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Gut microbiota has recently been proposed as a crucial environmental factor in the

development of metabolic diseases such as obesity and type 2 diabetes, mainly

due to its contribution in the modulation of several processes including host energy

metabolism, gut epithelial permeability, gut peptide hormone secretion, and host

inflammatory state. Since the symbiotic interaction between the gut microbiota and

the host is essentially reflected in specific metabolic signatures, much expectation is

placed on the application of metabolomic approaches to unveil the key mechanisms

linking the gut microbiota composition and activity with disease development. The

present review aims to summarize the gut microbial–host co-metabolites identified so

far by targeted and untargeted metabolomic studies in humans, in association with

impaired glucose homeostasis and/or obesity. An alteration of the co-metabolism of

bile acids, branched fatty acids, choline, vitamins (i.e., niacin), purines, and phenolic

compounds has been associated so far with the obese or diabese phenotype, in

respect to healthy controls. Furthermore, anti-diabetic treatments such as metformin

and sulfonylurea have been observed to modulate the gut microbiota or at least

their metabolic profiles, thereby potentially affecting insulin resistance through indirect

mechanisms still unknown. Despite the scarcity of the metabolomic studies currently

available on the microbial–host crosstalk, the data-driven results largely confirmed

findings independently obtained from in vitro and animal model studies, putting forward

the mechanisms underlying the implication of a dysfunctional gut microbiota in the

development of metabolic disorders.

Keywords: metabolomics, gut microbiota, obesity, type 2 diabetes, co-metabolism

Abbreviations: 1H-NMR, proton nuclear magnetic resonance; BA, bile acids; IGT, impaired glucose tolerance; FMO3,
flavin monooxygenase 3; FXR, Farnesoid X Receptor; GC, gas chromatography; LC, liquid chromatography; MS, mass
spectrometry; NAFLD, non-alcoholic fatty liver disease; OGTT, oral glucose tolerance test; T2D, type 2 diabetes; TGR-5,
G-protein coupled receptor; TMA, trimethylamine; TMAO, trimethylamine N-oxide.
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GUT MICROBIOTA AND DIABESITY :
ROLE IN ENERGY HARVEST, GUT
BARRIER INTEGRITY, ENDOCRINE
MODULATION, AND METABOLIC
INFLAMMATION

Obesity is a complex,multifactorial disease characterized by an

excessive accumulation of fat due to an imbalance between energy
intake and expenditure. The linear rise in the prevalence of
T2D throughout the normal, overweight and obese ranges is so

high that the relative risks of diabetes are 40 times higher when
BMI increases above 35 kg/m2 (Hu et al., 2001; Mokdad et al.,

2003; Poirier et al., 2006; World Health Organization [WHO],
2013). The public concern over the obesity epidemic mostly lies

in the intimate connection between obesity and T2D (so-called
diabesity; Astrup and Finer, 2000) and makes the elucidation of

mechanisms underlying the co-occurrence of the two diseases a
central focus of current biomedical research.

Recently, consideration has started to be given to the
gastrointestinal tract as a key point in the development and

progression of complex metabolic diseases, since it represents
the milieu where interactions between exogenous (i.e., diet,

microbiome) and endogenous (i.e., genetic) factors predisposed
to disease and the body’s defenses (physical barrier, immune

system response) actually take place. Increasing evidence
indicates in particular the impact of changes in the composition

of the human gut microbiota on host metabolism and a variety of
diseases (Bäckhed et al., 2005; Moreno-Indias et al., 2014; Shoaie

et al., 2015).
Firmicutes (Gram-positive), Bacteroidetes (Gram-negative)

and Actinobacteria (Gram-positive) represent over 90% of the

phyla and dominate the gut microbiota (DiBaise et al., 2008), but
a relevant change in their relative proportion has been described

in obesity and T2D. A favorable prevalence of Firmicutes bacteria
toward healthy subjects has been observed in both animal models

of obesity (Ley et al., 2005) and human obesity (Ley et al., 2006;
Turnbaugh and Gordon, 2009), also reviewed in (Turnbaugh

and Gordon, 2009; Sanz et al., 2013; Moreno-Indias et al.,
2014), although with some discrepancies among data (Schwiertz

et al., 2010). Although the potential impact of specific species
on host metabolism has already been elucidated, most of the

data so far available have reported observed changes at the
phylum level. Furthermore, the physiological contribution of

