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Abstract

Background

Heart failure (HF) with preserved ejection fraction (HFpEF) is increasingly recognized as an

important clinical entity. Preclinical studies have shown differences in the pathophysiology

between HFpEF and HF with reduced ejection fraction (HFrEF). Therefore, we hypothe-

sized that a systematic metabolomic analysis would reveal a novel metabolomic fingerprint

of HFpEF that will help understand its pathophysiology and assist in establishing new bio-

markers for its diagnosis.

Methods and Results

Ambulatory patients with clinical diagnosis of HFpEF (n = 24), HFrEF (n = 20), and age-

matched non-HF controls (n = 38) were selected for metabolomic analysis as part of the Al-

berta HEART (Heart Failure Etiology and Analysis Research Team) project. 181 serum me-

tabolites were quantified by LC-MS/MS and 1H-NMR spectroscopy. Compared to non-HF

control, HFpEF patients demonstrated higher serum concentrations of acylcarnitines, carni-

tine, creatinine, betaine, and amino acids; and lower levels of phosphatidylcholines, lyso-

phosphatidylcholines, and sphingomyelins. Medium and long-chain acylcarnitines and

ketone bodies were higher in HFpEF than HFrEF patients. Using logistic regression, two

panels of metabolites were identified that can separate HFpEF patients from both non-HF

controls and HFrEF patients with area under the receiver operating characteristic (ROC)

curves of 0.942 and 0.981, respectively.

Conclusions

The metabolomics approach employed in this study identified a unique metabolomic finger-

print of HFpEF that is distinct from that of HFrEF. This metabolomic fingerprint has been
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utilized to identify two novel panels of metabolites that can separate HFpEF patients from

both non-HF controls and HFrEF patients.

Clinical Trial Registration

ClinicalTrials.gov NCT02052804

Introduction

Heart failure (HF) affects more than 5 million people in North America, with approximately

825,000 incident cases per year in the United States alone [1]. Although the incidence of HF

has declined since the mid-1990s, the prevalence of HF is still increasing due to improved sur-

vival after HF diagnosis [2]. Despite the advent of several new medications, devices and multi-

disciplinary clinics to manage HF, the prognosis of HF remains poor, with an estimated

survival rate of 50% within 5 years after initial HF diagnosis [1]. During the initial clinical

work-up for patients with confirmed or suspected HF, patients are classified via ejection frac-

tion (EF) into one of two groups: a) HF with reduced ejection fraction (HFrEF) or b) HF with

preserved ejection fraction (HFpEF). HFpEF is becoming increasingly recognized as a distinct

clinical entity and accounts for 30–40% of all HF cases [3, 4]. HFpEF is broadly defined as a

clinical syndrome in which patients present with symptoms and signs of HF, but normal or

near normal left ventricular (LV) systolic function, with or without evidence of abnormal dia-

stolic function (e.g. abnormal LV relaxation, filling, diastolic distensibility and diastolic stiff-

ness) [5]. Patients with HFpEF have a similar one-year mortality as patients with HFrEF [6].

Although many therapies exist for HFrEF, no therapy to date has shown any significant reduc-

tion in morbidity and mortality for HFpEF [7].

Several pathophysiologic differences between HFpEF and HFrEF have been identified [8];

however, the molecular pathways responsible for these differences are still poorly understood.

Metabolomic analysis has been frequently utilized to elucidate new molecular and pathophysi-

ological processes of several cardiovascular diseases and heart failure [9–12]. Accordingly, a

unique metabolomic fingerprint of HFpEF patients may enhance our understanding of the mo-

lecular/physiological basis of HFpEF, which may lead to the development of new therapies to

specifically treat HFpEF.

Current definitions for the diagnosis of HFpEF, including those endorsed by clinical guide-

lines [7, 13], are neither sensitive nor specific, and lack the diagnostic accuracy needed for clini-

cal use [14]. Although several biomarkers have been utilized to help in HF diagnosis (e.g. B-

type Natriuretic Peptide (BNP) and N-terminal pro-BNP (NT-proBNP)), most of these bio-

markers do not provide enough utility to distinguish between HFrEF and HFpEF in clinical

practice [15]. Since metabolomics is increasingly being utilized to identify new biomarkers in

cardiovascular medicine [16], the second objective of this study is to identify novel metabolite

biomarkers to distinguish patients with HFpEF from control subjects, and to distinguish be-

tween the two clinical syndromes of HFpEF and HFrEF.

Materials and Methods

Participants

Ambulatory patients were selected for metabolomic analysis as part of the Alberta HEART

(Heart Failure Etiology and Analysis Research Team; www.albertaheartresearch.ca) project
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[17] (ClinicalTrials.gov registration: NCT02052804). Briefly, Alberta HEART enrolled outpa-

tients with known HF (both HFrEF and HFpEF) and a range of non-HF control subjects span-

ning normal healthy subjects to patients without HF but with other clinical diseases.

