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Abstract

Background: Asthma-COPD overlap (ACO) refers to a group of poorly studied and characterised patients reporting

with disease presentations of both asthma and COPD, thereby making both diagnosis and treatment challenging

for the clinicians. They exhibit a higher burden in terms of both mortality and morbidity in comparison to patients

with only asthma or COPD. The pathophysiology of the disease and its existence as a unique disease entity remains

unclear. The present study aims to determine whether ACO has a distinct metabolic and immunological mediator

profile in comparison to asthma and COPD.

Methods: Global metabolomic profiling using two different groups of patients [discovery (D) and validation (V)]

were conducted. Serum samples obtained from moderate and severe asthma [n = 34(D); n = 32(V)], moderate and

severe COPD [n = 30(D); 32(V)], ACO patients [n = 35(D); 40(V)] and healthy controls [n = 33(D)] were characterized

using gas chromatography mass spectrometry (GC-MS). Multiplexed analysis of 25 immunological markers (IFN-γ

(interferon gamma), TNF-α (tumor necrosis factor alpha), IL-12p70 (interleukin 12p70), IL-2, IL-4, IL-5, IL-13, IL-10, IL-

1α, IL-1β, TGF-β (transforming growth factor), IL-6, IL-17E, IL-21, IL-23, eotaxin, GM-CSF (granulocyte macrophage-

colony stimulating factor), IFN-α (interferon alpha), IL-18, NGAL (neutrophil gelatinase-associated lipocalin), periostin,

TSLP (thymic stromal lymphopoietin), MCP-1 (monocyte chemoattractant protein- 1), YKL-40 (chitinase 3 like 1) and

IL-8) was also performed in the discovery cohort.

Results: Eleven metabolites [serine, threonine, ethanolamine, glucose, cholesterol, 2-palmitoylglycerol, stearic acid,

lactic acid, linoleic acid, D-mannose and succinic acid] were found to be significantly altered in ACO as compared

with asthma and COPD. The levels and expression trends were successfully validated in a fresh cohort of subjects.

Thirteen immunological mediators including TNFα, IL-1β, IL-17E, GM-CSF, IL-18, NGAL, IL-5, IL-10, MCP-1, YKL-40, IFN-

γ, IL-6 and TGF-β showed distinct expression patterns in ACO. These markers and metabolites exhibited significant

correlation with each other and also with lung function parameters.
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Conclusions: The energy metabolites, cholesterol and fatty acids correlated significantly with the immunological

mediators, suggesting existence of a possible link between the inflammatory status of these patients and impaired

metabolism. The present findings could be possibly extended to better define the ACO diagnostic criteria,

management and tailoring therapies exclusively for the disease.
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Background
Asthma and chronic obstructive pulmonary disease

(COPD) are two heterogenous obstructive airway disorders

that are associated with distinct pathological mechanisms.

Asthma is broadly characterized by airway hyperresponsive-

ness which leads to reversible airflow obstruction based pri-

marily on type 2 eosinophilic inflammation [1, 2]. COPD

shows progressive and irreversible airflow obstruction typ-

ically caused by exposure to noxious gases and is majorly

associated with neutrophilic inflammation involving

CD8+lymphocytes and macrophages [1, 3]. Asthma-COPD

overlap (ACO), frequently encountered in medical practice,

refers to patients presenting with characteristics of both

asthma and COPD, thereby making both diagnosis and

treatment challenging for the clinicians [4].

The universally accepted definition of ACO remains elu-

sive till date. In fact, the definition of ACO is still evolving,

and different clinical definitions are being provided in vari-

ous studies [5–8]. The prevalence of ACO depends on how

it is defined, but it is relatively common in clinical practice,

affecting 15 to 20% of patients with asthma and COPD [9].

In general, patients with ACO are reported to have poorer

quality of life, rapid decline in lung function, higher fre-

quency of exacerbations, higher mortality and morbidity in

comparison to patients with only asthma or COPD [10].

ACO patients have been largely excluded from basic re-

search and pivotal therapeutic trials, as a result of which

the pathogenesis of ACO, including underlying inflamma-

tion patterns, remains poorly understood [9].

The local and systemic responses are highly activated in

both asthma and COPD [11, 12]. There are reports of

markers such as NGAL, YKL-40, IL-6, periostin being stud-

ied in ACO in recent years [13, 14]. Multiplexed analysis of

immunological markers allows for the quantitative meas-

urement and comparison of a broad range of inflammatory

mediators that aids in creating a better understanding of

the immune response under any biological condition.

Heightened immune response and inflammation are re-

ported to be associated with shift in tissue metabolism [15,

16]. The altered metabolism is a result of the recruitment

of inflammatory cell types, particularly myeloid cells such

as neutrophils and monocytes. This leads to the generation

of large quantities of reactive nitrogen and oxygen interme-

diates, depletion of nutrients and increased oxygen con-

sumption. The migration of myeloid cells to the site of

inflammation is an energy consuming process and demands

a large amount of ATP. Further, at the site of inflammation

there is an increased nutrient, energy and oxygen demand

to accomplish the process of phagocytosis [15]. This can

further alter cellular metabolism, including extracellular

metabolic pathways which generates biologically active

molecules capable of initiating and modulating inflamma-

tory responses [17].

Understanding the metabolic implications of chronic

inflammatory processes is, therefore, an urgent need. A

suitable tool for this purpose is metabolic profiling, as it

allows the investigation of a broad range of small mole-

cules (metabolites) in various body fluids. Metabolites

are the intermediate and end products of cellular meta-

bolic processes within an organism under any given

physiological condition [18]. Metabolomics deals with

the analysis of these metabolites present in human speci-

mens in various states of health and disease [18]. The

most commonly used samples are serum, urine, sputum,

saliva and faeces, because they are obtained from pa-

tients involving minimally/non-invasive procedures [19,

20]. Advancement of analytical techniques such as nu-

clear magnetic resonance (NMR) and mass spectrometry

(MS) has enabled quantitative identification of a wide

range of metabolites using a small volume of sample.

Metabolic profiling has been successfully applied to ob-

tain an in-depth understanding of the pathophysiology of

obstructive lung diseases, such as asthma and COPD [21–

24]. The precise involvement of metabolites in the pathobi-

ology of ACO, however, is yet not well understood. Limited

reports exist on metabolite studies in ACO. Eicosanoids,

found to be in higher levels in ACO and metabolized

through lipoxygenase, is suggested to discriminate

well between ACO and COPD [25]. Another study

has indicated significantly increased levels of L-

histidine in urine of patients with ACO as compared

with asthma or COPD [26].