Firmicutes in the development of the obese phenotype is still
being debated. In turn, some studies have observed a positive

correlation between ratios of Bacteroidetes to Firmicutes and
plasma glucose concentration, but not with BMI, although this

was expected (Larsen et al., 2010).
Different mechanisms have been proposed in the attempt

to understand the impact of microbiota both in maintaining

metabolic health and in the development of obesity and
T2D. Essentially, the intestinal microbial variability has been

hypothesized as an important factor in four different processes,
namely: (i) the modulation of energy homeostasis by regulating

the energy harvest from diet, fat storage, lipogenesis, and fatty
acid oxidation (host energy metabolism; Tilg et al., 2009; Musso

et al., 2010); (ii) the modulation of the gut barrier integrity by

regulating the epithelial permeability, the intestinal motility and
the transport of digestion products such as short-chain fatty acids,

which are an energy source for colonocytes (Samuel et al., 2008);
(iii) the regulation of gastrointestinal peptide hormone secretion,

by suppressing the secretion of the lipoprotein lipase inhibitor
(fasting-induced adipose factor), determining the release of

fatty acids from circulating triglycerides and lipoproteins in
muscle and adipose tissue and promoting fat mass accumulation

(Bäckhed et al., 2007); and (iv) the modulation of the host
inflammatory state by contributing to the systemic increase of

lipopolysaccharide, which impairs insulin sensitivity (metabolic
endotoxemia; reviewed in Bäckhed et al., 2007; Cani et al.,

2007, 2012; Sun et al., 2010; Vrieze et al., 2010; Shen et al.,
2013). Evidence of the role of gut microbiota in the preservation

of metabolic health also comes from the effect of prebiotics,
such as non-digestible carbohydrates, namely non-digestible
ingredients that are fermented by specific beneficial bacterial

strains, selectively promote the growth and/or activity (release of
end-products of bacterial fermentation) of the gastrointestinal

microbiota, affecting favorably the host health (Gibson et al.,
2010). The intake of prebiotics has in fact been described to act

on host endocrine secretion, improve gut barrier integrity by
increasing the release of glucagon-like peptide-2 (Cani et al.,

2012; Dewulf et al., 2013), stimulate postprandial release of
peptides involved in energy homeostasis and/or pancreatic

functions such as the anorexigenic glucagon-like peptide-1
and peptide YY, and the decrease of orexigenic peptides such

as ghrelin in plasma which in turn modulates food intake
(regulators of appetite) and energy expenditure across the entire

gastrointestinal tract (Piche et al., 2003; Delzenne and Cani,
2011; reviewed in Vrieze et al., 2010). Furthermore, evidence

suggests that the modulation of the host metabolic health by
prebiotics intake can be mediated to specific fermentation

products (i.e., short-chain fatty acids, predominantly acetate,
propionate and butyrate) produced by cross-feeding between
Eubacterium rectale and Bifidobacterium thetaiotaomicron

(Venema, 2010); Propionibacterium sp. and Bacteroides sp.
(Hosseini et al., 2011); Faecalibacterium prausnitzii and

Roseburia intestinalis/Eubacterium rectale (Duncan et al., 2004;
Venema, 2010) respectively.

THE METABOLOMIC APPROACH

Due to the species specificity of several enzymatic machineries,
the gut microbial composition and activity are likely to be

characterized by the profile of small metabolites produced in
the intestinal lumen, eventually absorbed through the intestinal

barrier and further biotransformed by the host. Consequently,
the complexity of microbial–host exchanges may be reflected

in the specific chemical signature of host circulating biofluids
(Nicholson et al., 2012). Metabolomics has recently attracted

attention as the most suitable -omics technology for investigating
complex, polygenic and multifactorial diseases with a strong

metabolic etiology, such as obesity and T2D as well as the
crosstalk of distinct predisposing factors in disease development
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and progression (Faber et al., 2007; Llorach et al., 2012; Du

et al., 2013; Kurland et al., 2013). Aimed at the comprehensive
analysis of the low- molecular- weight compounds contained

in a biological system –by definition, metabolites comprise a
plethora of primary or secondary derivatives of the intermediate

metabolism (molecular weight below 900 and 2000 Dalton,
depending on sources; Beckonert et al., 2010; Psychogios et al.,