Recruitment in the Alberta HEART study began in January 2010 and as of March 31, 2014, 649

patients have been enrolled. Although our study is a cohort study without a clinical trial inter-

vention or randomization of any kind and thus not subject to the ICMJE statement, we chose

to register our observational study for the same purposes desired by the ICMJE statement, albe-

it after patient enrollment had begun. This was to ensure complete transparency of our study

and any study that may emanate from its findings.

Only 82 subjects were included in this metabolomics sub-study. Among these 82 subjects,

there were 24 patients with HFpEF, 20 patients with HFrEF, and 38 control subjects without

HF. Participants in this metabolomics sub-study were recruited from January 2010 till March

2013 (Fig 1). In the current study, control subjects are defined as individuals with normal LV

function as assessed by echocardiography and without symptoms suggestive of a clinical diag-

nosis of HF. The control subjects included age- and gender-matched individuals with no evi-

dence of coronary artery disease (CAD), hypertension, diabetes mellitus, organ disease or

replacement therapies; no evidence of inflammatory or autoimmune conditions and not on

cardiac medications. Additional controls included age- and gender-matched patients with high

risk of developing HF but no clinically overt HF; these latter patients are generally asymptom-

atic (no dyspnea or fatigue) and have no known prior HF or other overt cardiovascular disease.

The exclusion criteria included: severe liver disease, end stage renal disease (with GFR< 15

ml/min), active or ongoing malignancy, or cardiac surgery, major surgery, or major

Fig 1. Flow chart representing patient selection in the metabolomics sub-study. 649 patients were enrolled in the Alberta HEART study as of March
31st, 2014. Only 82 subjects were included in this metabolomics sub-study. Among these 82 subjects, there were 24 patients with HFpEF, 20 patients with
HFrEF, and 38 control subjects without heart failure.

doi:10.1371/journal.pone.0124844.g001
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cardiovascular event in the past 3 months. All enrolled patients undergo blinded adjudication

by cardiologists experienced in adjudication. For the purposes of this study, patients with HF

were further adjudicated as HFpEF (n = 24) or HFrEF (n = 20) using a left ventricular ejection

fraction (LVEF) of 45% as a cutoff value [5, 13]. Detailed clinical, biomarker and imaging data

were collected at the time of enrolment and echocardiograms were performed in 2D, 3D, and

contrast modalities and interpreted by cardiologists blinded to the metabolomic analysis. The

research protocol used in this study received ethics board approval at the Universities of Al-

berta and Calgary. Written informed consent was obtained from all subjects.

Measurement of cardiac peptides

Plasma BNP levels were assessed as previously described [18] using a Biosite Triage reagent pack

(Biosite Inc., San Diego, CA, USA), while plasma NT-proBNP analysis was performed with the

commercially available immunoassay using the Elecsys 2010 proBNP assay (Roche Diagnostics

GmbH, Manheim, Germany) read in an automated Access immunoanalyzer (Beckman-Coulter,

Fullerton,CA, USA) at Alberta Health Services Laboratory Services—Edmonton, Alberta.

Combined direct flow injection and LC-MS/MS compound identification
and quantification

We applied a targeted quantitative metabolomic approach to analyze the serum samples using

a commercially available metabolomics system (AbsoluteIDQ p180 Kit—BIOCRATES Life Sci-

ences AG, Austria). This kit, in combination with an ABI 4000 Q-Trap (Applied Biosystems/

MDS Sciex) mass spectrometer equipped with a reverse-phase HPLC column, can be used for

the targeted identification and quantification of up to 180 different endogenous metabolites in-

cluding amino acids, acylcarnitines, biogenic amines, glycerophospholipids, sphingolipids and

sugars. The kit contains reagents for the derivatization and extraction of analytes (for maximal

separation), along with the software to support selective mass-spectrometric detection via mul-

tiple reaction monitoring (MRM) pairs (for metabolite identification and quantification). Iso-

tope-labeled internal standards and other internal standards are integrated in the kit plate filter

to permit absolute metabolite quantification. All the serum samples were analyzed with the

AbsoluteIDQ p180 kit using the protocol described in the AbsoluteIDQ user manual.

Sample preparation and NMR spectroscopy

Serum samples were prepared as described previously [19]. A total of 350 μL of sample was

transferred to a micro-cell NMR tube (Shigemi, Inc., Allison Park, PA) for subsequent spectral

analysis. All 1H-NMR spectra were collected on a 500 MHz Inova NMR spectrometer (Varian

Inc. Palo Alto, CA) equipped with a 5 mm HCN Z-gradient pulsed-field gradient (PFG) room-

temperature probe as described previously [19].