Our earlier findings using NMR metabolomics indicate

an enhanced energy and metabolic burden associated

with ACO as compared to asthma and COPD [27]. This

motivates us to gain a deeper insight into inflammation-

related metabolism in ACO. The present study combines

gas-chromatography-mass spectrometry (GC/MS) based

metabolomics coupled with wide spectrum profiling of

inflammatory mediators for this purpose.
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Materials and methods
Subject selection

All patients were recruited at the Institute of Pulmocare

and Research (IPCR) Kolkata, India. The Institutional

Human Ethics Committee of IPCR, Kolkata approved

this study. Written informed consent was obtained from

all participants who volunteered to participate in this

study. The detailed inclusion and exclusion criteria are

discussed elsewhere [27]. Briefly, the recruited subjects

were assigned to four groups: (a) moderate or severe

cases of asthma, diagnosed based on the GINA guide-

lines (GINA 2014) [28] (b) stage II and III, i.e. moderate

and severe COPD patients diagnosed according to the

GOLD criterion (GOLD 2014) [29] (c) major criteria

used for ACO diagnosis were (i) persistent airflow limi-

tation (post-bronchodilator FEV1/FVC < 0.70) in indi-

viduals 40 years of age or older (ii) ≥ 10 pack-years of

tobacco smoking (iii) documented history of asthma be-

fore 40 years of age, or bronchodilator response (BDR)

of > 400 mL in FEV1; minor criteria were (i) documented

history of atopy or allergic rhinitis (ii) BDR of FEV1 ≥

200 mL and 12% from baseline values on two or more

visits (iii) peripheral blood eosinophil count of ≥ 300

cells/μL; all major criteria and at least one minor criter-

ion was considered for inclusion of subjects into the

ACO cohort [5, 30] (d) age-matched healthy male

smokers as controls having normal lung function. Only

current or former male smokers were recruited in this

study to avoid gender and smoking induced bias. Pa-

tients who have had history of exacerbations, active re-

spiratory infections, had received oral corticosteroid

treatment or antibiotics/antiviral drugs during the previ-

ous 3 months were excluded. Patients having other co-

morbidities including metabolic diseases were also

excluded from this study.

The pilot metabolomic study was conducted on two

different patient cohort, comprising of the discovery and

validation phase. The discovery phase patient cohort

consisted of (i) controls = 33 (ii) asthma = 34 (iii)

COPD = 30 and (iv) ACO = 35. For the validation phase,

(i) asthma = 32 (ii) COPD = 32 and (iii) ACO = 40 pa-

tients were considered. Only the discovery cohort was

considered for immunological profiling. Both, the dis-

covery and validation cohort of patients had the same

inclusion and exclusion criteria.

Sample collection

Five ml of venous blood samples were collected from

subjects post confirmation of their disease status. Sam-

ples were incubated at room temperature for 45 min to

allow clotting and centrifuged at 1500×g at 4 °C for 15

min. The serum fraction was separated, aliquoted, and

stored immediately at − 80 °C. All samples were collected

following a minimum of 12 h overnight fasting.

GC-MS based untargeted metabolomics

Randomization and quality control (QC)

Coded samples were randomized using a web-based tool

(www.randomizer.org) to process these samples for me-

tabolite extraction and derivatization in batches followed

by GC-MS data acquisition within 24 h. In metabolo-

mics, use of QC samples in the quality assurance pro-

cedure provides a mechanism to assess the analytical

variance of the data. The QC sample qualitatively and

quantitatively represents pooled samples of equal vol-

ume obtained from all enrolled participants. These sam-

ples provide an average of all of the metabolomes

analysed in the study and ensure data reproducibility

[31–33].

Metabolite extraction and chemical derivatization for

metabolomics

Each batch consisting of six test and two QC samples

was thawed on ice, before metabolite extraction and de-

rivatization procedures, as described previously [34] with

minor modifications. In brief, 50 μl of serum sample was

thawed on ice and 10 μl of freshly prepared isopropyl

maleic acid (1 mg/ml) was added as an internal standard.

Next, 800 μl of ice-cold methanol was mixed with the

sample and vortexed for 30 s. The suspension was then

centrifuged at 15,000×g for 10 min at 4 °C and super-

natant dried in a vacuum evaporator at 40 °C for 30 min.

Dried samples were then treated with 2% methoxyamine

HCl in pyridine (MOX) reagent at 60 °C for 2 h followed

by a silylation step with N,O-Bis (trimethylsilyl) trifluor-

oacetamide (BSTFA) at 60 °C for 1 h. After derivatiza-

tion, the sample tubes were centrifuged at 10,000×g for

5 min and the supernatant transferred into a glass vial

insert kept inside a 2 ml screw capped glass GC vial.

Metabolomics standards initiative (MSI) guidelines were

followed while performing all the metabolomics experi-

ments [35]. The detailed methodology of GC-MS data

acquisition, pre-processing and analysis is given in the

Supplementary Materials section.

Pathway analysis, metabolite set enrichment analysis

(MSEA) and receiver operator characteristic (ROC) curves

of dysregulated metabolites

Using Metaboanalyst 4.0 (www.metaboanalyst.ca), the

peak areas of all the identified metabolites were sub-

jected to pathway analysis and MSEA to identify poten-

tial key significantly altered metabolic pathways (ACO vs

asthma and ACO vs COPD) [36, 37]. First, to explore

the metabolic pathways that are potentially dysregulated

in ACO, a global metabolic pathway analysis was carried

out. The default ‘global test’ and ‘relative-betweenness

centrality’ for pathway enrichment and pathway topo-

logical analyses were selected, respectively. The “current
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2019” Kyoto Encyclopedia of Genes and Genomes

(KEGG) version pathway library was also used.

For MSEA, quantitative enrichment analysis (QEA)

was performed on normalized data for comprehensive

screening of affected pathways. QEA is based on the glo-

bal test algorithm to perform enrichment analysis dir-

ectly from raw concentration data (peak area in this

case) and does not require a list of significantly changed

compounds. The QEA algorithm uses a generalized lin-

ear model to estimate a ‘Q-stat’ for each metabolite set.