2011; Hadacek, 2015) metabolomics represents a powerful tool
for exploring the crosstalk between the microbial and host

metabolism in a more exhaustive fashion.
The workflow applied in metabolomic studies is broadly

categorized into five main steps: (1) sample collection, (2) sample
preparation, (3) data acquisition, (4) data analysis, and (5)

biological interpretation of the results obtained (Llorach et al.,
2012). The analytical techniques most commonly used for the

characterization of the metabolome of a biological sample are
MS and 1H-NMR. Both technologies have their advantages and
disadvantages. 1H-NMR implies a non-destructive, non-selective,

cost-effective, and relatively sensitive analysis while, compared
to 1H-NMR, MS mainly offers potential advantages in terms

of sensitivity and, if coupled to different separation techniques
such as LC or GC, it provides a means of detecting a broader

and complementary range of biomarkers (Faber et al., 2007).
LC coupled to electrospray ionization MS is becoming the

method of choice for the acquisition of profiling metabolites
in complex biological samples (Scalbert et al., 2009) through

both targeted (i.e., triple quadrupole-driven) and non-targeted
(e.g., quadrupole time-of-flight-, linear trap quadrupole orbitrap-

driven) approaches.
The present review aims to summarize the gut microbial–

host cometabolites identified so far in humans in relation to
obesity and/or T2D by targeted and untargeted metabolomic

studies. Since the potential impact of some specific species in host
metabolism has already been elucidated, an attempt to associate

bacterial producers of the co-metabolites with the metabolic
alterations related to the obese, diabetic, or diabese phenotype
was also made. A critical view of the current limitations

and future directions of metabolomics will accompany the
discussion.

MATERIALS AND METHODS

Search Strategy
The following keywords were searched for in the PubMed

and Web of Science electronic databases: (Metabolom∗ [TW]
or co-metabol∗ [TW] or host-gut metabo∗ [TW] or nuclear

magnetic resonance [TW] or MS [TW] or magnetic resonance
spectroscopy [TW]) AND (OBES∗ [TW] OR DIABET∗ [TW]

OR DIABES∗ [TW]) AND (gut micro∗ [TW]). Species (human),
language (English), and publication date restrictions (2000 to

date, last search on November 27th, 2014) were imposed, but
there were none for gender, age or ethnicity. Relevant references

cited in the selected articles were additionally reviewed. Targeted
and untargeted metabolomic approaches driven by 1H-NMR

or MS techniques were both included in the selection. Low-
molecular-weight (<1000 Da) metabolites significantly up- or

downregulated in overweight and obese subjects with/without

impaired glycemic control, with respect to controls (i.e., lean,
healthy subjects), were the primary outcomes of interest of the

review.

RESULTS AND DISCUSSION

Characteristics of the Studies and
Metabolic Variations
Only eight human studies successfully met the eligibility criteria
for inclusion in the review (details in the Supplementary Material

File). As summarized in Table 1, seven observational and
one interventional study have so far applied a metabolomic

approach and specifically identified changes in products of
the gut microbial–host co-metabolism in overweight to obese

individuals (BMI> 25 kg/m2) and/or several degrees of impaired
glycemic control (ranging from IGT up to T2D) compared to
control individuals. Other comorbidities were not described (i.e.,

hypertension, renal or liver dysfunction).
Overall, the study subjects, designs and objectives were

quite heterogeneous despite the small number of retrieved
studies (Supplementary Material File), thereby complicating an

otherwise integrated and consistent picture of the metabolomic
changes observed.

Urine (Salek et al., 2007; Calvani et al., 2010; Zhao et al., 2010;
Huo et al., 2015), fasting serum (Huo et al., 2009; Zhang et al.,

2009; Suhre et al., 2010) and plasma (Zhao et al., 2010; Campbell
et al., 2014) were the biological samples used in these studies.

A data-driven untargeted approach was chosen in the majority
of the studies (Salek et al., 2007; Huo et al., 2009; Zhang et al.,

2009; Calvani et al., 2010; Zhao et al., 2010; Campbell et al.,
2014) while two of them provided quantitative information about

known targeted metabolites (Suhre et al., 2010; Huo et al., 2015).
The metabolic changes observed in these studies and the related

interpretations are summarized in Table 2.