Statistical analysis

For demographic and clinical data, continuous data are presented as median ± interquartile

range (IQR), while categorical data are presented as raw values and percentages from the total.

Continuous variables were compared using a Kruskal-Wallis test, while categorical data were

compared through a Chi-square test. In situations where less than 5 observations were avail-

able, a Fisher`s Exact test was applied. A p-value< 0.05 was considered significant for all

statistical analyses.

For metabolomic data analysis, log-transformation was applied to all quantified metabolites

to normalize the concentration distributions. Heat maps were generated with the concentrations

Metabolomic Fingerprint of HFpEF

PLOSONE | DOI:10.1371/journal.pone.0124844 May 26, 2015 4 / 19



of potential candidate metabolites, which were extracted with univariate analysis. It was generat-

ed without hierarchical cluster analysis unlike usual structure of heat map. It was simply ar-

ranged by grouping similar metabolites together for use in pathway analysis through intuitive

pattern discovery. The heat map displays an increase in each metabolite in relative concentration

as a red color and a decrease in a metabolite as a blue color. The metabolites are listed at the left

side of each row, and the subjects are shown at the bottom of each column. Logistic regression

(LR) was performed to find the most parsimonious model to discriminate each case group from

the other control groups using the minimum number of metabolites. In order to optimize the

metabolite (i.e. variable) selection, a technique called least absolute shrinkage and selection oper-

ator (LASSO) was also performed. A receiver operating characteristic (ROC) curve was deter-

mined for each LR model. The ROC calculations included bootstrap 95% confidence intervals

for the desired model specificity as well as other measures including accuracy and false discovery

rates (FDR). In addition, permutation tests (n = 2,000) were performed to validate the statistical

significance of each LRmodel [20]. The p-value of the permutation test was calculated as the

proportion of the times that the class separation for a randomly labelled sample was at least as

good as the one based on the original data (one-sided p value) [21].

LR models to discriminate HFpEF from HFrEF, or HF from controls were constructed. To

assess if a biomarker or a panel of metabolites improved the categorization of a patient, the

ROC area-under-the-curve (AUC), net reclassification improvement (NRI) and integrated dis-

crimination improvement (IDI) were calculated using the methods described by Pencina et al.

[22]. All of the statistical analyses were carried out using the R statistical software (http://www.

r-project.org).

Results

Demographics and group differences

Table 1 shows the baseline characteristics of the study groups. There was no significant differ-

ence in the prevalence of hypertension or diabetes between the three groups. HFpEF patients

had significantly higher male to female ratio, older age, higher prevalence of dyslipidemia and

atrial fibrillation than the non-HF control group. However, there was no significant difference

in these characteristics between HFrEF patients and non-HF controls. Patients with HF (both

HFpEF and HFrEF) had a higher body mass index, higher prevalence of CAD, and were on

more cardiovascular medications than non-HF controls. There was no significant difference

between the HFpEF and HFrEF groups with regard to baseline characteristics, NYHA classifi-

cation, cardiovascular diseases, or the use of cardiovascular medications, with the exception

that CAD was more prevalent in patients with HFrEF (Table 1). BNP and NT-proBNP levels

were higher and LVEF was lower in both HF groups than in the control subjects. Similarly, the

BNP and NT-proBNP levels were higher and the LVEF was lower in the HFrEF group than in

the HFpEF group (Fig 2).

Metabolomic differences between HFpEF and controls

Serum metabolomic analysis of a total of 181 analyzed metabolites from DI-MS (148 metabo-

lites) and NMR (33 metabolites) revealed that the serum concentrations of short-chain, medi-

um-chain, and long-chain acylcarnitines, carnitine, creatinine, betaine, and several amino acids

were higher in HFpEF patients than non-HF controls (Fig 3, S1 Table). In addition, the serum

concentrations of phosphatidylcholines (PC), lysophosphatidylcholines (LysoPC), and sphin-

gomyelins (SM) were lower in HFpEF patients than non-HF controls (Fig 3, S1 Table).

To identify potential metabolite biomarkers, LR was performed to find the most parsimoni-

ous model to discriminate HFpEF patients from the non-HF controls. Since there was a

Metabolomic Fingerprint of HFpEF
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significant difference in age and gender between patients with HFpEF and non-HF controls,

the LR analysis was performed only for the subset of metabolites which had no significant cor-

relation with these demographic variables. A small number of metabolites including octanoyl-

carnitine, arginine, asparagine, LysoPC(C18:2), and SM(C20:2) was able to discriminate

HFpEF patients from the non-HF controls. Receiver operating characteristic (ROC) curve

analysis using only these selected metabolites produced an area under the curve (AUC) of

0.924 (Fig 4A and Table 2). The permutation test’s result (p-value< 0.0005) for model valida-

tion indicated that the model was highly significant.