In addition to the Q-stat values, the QEA module also

provide p-values, Holm adjusted p-values, and estimates

of false discovery rate (FDR).

The prediction ability of all significant metabolites was

assessed using receiver operating characteristic (ROC)

curve and the area under the curve (AUC) calculated

(MedCalc Statistical Software version, version 19.2.1,

MedCalc Software bvba, Ostend, Belgium).

Clinical correlation of significantly altered metabolites

with lung function parameters

The relationship between significantly altered metabo-

lites (common to ACO vs. asthma and ACO vs. COPD)

and lung function parameters of ACO subjects was ex-

plored using Pearson’s correlation analysis (GraphPad

Prism version 7.00 for Windows, GraphPad Software,

San Diego, CA, USA). This was done to investigate the

extent to which the dysregulated metabolites were

linearly related to FEV1 and FEV1/FVC of ACO subjects.

Multiplex analysis of immunological mediators

Serum levels of human IFN-γ (interferon gamma), TNF-α

(tumor necrosis factor alpha), IL-12p70 (interleukin

12p70), IL-2, IL-4, IL-5, IL-13, IL-10, IL-1β, IL-1α, TGF-β

(transforming growth factor), IL-6, IL-17E, IL-21, IL-23,

eotaxin, GM-CSF (granulocyte macrophage-colony stimu-

lating factor), IFN-α (interferon alpha), IL-18, NGAL

(neutrophil gelatinase-associated lipocalin), periostin,

TSLP (thymic stromal lymphopoietin), MCP-1 (monocyte

chemoattractant protein- 1), YKL-40 (chitinase 3 like 1)

and IL-8 were measured using Magnetic Luminex Assay-

Human Premixed Multi-Analyte Kit (R&D Systems Inc.,

Minneapolis, MN, USA) based on the Luminex xMAP

technology (Luminex Corporation, Austin, Tex). The ana-

lytes IFN-γ, IL-13, IL-1β, IL-1α, TGF-β, IL-6, IL-17E, IL-

21, IL-23, eotaxin, GM-CSF, IFN-α, IL-18, NGAL, perios-

tin, TSLP and IL-22 were analyzed using a 17-plex assay.

The remaining analytes TNF-α, IL-8, YKL-40, IL-10, IL-2,

IL-4, IL-5, MCP-1 and IL-12p70 were part of a 9-plex

assay. IL-22 was below the detection limit of the assay and

hence was excluded from further analysis.

Data was read on the Luminex MAGPIX machine

(Luminex Corporation) and analyzed using XPONENT

4.2 software (Luminex Corporation). The test procedure

was adopted as per the manufacturer’s instructions. As

per the manufacturer’s instructions, the lower detection

limit of each analyte is shown in brackets: IFN-γ (0.40

pg/mL), TNF-α (1.2 pg/ml), IL-12p70 (20.2 pg/ml), IL-2

(1.8 pg/ml), IL-4 (9.3 pg/ml), IL-5 (0.5 pg/ml), IL-13

(36.6 pg/ml), IL-10 (1.6 pg/ml), IL-1α (0.9 pg/ml), IL-1β

(11.1 pg/ml), IL-6 (1.7 pg/mL), IL-17E (27.7 pg/ml), IL-

21 (0.869 pg/ml), IL-23 (11.4 pg/ml), eotaxin (14.6 pg/

ml), GM-CSF (4.1 pg/ml), IFN-α (0.26 pg/ml), IL-18

(1.93 pg/ml), NGAL (29.2 pg/ml), periostin (95.7 pg/ml),

TSLP (0.432 pg/ml), MCP-1 (9.9 pg/ml),YKL-40 (3.30

pg/ml), TGF-β (15.4 pg/ml) and IL-8 (1.8 pg/ml). Each

sample was analysed in triplicate, and the mean of the

three was calculated for every analyte. The standard

curve was generated by a 5-parameters logistic fit.

Statistical analysis

All values are expressed as mean ± standard deviation

(SD). One way ANOVA (Dunnett’s post hoc test) or Krus-

kal–Wallis test (Dunn’s post hoc test) was conducted for

pairwise comparisons. Statistical analyses were performed

using GraphPad Prism version 7.00 for Windows, Graph-

Pad Software, San Diego, CA, USA. A p-value ≤0.05 was

considered to be statistically significant. Immunological

markers significantly altered in ACO as compared with

asthma and COPD were identified and only those dysreg-

ulated mediators common to both ACO vs. asthma and

ACO vs. COPD considered for further analysis. Pearson’s

correlation analysis was performed between each of these

mediators and the lung function parameters, i.e. FEV1 and

FEV1/FVC of ACO subjects.

Correlation heat-maps

Correlation heatmaps using Pearson’s correlation coeffi-

cient were generated to identify the relationship between

the significantly altered metabolites and immunological

markers in ACO cases using R statistical packages ver-

sion 3.2.2 (R Foundation for Statistical Computing,

Vienna, Austria; http://www.R-project.org/).

Results
Untargeted GC–MS based metabolomic profile

Discovery phase

The baseline clinical characteristics of all subjects re-

cruited is tabulated in Table 1. Following spectral anno-

tation with NIST 14 library, a total of 145 consistent

metabolites could be identified. Out of these metabolites,

85 had an occurrence frequency of at least 80% among

all samples and were considered for further analysis. A

representative GC–MS spectrum is shown in Supple-

mentary Fig. 1. Both multivariate analysis (MVA) and

univariate analysis (UVA) were performed on the con-

stant sum normalized, log transformed and mean scaled
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peak area data matrix of the final 85 annotated

metabolites.

The discovery phase samples were assigned into two

groups, obstructive lung diseases (asthma, COPD and

ACO) and healthy controls. MVA is a statistical technique

which involves the simultaneous observation and analysis of

more than two variables. Multivariate methods may be su-

pervised or unsupervised. While unsupervised methods

such as clustering are exploratory in nature and help in

identification of patterns, supervised methods use some type

of response variable to discover patterns associated with the

response. Both PLS-DA and OPLS-DA are supervised

MVA tools. PLS-DA is a chemometrics technique used to

optimise separation between different groups of samples,

which is accomplished by linking two data matrices X (i.e.,

metabolite peak areas) and Y (i.e., groups). PLS aim to dif-

ferentiate between classes in highly complex data sets, des-

pite within class variability. Initially, PLS-DA models were

generated which showed class separation between the dis-

ease groups and controls (Supplementary Fig. 2). OPLS-DA

is often used in lieu of PLS-DA to disentangle group-

predictive and group-unrelated variation in the measured

data. In doing so, OPLS-DA constructs more parsimonious

and easily interpretable models compared to PLS-DA. Next,

OPLS-DA models were generated for optimized separation

between the two groups (Fig. 1a). The permutation test evi-

denced significantly higher R2 and Q2 values than that of

200 permutated models, indicating a good predictive ability

of the model (Supplementary Fig. 3a).