Co-metabolism of Bile Acids
Two of the metabolomic studies described in this review

highlighted a change in the circulating pool of BA in obese
patients with insulin resistance or T2D, compared with BMI-

matched healthy individuals (Suhre et al., 2010; Zhao et al., 2010).
Alterations involved both human-derived (hepatic) structures

(primary BA) and gut microbial-produced derivatives (secondary
BA).

To the best of our knowledge, it is currently accepted that
the bacterial enzymes involved in the biotransformation from

primary to secondary BA are not shared across the whole
microbial community, although they have been described so

far in genera belonging to the four major phyla Firmicutes,
Actinobacteria, Bacteroidetes and Proteobacteria (Labbé

et al., 2014). Furthermore, according to Jones et al. (2014)
Actinobacteria and Firmicutes clones would be the only ones

able to degrade all conjugated BA, with Bacteroidetes species
being limited to tauro- conjugation activities.

After their production in the liver and the eventual glyco-
and tauro-conjugation (N-acyl amidation with glycine or taurine
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substituents), primary BA are secreted in the small intestine

through the bilis (Ridlon et al., 2006; Hofmann and Hagey,
2008; Swann et al., 2011), where they are first subjected to

deconjugation by a bacterial bile salt hydrolase enzyme produced
by species of the four phyla, such as Clostridium, Bacteroides,

Lactobacillus, Bifidobacterium, and Enterococcus (Begley et al.,
2005). In the ileum, more than 95% of these BA undergo

enterohepatic recycling (Swann et al., 2011; Kootte et al., 2012;
Nicholson et al., 2012), are absorbed from the intestine and

returned to the liver (Ridlon et al., 2006). The remaining
5% escape the enterohepatic circulation and reach the large

bowel where the bioconversion into secondary BA is completed,
especially by Firmicutes phyla (Eubacterium sp. and Clostridium

sp.; Midtvedt, 1974; Nguyen and Bouscarel, 2008; Swann et al.,
2011).

A decrease of primary BA and an increase of secondary BA
was observed in the fasting serum of overweight patients with
T2D, compared to healthy subjects (Suhre et al., 2010). The

authors hence concluded that differences in the gut microbiota
of diabetic patients may lead to higher rates of conversion from

primary to secondary BA. In turn, Zhao et al. (2010) only
observed an increase of glycochenodeoxycholic acid (primary

BA) in the plasma of prediabetic individuals, while no changes
were noticed in urine. Despite the only partial overlapping

of the results, both studies suggested that overweight and
obesity may not be the predominant factor implied in the

metabolomic changes observed, and thus in linking impaired
glucose homeostasis to alterations in BA pool composition.

As argued in those studies, the variation of the BA pool in
biofluids may depend on different factors, namely a change in the

prevalence or activation of the gut microbial species implied in
BA bioconversion or an altered reabsorption of BA through the

gut mucosa, in turn produced by the disease itself, by dietary or
other external changes (i.e., induced by bariatric surgery), or by a

combination of these. In any case, the results indicated a probable
implication of the modulation of BA biosynthetic pathways in
the relationship between gut microbiota and insulin resistance

(Figure 1).
These findings are in line with independent studies that

recently associated changes in BA turnover with diabesity. In
turn, a reduction of the bacterial enzymatic activities involved

in the conversion of primary into secondary BA was observed
in diabetic patients compared to healthy controls, and linked

to Firmicutes phyla (Labbé et al., 2014). A very similar pattern
was also reported in obese patients with diagnosed metabolic

syndrome, treated with antibiotic agents (vancomycin and
amoxicillin) and associated with both a decreased prevalence of

the Firmicutes population and a reduction of peripheral insulin
sensitivity (Vrieze et al., 2014). Taken together, these data suggest

a possible link between BA and metabolic health (Lefebvre
et al., 2009). In line with these findings, BA have recently

been proposed as metabolic integrators of whole-body energy
homeostasis implicated in the regulation of various metabolic

pathways, including their own synthesis and enterohepatic
circulation, triglyceride, glucose, and energy homeostasis, by

acting as signaling molecules through receptor-dependent and
-independent pathways. The role of a dysregulation of this