A separate LR model was developed incorporating a panel of three metabolites (octanoyl

carnitine, arginine, and SM(C20:2) (Fig 4B–4D)) along with NT-proBNP to produce a ROC

curve with an AUC of 0.942 (Fig 4A and Table 2). The permutation test’s result (p-

value< 0.0005) for this model indicated that it, too, was highly significant. The biomarker

models that included metabolites had higher AUCs, and higher sensitivity/specificity than

models that did not include metabolites. Overall, the best model was the one that combined

NT-proBNP and metabolite data (Fig 4A, Table 2, and S4 Table). However, the difference be-

tween the metabolite-only model and the metabolites+NT-proBNP model was not statistically

Table 1. Demographic Details of Participants.

Control HFpEF HFrEF

N 38 24 20

Baseline Characteristics

Male, N (%) 18 (47.37) 18 (75) * 14 (70)

Age 61.50(53.75–69.00) 67.50 *(57.50–74.75) 63.50(56.00–69.00)

NYHA Classification

Class I, N(%) NA 3 (12.5) 1 (5)

Class II, N(%) NA 15 (62.5) 11 (55)

Class III, N(%) NA 6 (25) 7 (35)

Class IV, N(%) NA 0 (0) 1 (5)

Other cardiovascular Diseases or Risk Factors

CAD, N(%) 5 (13.2) 10 (41.7) * 15 (75) * †

Dyslipidemia, N(%) 13 (43.2) 17 (70.8) * 13 (65)

Hypertension, N(%) 22 (57.9) 15 (62.5) 10 (50)

Diabetes, N(%) 9 (23.7) 10 (41.6) 5 (25)

Atrial Fibrillation, N(%) 7 (18.4) 11 (45.8) * 5 (25)

BMI (kg/m2) 27.74(24.03–30.80) 31.07 * (29.13–36.13) 30.31 * (26.50–33.96)

Cardiovascular Medications

Beta blockers, N(%) 8 (21.1) 21 (87.5) * 20 (100) *

ACEI or ARB, N(%) 16 (42.1) 20 (83.3) * 18 (90) *

Spironolactone, N(%) 1 (2.6) 6 (25) * 7 (35) *

Diuretic, N(%) 4 (10.5) 18 (75) * 13 (65) *

Statins, N(%) 15 (39.5) 19 (79.2) * 12 (60)

CCB, N(%) 9 (23.7) 8 (33.3) 4 (20)

Aspirin, N(%) 5 (13.2) 16 (66.7) * 15 (75) *

* p-value < 0.05 compared to control
† p-value < 0.05 compared to HFpEF

HFpEF = Heart Failure with Preserved Ejection Fraction, HFrEF = Heart Failure with reduced Ejection Fraction, NYHA = New York Heart Association,

CAD = Coronary Artery Disease, LVEF = Left Ventricular Ejection Fraction, BMI = Body Mass Index, BNP = B-type Natriuretic Peptide, NT-proBNP = N

terminal pro-BNP, ACEI = Angiotensin Converting Enzyme Inhibitor, ARB = Angiotensin Receptor Blocker, CCB = Calcium Channel Blocker.

doi:10.1371/journal.pone.0124844.t001
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Fig 2. Cardiac peptides and left ventricular ejection fraction (LVEF) in control and HF patients.
Ambulatory patients with clinical diagnosis of HFpEF (n = 24), HFrEF (n = 20), and age-matched controls
(n = 38) were selected for metabolomics analysis as part of the Alberta HEART (Heart Failure Etiology and

Analysis Research Team) project. Plasma BNP and NT-proBNP levels were measured using a Biosite Triage
reagent pack and Elecsys 2010 proBNP assay, respectively. LVEF was assessed by echocardiography and
interpreted by cardiologists blinded to the metabolomics analysis. Data are presented as the median ± IQR. *
p < 0.05 compared to the control group, # p < 0.05 compared to the HFpEF group.

doi:10.1371/journal.pone.0124844.g002
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significant an NRI of 0.439 (p = 0.0807) and an IDI of 0.098 (p = 0.0547)). On the other hand

the blended (metabolites+NT-proBNP) model was significantly better than the NT-proBNP-

only model (a NRI of 0.952 (p<0.0001) and IDI of 0.222 (p<0.0001)).

Metabolomic differences between HFrEF and controls

The metabolomic analysis showed that the serum concentrations of some short and medium-

chain acylcarnitines, carnitine, creatinine, creatine, betaine, and some amino acids were higher

in HFrEF patients than non-HF controls. Whereas, the serum concentrations of several PCs,

LysoPC(C18:2), LysoPC(C20:4), some sphingomyelins, acetate, acetoacetate, 2-hydroxybuty-

rate, and 3-hydroxybutyrate were found to be lower in HFrEF patients than non-HF controls

(Fig 5, S2 Table).