Thereafter, PLS-DA models were generated for COPD,

asthma, and ACO which exhibited good discrimination be-

tween all the three groups. This is represented as a 3D

score scatter plot in Supplementary Fig. 4. Finally, for fea-

ture extraction, OPLS-DA models were generated to

optimize separation for (i) ACO vs. COPD (R2X = 0.21,

R2Y = 0.931 and Q2 = 0.877; CV-ANOVA score p = 0) (Fig.

1b) and (ii) ACO vs. asthma (R2X = 0.165, R2Y = 0.95 and

Q2 = 0.89; CV-ANOVA score p = 0) (Fig. 1c). Cross-

validation analysis using 200 random permutations

confirms good predictive ability of both the generated

models (Supplementary Fig. 3b & c). Variable of import-

ance projection (VIP) scores were used for the identifica-

tion of key metabolites contributing towards discrimination

of the OPLS-DA models (Supplementary Fig. 5a & b). VIP

values describe a quantitative estimation of the discrimin-

atory power of each individual feature. Thus, VIP scores

ranks the compounds (metabolites) according to their con-

tribution to the model. Variables with VIP score > 1.3 could

identify 18 metabolites for ACO vs. asthma and 17 metabo-

lites for ACO vs. COPD responsible for clustering. Out of

these, 11 metabolites [serine, threonine, ethanolamine, glu-

cose, cholesterol, 2-palmitoylglycerol, stearic acid, lactic

acid, linoleic acid, D-mannose and succinic acid] common

to both ACO vs. asthma and ACO vs. COPD were consid-

ered for further analysis.

To cross-validate MVA, peak area matrix of all the

metabolites were subjected to UVA using ANOVA

(Dunnett’s post hoc test) or Kruskal–Wallis test (Dunn’s

post hoc test), as applicable. UVA refers to statistical

analyses that involve only one dependent variable and

which are used to test hypotheses. UVA with multiple

testing correction is an attractive approach since it is

relatively simple to implement and provides a measure

of statistical significance for each covariate that is easy

to interpret. Common variables with VIP score > 1.3,

ANOVA p-value ≤0.05 and adjusted FDR < 0.01 were

selected as the major metabolites responsible for differ-

entiating ACO from both, asthma and COPD. Metabo-

lites including serine, threonine, ethanolamine, glucose,

D-mannose and succinic acid were found to be down-

regulated in ACO as compared to both, asthma and

COPD. Cholesterol, 2-palmitoylglycerol and lactic acid

were also down-regulated in ACO, but only with respect

to COPD. Interestingly, these metabolites were found to

be upregulated when compared with asthma. Also, two

metabolites, i.e. stearic acid and linoleic acid were found

to be upregulated in ACO as compared to COPD and

downregulated with respect to asthma (Table 2).

Fig. 1 Orthogonal projections to latent structures discriminant analysis (OPLS-DA) model removes outliers which do not contribute to class separation.

It is an extension to the supervised partial least squares (PLS) regression method that filters out some variance in the X-matrix unrelated to Y thereby

producing results which are easier to interpret. OPLS-DA model shows optimized discrimination between (a) obstructive lung diseases and healthy

controls (R2Y = 0.937 and Q2 = 0.919, CV-ANOVA score p = 0) (b) ACO and COPD (R2Y = 0.931 and Q2 = 0.877, CV-ANOVA score p = 0) (c) ACO and

Asthma (R2Y = 0.95 and Q2 = 0.89, CV-ANOVA score p = 0). Parameters including R2 (goodness of the fit), Q2 (predictive ability), and analysis of

variance testing of cross validated predictive residuals (CV-ANOVA) score were used to validate the robustness of the OPLS-DA model
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Validation phase

The significantly altered 11 metabolites, including serine,

threonine, ethanolamine, glucose, cholesterol, 2-

palmitoylglycerol, stearic acid, lactic acid, linoleic acid,

D-mannose and succinic acid identified in the discovery

phase were further validated in an independent fresh co-

hort of subjects using UVA (Table 3). Similar trends in

expression with significant changes were seen as ob-

served earlier in the discovery cohort.

Pathway analysis and MSEA

All the 85 identified and quantified metabolites in the

discovery cohort were considered for pathway analysis

using MetPA. All matched pathways are displayed as cir-

cles. The colour and size of each circle is based on the

p-value and pathway impact value, respectively. Various

common significantly altered pathways were observed in

ACO vs. asthma and ACO vs. COPD, including starch

and sucrose metabolism, linoleic acid metabolism, gly-

colysis / gluconeogenesis, citrate cycle (TCA cycle), gly-

cine, serine and threonine metabolism and aminoacyl-

tRNA biosynthesis (Supplementary Fig. 6a, b). A few less

significant pathways could also be identified (Supple-

mentary Table 1 and 2).

MSEA also showed multiple metabolic pathways that

were significantly dysregulated in serum of ACO patients

(p < 0.05). Supplementary Fig. 7 highlights the fold

enrichment obtained when using peak areas of all the iden-

tified metabolites. The colour intensity denotes the level of

statistical significance and the length of each bar represents

the fold enrichment of the pathway. Supplementary Tables 3

and 4 present all the perturbed biochemical pathways with

number of metabolite hits, p-values, Holm-adjusted p-

values and FDR. Pathways with the highest number of hits

and significant Holm p-values are considered to be signifi-

cantly perturbed in ACO patients. The p-values of the

pathways is determined by the difference of peak area data

and the number of participating metabolites. Some of the

most significantly altered pathways in ACO included fruc-

tose and mannose metabolism, glycine-serine-threonine

metabolism, valine-leucine-isoleucine biosynthesis and gly-

colysis/gluconeogenesis.