FIGURE 1 | Products of bile acids co-metabolism associated with

obesity and diabetes via metabolomic studies. After the ingestion of

food, conjugated BA are secreted into the intestinal lumen, are subjected to

deconjugation by the intestinal bacteria, and converted to secondary BA. The

main effect of secondary BA is mediated by the FXR activation, which in turn

act increasing insulin secretion and sensitivity in the pancreas. Primary BA is

also involved in glucose metabolism by TGR-5 activation and glucagon-like

peptide-1 (GLP-1) release. Host endogenous processes are in solid lines,

while microbial production and metabolite actions are in dotted lines.

BA-mediated metabolic control in the pathogenesis of T2D

and co-morbidities, such as its attractiveness as a therapeutic
target, is now beginning to be elucidated (reviewed in Prawitt

et al., 2011). Their action on energy metabolism regulation
would occur via both the activation of the nuclear receptor

FXR and FXR-independent pathways, such as through the
membrane receptor TGR5 expressed in several tissues including

gall bladder, ileum, colon, and brown and white adipose
tissue.

It is worth noting that preliminary evidence has shown
that not all BA activate equally, and the microbial-derived
production of secondary BA could be an important mechanism

in the regulation of signaling pathways involved in the
development of diabesity (Nguyen and Bouscarel, 2008). When

gut microbial-derived secondary BA are bound to TGR5, the
receptor is internalized and a series of adenylate cyclase-

dependent signaling is triggered by activating distinct pathways
involved in glucose and lipid energy metabolism (Kawamata

et al., 2003; Thomas et al., 2008). In tissues, such as brown
adipose tissue and muscle, this would lead to an increased

mitochondrial activity and oxidative phosphorylation, which
has been linked to an insulin sensitization both in genetic

and diet-induced models of diabesity (Watanabe et al., 2006).
In enteroendocrine L-cells (Kawamata et al., 2003), in turn,

these signaling pathways would enhance glucose metabolism by
stimulating the production of glucagon like peptide, thereby

promoting insulin secretion. Finally, recent studies have also
shown that BA secretion improves insulin secretion, insulin

sensitivity and whole-body glucose homeostasis (reviewed in
Thomas et al., 2008), improving liver and pancreatic function

in obese mice (Thomas et al., 2009; Tremaroli and Bäckhed,
2012).
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Co-metabolism of Vitamins
Products of the gut microbiota-driven metabolic pathway of
vitamins such as choline and niacin have been associated with

obesity and diabetes.

Choline Metabolism

Although humans may produce choline endogenously (de novo
hepatic synthesis), dietary intake (e.g., from egg yolk, liver,

muscle meats, fish, nuts, legumes) is necessary to meet
the demand for body health maintenance (Blusztajn, 1998;

Zeisel, 2000). Once dietary choline reaches the intestine,
anaerobic intestinal microorganisms, mainly of Firmicutes

and Proteobacteria phyla (Romano et al., 2015) catalyze its
conversion to TMA, which may be further degraded to several

methylamines by the gut microbiota (sym-xenobiotic pathway;
Harris et al., 2012), or is absorbed and oxidized to TMAO

by the hepatic FMO3 enzyme. Choline may also be converted
into betaine and further products (e.g., dimethylglycine) by

mammalian mitochondrial pathways in the liver and kidney
(Lever and Slow, 2010) (Figure 2). The bacterial gene clusters
responsible for anaerobic choline degradation started to be

identified only recently. Bacterial species belonging to Firmicutes,
Actinobacteria and Proteobacteria phyla have been revealed as

possessing the necessary enzymatic activities, while Bacteroidetes
would be apparently deprived (Craciun and Balskus, 2012).

However, the complete diversity of species that contribute to
TMAO production in humans still remains unknown (Romano

et al., 2015).

FIGURE 2 | Products of vitamin, phytochemical and purine

co-metabolism associated with obesity and diabetes via

metabolomics studies. Intestinal microorganisms catalyze the conversion of

dietary choline and carnitine into TMA with a direct effect on the intestinal

mucose (increased oxidative stress) and is the substrate for the hepatic

production of TMAO (associated with cardiovascular disease risk) and TMA.