For the identification of a potential biomarker panel of metabolites, we performed a similar

LR analysis of metabolites from HFrEF patients and non-HF controls. Another small number

of metabolites including creatinine, carnitine, acetoacetate, LysoPC(C18:2), LysoPC(C20:4),

and 2-hydroxybutyrate discriminated HFrEF patients from control subjects. ROC curve analy-

sis produced an AUC of 0.959 (Fig 6A and Table 2). An additional LR model was developed in-

corporating acetoacetate (Fig 6B) and NT-proBNP. ROC curve analysis of this model shows

that it produced a striking AUC of 0.997 (Fig 6A). The p-value of permutation test was less

than 0.0005. When all models were compared, the models that included NT-proBNP had

higher AUC values than the model that used metabolites only. Nevertheless, similar to the

Fig 3. Heat map of metabolomic differences between HFpEF and controls.Heat maps were generated with the concentrations of potential candidate
metabolites with univariate analysis. Similar metabolites were arranged together for use in pathway analysis through intuitive pattern discovery. The heat
map displays an increase in each metabolite in relative concentration as a red color and a decrease in a metabolite as a blue color. The metabolites are listed
at the left side of each row, and the subjects are shown at the bottom of each column.

doi:10.1371/journal.pone.0124844.g003
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Fig 4. (A) Receiver operator characteristic (ROC) analysis for serummetabolites, cardiac peptides, and combinedmetabolites and NT-proBNP.
Logistic regression (LR) was performed to find the most parsimonious model to discriminate HFpEF patients from control subjects using the minimum
number of metabolites and/or cardiac peptides. Octanoylcarnitine, arginine, asparagine, lysophosphatidylcholine acyl C18:2, and sphingomyelin C20:2 were
used in the metabolites-only panel. While octanoyl carnitine, arginine, and sphingomyelin C20:2 were used for the combined metabolites and NT-proBNP
panel. (B–D) Quantification of the metabolites used to derive the LR equation of the combinedmetabolites and NT-proBNPmodel. Data are
presented as means ± SD. * p < 0.05 compared to the control group.

doi:10.1371/journal.pone.0124844.g004
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Table 2. Unadjusted Comparisons.

Model AUC Sensitivity Specificity NRI (95% CI) p-value IDI (95% CI) p-value

HFpEF vs. Control

BNP 0.816 0.750 0.763 1.276 (0.898–1.655) < 0.0001 0.341 (0.237–0.445) < 0.0001

NT-proBNP 0.853 0.792 0.789 0.952 (0.513–1.391) < 0.0001 0.222 (0.122–0.321) < 0.0001

Metabolites only 0.924 0.833 0.895 0.439 (-0.054–0.931) 0.0807 0.0807 (-0.002–0.199) 0.0547

NT-proBNP &Metabolites 0.942 0.917 0.921 - - - -

HFrEF vs. Control

BNP 0.942 0.850 0.842 0.355 (0.142–0.569) 0.0011 0.313 (0.193–0.433) < 0.0001

NT-proBNP 0.991 0.950 0.947 0.153 (-0.051–0.356) 0.1421 0.103 (-0.001–0.208) 0.0527

Metabolites only 0.959 0.900 0.895 0.434 (0.208–0.661) 0.0002 0.248 (0.104–0.392) 0.0007

NT-proBNP &Metabolites 0.997 0.950 0.974 - - - -

HFpEF vs. HFrEF

BNP 0.727 0.650 0.667 0.95 (0.632–1.268) < 0.0001 0.590 (0.44–0.740) < 0.0001

NT-proBNP 0.696 0.600 0.583 0.525 (0.248–0.802) 0.0002 0.603 (0.455–0.751) < 0.0001

Metabolites only 0.908 0.800 0.792 0.275 (0.002–0.548) 0.0484 0.248 (0.084–0.412) 0.0031

BNP & Metabolites 0.981 0.900 0.917 - - - -

The NRI and IDI values are of the blended “natriuretic peptide & metabolites” model versus each individual model.