ROC curve and clinical correlation analysis of candidate

metabolites in ACO

ROC diagram plots the true positive rate (sensitivity) of

a test on the y-axis against the false positive rate (100-

specificity) on the x-axis, thus producing the AUC. An

AUC is a measure of the accuracy of a diagnostic test,

where 1.0 indicates a perfect test and a 0.5 shows that

the test is no better than random chance, and therefore

has no diagnostic or prognostic value. ROC curves were

generated for the common set of significantly altered

Table 2 Human Metabolome Database identifiers (HMDB ID), multivariate data analysis (variable influence on projection (VIP) scores,

false discovery rate (FDR) adjusted p-value), fold changes and pairwise univariate (ANOVA/Kruskal Wallis test) values are provided for

the 11 significantly altered metabolites common to ACO vs. asthma and ACO vs. COPD. Pearson’s correlation coefficient (r) and their

significance values (p value) depicts the association between these altered metabolites and lung function parameters, FEV1, FEV1/

FVC of ACO subjects

Metabolites HMDB ID VIP scores Fold change Significance Correlation (r)

(Discovery
cohort)

ACO vs
COPD

ACO vs
Asthma

Adjusted p-
value (FDR)

ACO vs
COPD

ACO vs
Asthma

Pairwise p-value FEV1 FEV1/FVC

ACO vs
COPD

ACO vs
Asthma

Pearson
(r)

p-value Pearson
(r)

p-value

Serine HMDB0000187 1.55 2.79 < 0.0001 0.77 0.75 * ** 0.63 < 0.0001 0.54 0.0008

Threonine HMDB0000167 2.04 2.73 < 0.0001 0.87 0.83 * *** 0.48 0.0034 0.54 0.0007

Ethanolamine HMDB0000149 1.32 1.55 < 0.0001 0.88 0.83 * *** 0.21 ns 0.30 ns

Glucose HMDB0000122 2.58 2.22 < 0.0001 0.76 0.73 ** *** 0.67 < 0.0001 0.72 < 0.0001

Cholesterol HMDB0000067 1.48 1.45 < 0.0001 0.85 1.29 * ** 0.59 0.0002 0.46 0.0059

2-
palmitoylglycerol

HMDB0011533 2.46 1.45 < 0.0001 0.75 1.39 *** ** 0.17 ns 0.52 0.0014

Stearic acid HMDB00827 1.49 1.41 < 0.0001 1.18 0.88 * * −0.26 ns −0.33 ns

Lactic acid HMDB0000190 1.82 1.42 < 0.0001 0.83 1.18 ** * −0.35 0.0414 −0.19 ns

Linoleic acid HMDB0030950 1.52 1.46 < 0.0001 1.35 0.81 ** ** − 0.19 ns − 0.52 0.0014

D-Mannose HMDB00169 1.64 1.54 < 0.0001 0.69 0.64 ** *** 0.49 0.0025 0.79 < 0.0001

Succinic acid HMDB00254 1.42 1.82 < 0.0001 0.82 0.74 * *** 0.59 0.0002 0.69 < 0.0001

COPD- chronic obstructive pulmonary disorder, ACO- asthma COPD overlap, ns- not significant; *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.0001
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metabolites of the two groups (ACO vs. asthma and

ACO vs. COPD). Six metabolites with the highest AUCs

(AUC > 0.7) were taken into consideration for both the

groups to establish a predictive model that could well

differentiate ACO from asthma and also from COPD

(Fig. 2). Four metabolites viz. glucose, 2-palmitoylglycerol,

D-mannose and succinic acid were found to be common

between the two ROC models.

Pearson’s correlation analysis between each of the sig-

nificantly altered metabolites and lung function parame-

ters of ACO subjects is provided in Table 2. Significant

positive correlation was observed between metabolites

including serine, threonine, glucose, cholesterol, D-

mannose, succinic acid and FEV1 and FEV1/FVC. A

negative correlation was observed between stearic acid,

lactic acid and linoleic acid; however, all correlations

were not statistically significant.

Serum immunological mediators and clinical correlation

Twenty-five immunological mediators (TNF-α, IFN-α,

IL-1β, IL-17E/IL-25, GM-CSF, IL-18, NGAL, IL-5, IL-

10, MCP-1, YKL-40, IFN-γ, IL-6, TGF-β, IL-12p70, IL-2,

IL-4, IL-13, IL-1α, IL-21, IL-23, periostin, TSLP, IL-8

and eotaxin) estimated in serum of ACO, asthma, COPD

Table 3 A new subject cohort (validation cohort) was recruited to confirm the findings of the exploratory (discovery) patient cohort.

Human Metabolome Database identifiers (HMDB ID), fold changes, and pairwise univariate (ANOVA/Kruskal Wallis test) values of the

11 significantly altered serum metabolites (common to ACO vs. asthma and ACO vs. COPD) identified in the discovery cohort are

summarized for the validation patient cohort

Metabolites HMDB ID Fold change Significance

(Validation cohort) Adjusted p-value (FDR) ACO vs COPD ACO vs Asthma Pairwise p-value

ACO vs COPD ACO vs Asthma

L-Serine HMDB0000187 < 0.0001 0.78 0.74 ** ***

L-Threonine HMDB0000167 < 0.0001 0.85 0.82 * **

Ethanolamine HMDB0000149 < 0.0001 0.86 0.79 ** ***

Glucose HMDB0000122 < 0.0001 0.81 0.76 * **

Cholesterol HMDB0000067 < 0.0001 0.94 1.07 * *

2-palmitoylglycerol HMDB0011533 < 0.0001 0.89 1.09 ** *

Stearic acid HMDB00827 < 0.0001 1.31 0.80 ** ***

Lactic acid HMDB0000190 < 0.0001 0.81 1.29 *** **

Linoleic acid HMDB0030950 < 0.0001 1.28 0.77 ** ***

D-Mannose HMDB00169 < 0.0001 0.79 0.79 *** ***

Succinic acid HMDB00254 < 0.0001 0.78 0.75 ** ***

COPD- chronic obstructive pulmonary disorder, ACO- asthma COPD overlap, ns- not significant; *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.0001

Fig. 2 Comparison of different metabolite panels based on receiver operating characteristic (ROC) curves. The curves correspond to metabolites

having the highest area under the curve (AUC) and the highest accuracy values in predicting ACO from asthma and COPD. a ACO versus asthma:

serine, AUC = 0.753 ± 0.06 (95% confidence interval (CI) 0.634–0.849); ethanolamine, AUC = 0.767 ± 0.06 (95% CI 0.650–0.861); glucose, AUC =

