal oxide nanomaterial exposure may compromise
the methylation, glucuronidation (Table 5) and glutathi-
one conjugation systems (GSH data of [5]). The large
number of metabolomics findings of decreased SAM
coupled with increased SAH suggest an increase in
transmethylation reactions and a depletion of SAM
capacity. This shortage of methyl groups could have pro-
found and adverse effects on cells in respect to DNA
methylation and drug metabolism. From gamma-
glutamyl amino acid decreases data (Table 5), there was
a degree of indirect confirmation of glutathione deple-
tion and oxidative stress observed in our prior study
with TiO, and CeO, nanomaterials [5].

Cellular energetics, reducing capacity and oxidative stress
(maltotriose, 6-phosphogluconate, NADPH, NADH and
NAD™ and dipeptides)

Increases in the concentration of maltotriose occurred
in the prior metabolomics study (1.76 fold increase by
CeO, M) [5] and also in this current study where the
observed increases were much larger (a range of from
3.45 to 24.4-fold). To date, maltotriose concentrations
have been significantly elevated by four out of six tested
CeO,, along with both CuO and SiO,, but zero out of 4
TiO, nanomaterials (Table 6 and [5]).

Observed depletions of both 6-phosphogluconate,
NADPH and NADH suggest that the HepG2 cells may
be out of redox equilibrium (not enough reducing equiv-
alents) and thus in a state of oxidative stress. The unex-
pected pattern of CuO nanomaterial decreasing all 16
quantified dipeptides (Table 6) can be explained by the
dissolution of CuO to ionic copper, peptide bond
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binding of Cu'”, and the eventual free radical attack of
hydroxyl radical on the dipeptides.

Cellular effects (urea cycle, polyamines, purine and
pyrimidine metabolism, nucleotide sugar)

Cellular metabolism related to amino groups was
strongly perturbed by these metal oxide nanomaterials.
In HepG2 cells, the urea cycle and the metabolism of
proline, creatine and polyamines were strongly effected
by nanomaterial exposures. Both increases and decreases
were seen with ornithine and proline concentrations. All
significant findings were elevations for creatine, creatin-
ine and creatine phosphate, molecules important in cel-
lular energetics. Polyamines, one of the few positively
charged cellular modulators, were usually increased by
nanomaterial exposure, particularly by putrescine.

Because there was a clear pattern of nanomaterial-induced
decreased nucleotide concentrations coupled with increased
concentrations of nucleic acid degradation products, this
study supports the interpretation of either increased free
radical attack on nucleotides or increased turnover of
important purines and pyrimidine biomolecules.

This metabolomics study of the effects of nine differ-
ent nanomaterials has not only confirmed some observa-
tions of the prior 2014 study (lipid elevations caused by
one CeO, nanomaterial) but also found some entirely
new effects (both SiO, and CuO nanomaterials also in-
creased the concentrations of several lipid classes, nano-
material induced declines in SAM, UDP-glucuronate,
dipeptides, 6-phosphogluconate, NADPH and NADH).
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