AUC = Area Under the Curve, NRI = Net Reclassification Improvement, IDI = Integrated Discrimination Improvement, CI = Confidence Interval

doi:10.1371/journal.pone.0124844.t002

Fig 5. Heat map of metabolomic differences between HFrEF and controls.Heat maps were generated with the concentrations of potential candidate
metabolites with univariate analysis. Similar metabolites were arranged together for use in pathway analysis through intuitive pattern discovery. The heat
map displays an increase in each metabolite in relative concentration as a red color and a decrease in a metabolite as a blue color. The metabolites are listed
at the left side of each row, and the subjects are shown at the bottom of each column.

doi:10.1371/journal.pone.0124844.g005

Metabolomic Fingerprint of HFpEF

PLOSONE | DOI:10.1371/journal.pone.0124844 May 26, 2015 10 / 19



Fig 6. (A) Receiver operator characteristic (ROC) analysis for serummetabolites, cardiac peptides,
and combined serummetabolites and NT-proBNP. Logistic regression (LR) was performed to find the
most parsimonious model to discriminate HFrEF patients from control subjects using the minimum number of
metabolites and/or cardiac peptides. Creatinine, carnitine, acetoacetate, lysophosphatidylcholine acyl C18:2,
2-hydroxybutyrate, and lysophosphatidylcholine acyl C20:4 were used in the metabolites-only panel. While
acetoacetate was used for the combined metabolites and NT-proBNP panel. (B) Quantification of
acetoacetate which was used to derive the LR equation of the combinedmetabolites and NT-proBNP
model.Data are presented as means ± SD. * p < 0.1 compared to the control group.

doi:10.1371/journal.pone.0124844.g006
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HFpEF models, the model that combined both the NT-proBNP+metabolites achieved the

highest AUC value (Fig 6A, Table 2, and S4 Table) with an NRI of 0.434 (p = 0.0002) and an

IDI of 0.248 (p = 0.0007) compared to metabolites alone. However, NT-proBNP+metabolites

was not significantly better than the NT-proBNP model with a NRI of 0.153 (p = 0.1421) and

IDI of 0.103 (p = 0.0527).

Metabolomic differences between HFpEF and HFrEF

For the metabolomic data, long-chain acylcarnitines, 2-hydroxybutyrate, 3-hydroxybutyrate, and

acetate were found to be higher in the HFpEF group than the HFrEF group, while SM(C24:1),

some PCs and LysoPCs were found to be lower in the HFpEF group than the HFrEF group (Fig

7 and S3 Table). In order to identify a panel of selected metabolites that can discriminate between

HFpEF and HFrEF, we performed a similar LR analysis. A panel of 4 metabolites (2-hydroxybu-

tyrate, octadecenoylcarnitine (C18:1), hydroxyprionylcarnitine (C3-OH), and SM(C24:1)) was

identified that discriminated between HFpEF and HFrEF. Using only these metabolites, ROC

curve analysis produced an AUC of 0.908 (Fig 8A and Table 2). Permutation testing (p-

value< 0.0185) for model validation indicated that the model was statistically significant.

LR including the metabolites and natriuretic peptides was also performed. This model utilized

acetate (Fig 8B), 2-hydroxybutyrate (Fig 8C), pimelylcarnitine (Fig 8D), and PC(C40:4) (Fig 8D)

Fig 7. Heat map of metabolomic differences between HFpEF and HFrEF.Heat maps were generated
with the concentrations of potential candidate metabolites with univariate analysis. Similar metabolites were
arranged together for use in pathway analysis through intuitive pattern discovery. The heat map displays an
increase in each metabolite in relative concentration as a red color and a decrease in a metabolite as a blue
color. The metabolites are listed at the left side of each row, and the subjects are shown at the bottom of
each column.

doi:10.1371/journal.pone.0124844.g007
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as the metabolites and BNP. ROC curve analysis of this model produced an AUC of 0.981 (Fig

8A) with a permutation test p-value of<0.0005. As before, the model that combined BNP with

the metabolites achieved the highest AUC value (Fig 8A, Table 2, and S4 Table). This blended

model had a NRI of 0.275 (p = 0.0484) and an IDI of 0.248 (p = 0.0031) compared to metabolites

alone and a NRI of 0.95 (p<0.00001) and an IDI of 0.569 (p<0.00001) compared to BNP alone.

Discussion

Several potential metabolic perturbations have been discovered in HF patients in the current

study. Although some of these metabolite profile differences were observed in both HFpEF and

HFrEF, there are several pathways that are differentially altered in HFpEF versus HFrEF. For

instance, we discovered that serum concentrations of short-chain acylcarnitines are higher in

both HFpEF and HFrEF patients than non-HF controls, while medium and long-chain acylcar-

nitines were higher in HFpEF patients than both HFrEF patients and non-HF controls. Carni-

tine and its acyl derivatives play a key role in fatty acid uptake and mitochondrial metabolism

[23], hence an increase in acylcarnitines may imply inefficient β-oxidation [24] in HFpEF pa-

tients. In addition, several reports have demonstrated the detrimental effects of long-chain

acylcarnitines, as they are pro-inflammatory [25] and arrhythmogenic [26]. A recent report

has shown that plasma levels of long-chain acylcarnitines predict cardiovascular mortality in

dialysis patients [27]. Therefore, high serum concentration of long-chain acylcarnitines in

HFpEF patients may corroborate the findings that show inflammation is strongly associated

with diastolic dysfunction [27]. It may also explain the recent findings that the expression of

the pro-inflammatory tumor necrosis factor-alpha receptor 2 (TNFR2) is higher in HFpEF

than in HFrEF patients [28]. Moreover, due to their arrhythmogenic properties, higher concen-

trations of long-chain acylcarnitines may explain the high prevalence of atrial fibrillation

among HFpEF patients, as observed in our cohort and in other studies [29].