0.767 ± 0.06 (95% CI 0.650–0.861); 2-palmitoylglycerol, AUC = 0.780 ± 0.06 (95% CI 0.664–0.871); D-mannose, AUC = 0.913 ± 0.03 (95% CI 0.820–

0.967); succinic acid, AUC = 0.770 ± 0.06 (95% CI 0.653–0.863), b ACO versus COPD: glucose, AUC = 0.722 ± 0.07 (95% CI 0.597–0.826); 2-

palmitoylglycerol, AUC = 0.784 ± 0.06 (95% CI 0.664–0.876); lactic acid, AUC = 0.750 ± 0.06 (95% CI 0.627–0.849); linoleic acid, AUC = 0.798 ± 0.05

(95% CI 0.680–0.888); D-mannose, AUC = 0.791 ± 0.06 (95% CI 0.673–0.882); succinic acid, AUC = 0.710 ± 0.07 (95% CI 0.584–0.816)
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Fig. 3 (See legend on next page.)
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and controls are shown in Supplementary Table 5. The

mediators which showed significant differences in ACO

with respect to asthma, COPD and controls were only

considered for further analysis.

The expression level of Th1 mediated cytokines, such as

TNFα, and IL-1β were significantly higher in ACO cases

with respect to asthma and controls. The highest expres-

sion of these cytokines was noted in patients with COPD.

The expression of IL-5, a pro-inflammatory Th2 cytokine,

was highest in patients with ACO as compared to asthma,

COPD and controls. The anti-inflammatory cytokine, IL-

10 was least expressed in asthma; the levels in ACO cases

were significantly less when compared with COPD and

controls. Key immunological markers, such as IFN-γ, IL-

6, TGF-β and IL-17E/IL-25 showed significantly altered

expression profiles in ACO. Immune system-related

proteins and chemokines such as NGAL, YKL-40, MCP-1,

GM-CSF etc. some of which have already been explored

in ACO subjects also exhibited differential expression pat-

terns (Fig. 3). The expression level of IFN-α could not be

determined. Except IL-10, Pearson’s correlation analysis

showed negative correlation between the dysregulated me-

diators and lung function parameters. However, the cor-

relation was observed to be significant only for GM-CSF,

IL-6, IFN-γ, YKL-40, IL-1β, NGAL and IL-5 (Table 4).

Association between dysregulated metabolites and

altered immunological mediators

Pairwise Pearson’s correlation analysis was used to assess

the association of the significantly altered metabolites

with immunological mediators in serum of ACO pa-

tients. Correlation coefficients (r) ranged from 1.0 (max-

imum positive correlation) to − 1.0 (maximum

anticorrelation), with a value of 0 representing no correl-

ation in a heatmap. The red coloured cells represent

negative correlations while the blue coloured cells repre-

sent positive correlations. The size of the squares indi-

cates the magnitude of the correlation.

Significant negative correlations (− 0.336 to − 0.794,

p ≤ 0.05) were observed between serine, ethanolamine,

threonine, glucose, cholesterol and succinic acid with

TNF-α (not significant with ethanolamine, threonine),

IL-1β, NGAL (not significant with threonine), MCP-1

(not significant with serine, cholesterol), YKL-40, IFN-γ,

and IL-6. Also, a significant negative correlation was ob-

served between succinic acid and IL-18. Mannose too

showed negative correlation with IL-1β, GM-CSF, IL-5,

YKL-40, IFN-γ and IL-6. In contrast, stearic acid and

linoleic acid positively correlated (0.390 to 0.604, p ≤

0.05) with TNF-α (not significant with linoleic acid), IL-

1β, NGAL, IL-5, IFN-γ (not significant with linoleic

acid), IL-6 (not significant with linoleic acid) and YKL-

40. Lactic acid showed a significant positive correlation

with TNF-α and IL-1β (Fig. 4). The energy metabolites

and cholesterol negatively correlated with the immuno-

logical mediators, whereas the fatty acids and lactic acid

showed a positive correlation.

Discussion
In our earlier study, NMR based metabolomics provided

new insights into the altered pathways which could be

(See figure on previous page.)

Fig. 3 Dot plots of immunological mediator concentrations for asthma, COPD, ACO and healthy controls (TNF-α, IL-1β, IL-17E, GM-CSF, IL-18,

NGAL, IL-5, IL-10, MCP-1, YKL-40, IFN-γ, IL-6 and TGF-β) which were significantly dysregulated in ACO with respect to asthma, COPD and controls.

Each graph represents the concentration of a particular immunological mediator in the serum of the patients belonging to the four groups of

the discovery cohort. The scatter dot plot shows the mean and standard deviation. Notes: ns – not significant, * p ≤ 0.05, **p≤ 0.01, **p≤ 0.001,

****p≤ 0.0001. Abbreviations: ACO-Asthma COPD overlap, COPD- Chronic obstructive pulmonary disease, TNF α- Tumor necrosis factor α, IL-1β-

Interleukin 1β, GM-CSF-Granulocyte-macrophage colony-stimulating factor, NGAL-Neutrophil gelatinase-associated lipocalin, MCP 1-Monocyte

Chemoattractant Protein-1, YKL 40-Chitinase-3-like protein 1, IFN γ-Interferon γ, TGF β- Transforming growth factor β

Table 4 Pearson’s correlation value (r) and significance values

(p) depicting the extent to which the 13 dysregulated

immunological mediators (significantly altered in ACO vs.

asthma, ACO vs. COPD and ACO vs controls) are linearly related

to FEV1 and FEV1/FVC of ACO subjects

Marker Correlation

ACO vs FEV1 ACO vs FEV1/FVC

Pearson (r) p-value Pearson (r) p-value

TNFα −0.3717 0.0279 −0.2744 ns

IL-1β −0.4362 0.0088 −0.6578 < 0.0001

IL-17E −0.04455 ns −0.3067 ns

GM-CSF −0.09277 ns −0.3762 0.0259

IL-18 −0.3219 ns −0.1835 ns

NGAL −0.3559 0.0359 −0.3947 0.0190

IL-5 −0.3519 0.0382 −0.6168 < 0.0001

IL-10 0.1457 ns 0.1785 ns

MCP-1 −0.1067 ns −0.2734 ns

YKL-40 −0.4665 0.0047 −0.7473 < 0.0001

IFN-γ −0.5192 0.0014 −0.6352 < 0.0001

IL-6 −0.476 0.0038 −0.6342 < 0.0001

TGF-β −0.2106 0.2247 0.0011 ns

The data is presented for markers with adjusted p-values≤0.05

considered significant

COPD chronic obstructive pulmonary disorder, ACO asthma COPD overlap, ns

not significant, TNF αs Tumor necrosis factor α, GM-CSF- Granulocyte-

macrophage colony-stimulating factor, NGAL-Neutrophil gelatinase-associated

lipocalin, MCP 1- Monocyte Chemoattractant Protein-1, YKL 40- Chitinase-3-like

protein 1, IFN γ-Interferon γ, TGF β- Transforming growth factor β
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contributing to the higher mortality and morbidity in

ACO in comparison to asthma/COPD [27]. Since MS is

known to provide complementary information to NMR

[18], serum metabolome of the same patients are analysed

using GC-MS. In addition, metabolomic data has been in-

tegrated with a wide range of inflammatory mediators to

improve the understanding of ACO and effectively differ-

entiate it from asthma, COPD and healthy controls.

A total of 11 metabolites and 13 inflammatory media-

tors were found to be important in distinguishing ACO

from both asthma and COPD. Changes in plasma levels

of glucogenic amino acids like serine and threonine have

been reported by different groups in both asthma [23]

and COPD [38, 39]. Serine and threonine may get con-

verted to pyruvate which in turn enters the TCA cycle

to compensate the energy demand [40]. We hypothesize

that enhanced cellular demand due to upregulation of

glycolysis is responsible for the decrease in the expres-

sion levels of these metabolites in ACO.

Sugars such as glucose, mannose and succinate, a

TCA cycle intermediate were significantly down-

regulated in ACO patients as compared to asthma and

COPD. Numerous reports on glucose down-regulation

in COPD and asthma exist [22, 41, 42]. A similar trend

was also observed in our previous NMR study where sig-

nificant decrease in glucose level in ACO was observed

[27]. Mannose is an intermediate metabolite of galactose

metabolism pathway and may be converted to fructose-

6-phosphate which enters the glycolytic pathway [43].

The significantly low level of mannose in ACO is attrib-

uted to increased glycolytic activity and higher energy

demand [44]. Significant decrease in the expression of

succinate in ACO cases is in good agreement with the

reports of other researchers in COPD and asthma where

dysregulated succinate levels have been linked with en-

ergy metabolism, hypoxemic stress, or prolonged exer-

tion [45–47].

Ethanolamine, a metabolite of glycerophospholipid

metabolism, was also observed to be down-regulated in

ACO. Its involvement in the synthesis of phosphatidyl

ethanolamine, a central intermediate of lipid metabolism

and link with cellular respiration is reported [48]. How-

ever, the role of ethanolamine in glucose metabolism per

se still remains unclear and warrants further

investigation.

The levels of 2-palmitoylglycerol and cholesterol were

significantly down-regulated in ACO vs COPD whereas

a reverse trend was seen in ACO vs asthma. 2-

palmitoylglycerol is a monoacylglycerol and can be asso-

ciated with lipid cycle disruption with subsequent input

to energy cycles [49]. It is also documented that monoa-

cylglycerols are not merely intermediate lipid molecules,

but may act as signalling molecules in various inflamma-

tory and other immune system related processes [50].

Fig. 4 Heatmap is a two-dimensional (2D) correlation matrix which uses monochromatic coloured cells to demonstrate whether two

independent variables have a relationship with each other. Heat map demonstrating the Pearson correlation of 13 altered immunological markers

with 11 significantly dysregulated metabolites present in serum of ACO patients. Red coloured cells represent negative correlation, and blue

coloured cells represent positive correlation. The size of the squares indicates the magnitude of the correlation
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Cholesterol, on the contrary, has been linked to inflam-

mation, and is reported to decrease in serum of patients

with asthma and increase in patients with very severe

COPD [51, 52]. The expression pattern of cholesterol in

ACO cases may be linked to comprehensive changes in

lipid and sterol metabolism.

The increased expression of lactate is attributed to in-

creased glycolysis due to an imbalance in oxygen supple-

ment and demand, as explained by the “Warburg effect”.

The concentration levels of lactate have been extensively

studied in asthma and COPD and similar mechanisms in

ACO are also suggested [24, 52, 53]. Stearic acid (18:0) is

a saturated fatty acid (SaFA) which was found to be up-

regulated in ACO vs COPD and down-regulated in ACO

vs asthma. Numerous reports indicate the involvement of

SaFAs with the inflammasome, such as proinflammatory

cytokines, VEGF, IL-6, IL-1β etc. [54, 55]. Linoleic acid (9,

12- Octadecadienoic acid) also exhibited a similar expres-

sion pattern. It plays a critical role in cellular metabolism,

signaling and is also the precursor of arachidonic acid,

which is actively involved in proinflammatory response

and Th2 differentiation in asthma patients [56]. Fatty acid

levels are generally related to the metabolic status and diet

of the subjects; however, none of the participants in the

present study were obese or suffering from any other

metabolic disorder. It was also ensured that all subjects

followed a similar dietary pattern.

We have also studied a wide range of immunological

mediators which have been mostly explored in either

asthma and/or COPD. However, no reports exist on the

comprehensive immunological profile of ACO. Th1 me-

diated cytokines such as IFN-γ, IL-12 and IL-2 were esti-

mated in ACO. Only IFN-γ showed significantly altered

levels in ACO with respect to asthma, COPD and con-

trols. While IFN-γ is believed to inhibit Th2-mediated

inflammation, studies among asthmatic patients have

yielded conflicting results, including its association with

lung function and disease severity [57–61]. TNFα, at in-

creased levels leads to the development of heightened in-

flammatory responses in asthma and COPD [14, 62]. It

was observed to be higher in ACO subjects in compari-

son to asthma and controls. COPD cases exhibited the

highest circulating levels of TNFα.

The Th2-type cytokines, IL-4, 5, and 13, which are

associated with the promotion of IgE and eosinophilic

responses mostly in atopy and asthma, and IL-10,

characterized by anti-inflammatory response, were

explored in ACO [14, 62]. Though not significant,

these cytokines were found to be upregulated in

ACO, with IL-5 and 10 showing significant changes.