In addition to increases in acyl derivatives in HFpEF compared to HFrEF, the serum carni-

tine levels were also higher in both HFpEF and HFrEF patients compared to controls. Since the

myocardial content of carnitine tends to be lower in HF patients [30], higher serum carnitine

level can be attributed to a leakage of carnitine from the myocardium to the blood. Our find-

ings are in agreement with other studies showing that plasma carnitine levels are higher in HF

patients than controls [31].

Several other metabolic perturbations were observed in our patient cohorts that warrant dis-

cussion. For instance, the serum concentrations of creatinine and several amino acids are

higher in both HFpEF and HFrEF patients than non-HF controls. The higher creatinine con-

centration in HF patients may be secondary to the renal impairment commonly observed in

HF patients [32], while the increase in the amino acids may imply a hypercatabolic state that

has been reported in chronic HF patients [12, 33]. Conversely, serum concentrations of PCs,

LysoPCs, and SM were lower in HFpEF and HFrEF patients compared to controls. The de-

crease in these phospholipids along with an increase in the serum concentration of betaine

may indicate a shift in choline metabolism toward more betaine and less PC production. This

is of potential interest as choline deficiency has been reported to cause cardiac dysfunction [34]

and may be involved in the pathogenesis of HF. These findings are consistent with animal

models, where PCs and other phospholipids were found to be lower in heart tissues from Syr-

ian hamsters with hereditary cardiomyopathy compared to normal hamsters [35]. Together,

these findings highlight the potential role of choline metabolism in the pathogenesis of both

HFpEF and HFrEF.

Other metabolic abnormalities were observed in HFrEF patients only. For instance, creatine

levels were found to be higher in HFrEF patients than controls. Phosphocreatine is converted
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Fig 8. (A) Receiver operator characteristic (ROC) analysis for serummetabolites, cardiac peptides, and combined serummetabolites and BNP.
Logistic regression (LR) was performed to find the most parsimonious model to discriminate HFpEF from HFrEF patients using the minimum number of
metabolites and/or cardiac peptides. 2-hydroxybutyrate, octadecenoylcarnitine (C18:1), hydroxyprionylcarnitine (C3-OH), and sphingomyelin C24:1 were
used in the metabolites-only panel. While acetate, 2-hydroxybutyrate, pimelyl carnitine, and phosphatidyl choline diacyl C40:4 were used for the combined
metabolites and NT-proBNP panel. (B–E) Quantification of the metabolites used to derive the LR equation of the combined metabolites and NT-
proBNPmodel. Data are presented as means ± SD. The dashed line represents the metabolite concentration in control subjects. * p < 0.05 compared to the
HFpEF group.

doi:10.1371/journal.pone.0124844.g008
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to creatine to produce ATP which is an essential energy source for myocardial contraction

[36]; therefore, increased serum creatine levels may indicate a state of energy depletion. Nota-

bly, two previous metabolomics studies have demonstrated higher serum creatine levels in HF

patients [12, 37].

In contrast to creatine, the serum concentrations of the ketone bodies, acetoacetate, 2-hy-

droxybutyrate and 3-hydroxybutyrate were lower in HFrEF patients than both HFpEF patients

and non-HF controls. This may imply a greater reliance on ketone bodies as an energy source

in HFrEF patients. In contrast to our results, older studies have shown that blood ketone bodies

are higher in HF patients than in healthy control subjects after 8–12 hr fasting [38, 39]. More

recently, it has been shown that there was no significant difference in plasma 2-hydroxybuty-

rate levels between HF patients without diabetes and controls [40]. Fasting, the severity of HF,

and other co-morbidities may be the reason for the varying results. However, metabolomic

studies cannot determine whether a metabolite is reduced because of decreased production, in-

creased degradation and/or uptake, or both [41]. Neither can we be certain on what organ(s)

are responsible for the changes observed in the serum of these patients. Further research is war-

ranted to elucidate the mechanisms of the metabolic perturbations reported in this study.

Since we have identified distinct metabolomic fingerprints of HFpEF and HFrEF, we sought

to use these fingerprints to discover novel panels of biomarkers that can be used to help differ-

entiate between HFpEF and HFrEF. Although the cardiac peptides, BNP and NT-proBNP, are

considered gold standards for the diagnosis of HF [42, 43], the sensitivity and specificity of

these cardiac peptides can be significantly affected by several confounding factors including

age, obesity, sex, as well as pulmonary, hepatic, and renal dysfunction [14]. Consequently, the

utility of cardiac peptides as biomarkers to identify HFpEF patients is questionable. While

some studies have shown that these peptides can distinguish HFpEF patients from controls

[14, 44–47], other studies have demonstrated that these peptides are not reliable enough for the

diagnosis of HFpEF [48–50]. However, using only three metabolites (octanoyl carnitine, argi-

nine, and SM(C20:2)) along with NT-proBNP, we discovered a novel panel of biomarkers that

reliably distinguishes HFpEF from control subjects. Using this panel, we obtained a ROC AUC

of 0.942. Of interest, a panel of 3 myocardial matrix biomarkers (MMP-2, TIMP-4, and MMP-

8) has been combined with clinical variables to produce a ROC AUC of 0.79 for diagnosing

HFpEF [14]. Similarly, combining BNP and MMP-2 has been shown to diagnose HFpEF with

0.81 sensitivity and 0.83 specificity [44]. In addition, soluble ST2 (suppression of tumorigenici-

ty 2, a blood protein confirmed to act as a decoy receptor for interleukin-33) has been shown to

be a potential biomarker for HFpEF with an AUC of 0.80 for its ROC curve [45]. In compari-

son, our newly identified panel of metabolites far exceeds the accuracy of existing panels of

protein biomarkers and may have potential to be used clinically in the diagnosis of HFpEF.

In contrast to the diagnosis of HFpEF, the standard cardiac peptides produced very high

ROC AUCs in our study, suggesting that these cardiac peptides are reliable biomarkers to dis-

tinguish HFrEF patients from controls. Nevertheless, LR analysis of the metabolites combined

with the standard cardiac peptides revealed that measuring only one metabolite (acetoacetate)

along with the NT-proBNP increased the AUC of the ROC curve from 0.991 for NT-proBNP

alone to 0.997 for the acetoacetate plus the NT-proBNP. Taking into account the confounding

factors that may limit the diagnostic utility of these cardiac peptides [14], the addition of mea-

suring acetoacetate along with plasma natriuretic peptides may be of clinical importance; al-

though they still cannot be used to accurately differentiate between HFrEF and HFpEF patients

[51]. In fact, BNP and NT-proBNP produced ROC curves with relatively low AUC values of

0.727 and 0.696 for BNP and NT-proBNP, respectively, when used to distinguish between

HFpEF and HFrEF patients in our cohort. However, we identified a novel panel of 4 metabo-

lites that when used along with BNP, produced a ROC AUC value of 0.981 to distinguish
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HFrEF patients from HFpEF patients. To the best of our knowledge, this is the first report to

identify a set of biomarkers that can differentiate between HFpEF and HFrEF patients with

such a high level of accuracy.

Several limitations to our current study warrant further discussion. First, a relatively small

number of patients were enrolled in each HF group. Therefore, the metabolites identified in

this study need to be verified by larger, prospective, validation cohort. Nevertheless, the high

ROC AUC values for this small patient number suggest the high potential of these metabolites

to play an important role in HF diagnosis. In addition, the metabolomic profile is a collective

snapshot of all the metabolic perturbations that may include confounding factors such as other

disease states, acute illnesses, or medication use [12]. Therefore, we cannot be certain that the

observed metabolic perturbations are solely attributable to the HFpEF or the HFrEF syndrome.

Of interest, there was no significant difference in all the demographic and clinical data between

the HFpEF and the HFrEF groups except that CAD was more prevalent in HFrEF group than

in the HFpEF group. Although this may represent a confounding factor, it is consistent with

the overall epidemiology of HFpEF and HFrEF [52]. However, the metabolites that differenti-

ate between HFpEF and HFrEF groups in the current study were adjusted to account for the

difference in the prevalence of CAD between the two groups. As such, the metabolic differences

between HFpEF and HFrEF patients cannot be attributed to any demographic, medication, or

other disease state factors.

In conclusion, this study is the first to investigate the metabolomic profile of HFpEF and

HFrEF patients compared to non-HF controls. The unbiased and systematic approach em-

ployed in this metabolomic study enabled us to identify a metabolic fingerprint of both HFpEF

and HFrEF in addition to three panels of metabolites that can be used to diagnose these condi-

tions. We chose a LR model to ensure that our results would have clear clinical utility. This is

because LR produces a simple equation with a defined threshold that can be used to classify in-

dividuals. Therefore, once our findings are externally validated and refined, our work may

allow a simple decision tree that would aid in the rapid diagnosis of HFpEF. In summary, we

have used quantitative metabolomics to identify a novel panel of blood-based metabolites that

when used in combination with natriuretic peptides, can accurately identify HFpEF patients

and distinguish between HFpEF and HFrEF patients.
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