Our findings open up the possibility of using anti-IL-5

monoclonal antibodies for the management of ACO,

similar to that of the treatment suggested for severe

asthma [63].

IL-25, also known as IL-17E, is evidenced to be in-

volved in airway inflammation in asthma. It promotes

and augments allergic Th2 inflammation via production

of IL-4, IL-5, and IL-13 [64]. The expression trend of IL

25 in ACO was similar to that of asthma, which may be

attributed to its role in systemic inflammation. However,

the primary mediators of Th17 cells such as IL-17A and

IL-17F were not estimated which restricts us from gen-

erating any conclusive ideas regarding Th17 status in

ACO cases.

IL-1β has been associated with systemic inflammation

in asthma, COPD as well as exacerbations in both the

diseases [65, 66]. It is also suggested that raised IgE

levels induce IL-1β expression in monocytes which leads

to its increased level in blood [67]. ACO patients were

found to have significantly higher levels of IL-1β than

controls; however, levels were not as high as observed in

asthma or COPD. TGF-β is implicated in several aspects

of fibrosis, including deposition of extracellular matrix

proteins such as collagens and fibronectin [68]. TGF-β

levels were highest in COPD patients followed by ACO

which is most likely due to the structural changes in the

airway epithelium of these patients.

IL-6 plays a key role in acute phase response and is asso-

ciated with a variety of clinical and biological parameters

in asthma, COPD as well as ACO [69, 70]. We found the

IL-6 expression level to be the highest in subjects with

ACO. This mediator could be useful in clinics for the

identification of patients with high systemic inflammation

[71]. We also suggest that anti-IL-6 therapies warrant at-

tention as a possible therapeutic strategy for ACO.

IL-18 is known to enhance Th1 response and has a

synergistic effect on IL-12 in inducing IFN-γ release and

inhibiting Th2 inflammation. We found the highest ex-

pression level of IL-18 in COPD patients. This is in good

agreement with the findings of Imaoka et al. (2008) [72]

where serum levels of IL-18 in COPD patients and

smokers were observed to be significantly higher than

that of non-smokers. Furthermore, the group also re-

ported a significant negative correlation of IL-18 with

FEV1 (%) in these patients, which is also in accordance

with our observations. IL-18 also has autoimmune regu-

latory effects on both Th1 and Th2 cytokines [73] and

several studies have demonstrated increase in IL-18 ac-

tivity in Th2 type diseases, such as asthma exacerbations

and allergic rhinitis [74].

Other immunological markers such as MCP-1, GM-

CSF, YKL-40 and NGAL were also assessed. MCP-1 is

evidenced to be higher in blood of both asthma and

COPD cases and is strongly related to smoking [75, 76].

GM-CSF is another pleiotrophic and pro-inflammatory

cytokine that promotes leucocyte survival and activation,

and regulates mucosal immunity and inflammation.

YKL-40 a secreted glycoprotein, produced by various cell
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types, including macrophages, neutrophils, and airway

epithelium is reported to be involved in the pathogenesis

of COPD, including bronchial neutrophilic airway in-

flammation and remodelling [77]. It has also been stud-

ied in ACO with a few conflicting reports. MCP-1, GM-

CSF and YKL-40 were found to be upregulated in ACO

with respect to asthma and controls. However, highest

expression of these three markers was seen in patients

with COPD. NGAL is attributed to activated neutrophils

in response to smoke related airway inflammation as

well as reactive oxygen species. It is one of the most ex-

tensively explored markers of ACO [13, 77, 78]. We

found the level to be highest in ACO as compared to

asthma, COPD and controls. Our results are in good

agreement with reports suggesting higher levels of

NGAL in ACO as compared to asthma [13, 78]. Further,

a significant negative correlation was observed between

serum NGAL and lung function in ACO patients. Our

findings are supported by the work of Gao et al. (2016),

where an increased NGAL expression in sputum has

been independently correlated with degree of airflow

limitation in ACO [13]. Other important markers which

are frequently studied in asthma and COPD such as

periostin, eotaxin and TSLP, though not significant, ex-

hibited an altered profile in ACO.

In recent years, there has been an increasing interest

in understanding the group of individuals having fea-

tures of both asthma and COPD. As the complexity of

ACO as a disease entity is gradually unravelled and bet-

ter understood, a further revision in ACO definition

could likely be required [5, 13]. This study in not with-

out limitations. First, owing to the existence of numer-

ous ACO defining guidelines [6–8], the findings of this

study are restricted to ACO patients diagnosed as per

GINA/GOLD and ATS roundtable diagnostic criteria.

Second, this is a single-center study. Genetic variability

needs to be accounted for before generalization of the

study findings. Similar studies across different countries/

continents are, therefore, recommended so that findings

on variable ethnicity can be correctly compared. Third,

the present findings are limited to patients without ac-

tive respiratory infections. Alterations in metabolomic

profile with lung infections is well realized [79–81].

Since patients with ACO are susceptible to infection [82,

83], it would be worthwhile to investigate ACO metabo-

lomic profiles with and without infections. Fourth, owing

to the use of GC-MS platform, this study is limited to

the analysis of volatiles with restricted resolution and

sensitivity. LC-MS/MS based serum metabolic profiling

in the same patient cohort is presently underway. It is

envisioned that combining our earlier NMR findings

with the complementary GC-MS and LC-MS/MS data

will enrich the metabolome coverage and overall im-

prove the data quality. Fifth, in conjunction with serum

which reflects analytes in the systemic circulation, it

would be useful to analyse the markers at a cellular level

in the more proximal biofluid bronchoalveolar lavage

fluid (BALF) and lung tissue. However, owing to ethical

constraints, this study could not be implemented. Last,

our limited sample size may justifiably raise concern re-

garding robustness of metabolomic data analysis; how-

ever, the validation cohort included in this study

demonstrates that the dysregulated expression pattern of

the metabolites is reproducible and a characteristic of

the disease state.

Conclusion
In conclusion, the present study provides novel insight

into metabolic pathways and inflammatory mediators in-

volved in patients with ACO and how these processes

are linked to each other and also with the pulmonary

function test parameters. Such clinical correlations, on

extending to ACO patient phenotypes, could help

understand the disease better and aid in tailoring therap-

ies exclusively for ACO.
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