Choline may escape microbial degradation and convert into betaine and

further products [i.e., dimethylglycine (DMG)] by mammalian mitochondrial

pathways in the liver and kidney where they have an detrimental osmotic

effects. For most of the host microbial co-metabolites associated with the

diabese phenotype, the eventual role in glucose and lipid metabolism remains

unknown. OGTT, Oral glucose tolerance test; SAH and SAM,

S-adenosylmethionine to S-adenosylhomocysteine (methionine cycle).

Recent studies have shown that circulating levels of choline

and TMAO are related to cardiovascular disease risk (Dumas
et al., 2006; Micha et al., 2010; Wang et al., 2011; Koeth et al.,

2013; Warrier et al., 2015), and the gut microbiota-driven TMA-
FMO3-TMAO pathway has been particularly recognized as a

key regulator of lipid metabolism and inflammation. Increased
levels of TMAO have been observed in a leptin-deficient murine

model of obesity and T2D (Gipson et al., 2008; Won et al.,
2013) and revealed a contribution of gut microbiota to fatty

liver phenotype in insulin-resistant mice (Dumas et al., 2006).
The systemic perturbations of key metabolites of choline have

also been related to the progression of T2D, suggesting that
in the early stages of diabetes an attenuated conversion of

choline into dimethylglycine may occur, which can be observed
by the increased levels of TMAO and TMA, with a reversion

of this behavior at a later stage of the disease (Guan et al.,
2013).

Messana et al. (1998) published the first study linking TMAO

and T2D in humans. Using a1H-NMR approach, increased levels
of TMAO and dimethylamine were observed in the urine of

diabetic individuals compared to a group of healthy individuals,
and were present in high concentrations even in diabetics

with good metabolic control (i.e., absence of glycosuria and
glycohemoglobin). In the last decade, little progress has been

made on the mechanisms that would directly or indirectly
involve TMAO in the development of diabetes. Nevertheless, the

potential role of an altered composition of the microbiota and its
ability to metabolize choline in glucose homeostasis and disease

development has become increasingly relevant (Dumas et al.,
2006).

To the best of our knowledge, three further metabolomic
studies observed a change in choline metabolism, which was

associated with impaired glycemic control in humans, within a
wide range of BMI (Salek et al., 2007;Huo et al., 2009; Zhang et al.,

2009; Table 1). In all of them, fasting biosamples were analyzed,
thereby avoiding fluctuations in choline concentrations due to
dietary intake. Salek et al. (2007) carried out a 1H-NMR-driven

metabolomic comparison of urinary changes linked to T2D
both in animals (obese mice and rats with autosomal recessive

defects in the leptin receptor gene – db/db and Zucker fa/fa,
respectively), and individuals who were overweight to obsese

(BMI = 25–40) compared to healthy lean controls. An increased
excretion of a product of choline biotransformation, namely

N,N-dimethylglycine and N,N-dimethylamine, distinguished the
urinary metabolome of T2D in all species in the study (Salek

et al., 2007), suggesting a possible increase in the choline
turnover. The authors assumed that the diabese phenotype

may have a major demand for choline, possibly due to an
altered biosynthesis of lipoproteins, an altered metabolism of

methylamines – which would play an important osmoregulatory
role by degrading dietary choline – or to an altered intestinal

microbiota composition (Salek et al., 2007). Although there is
a scarcity of data in this regard, Firmicutes and Proteobacteria

seem to be the most implicated phyla in the conversion of choline
to TMAO (Romano et al., 2015). For this reason, the decline

of choline circulating levels and increase of choline subproducts
such as TMAO and DMA in obese subjects would be in line
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with the increase of the Firmicutes phylum associated with obese

phenotype (Ley et al., 2006).
The role of BMI in the observed association was partly

downsized in a second study (Zhang et al., 2009). By
applying a similar untargeted and 1HNMR-driven approach,

in fact, Zhang et al. (2009) demonstrated a decrease in the
serum levels of choline in normal-weight subjects with T2D

(BMI = 25.9 ± 9.0) compared to non-diabetic lean individuals
(normal or IGT); however, no changes in the downstream

products of choline metabolism were detected. Aside from
increased insulin resistance, the decrease in serum choline is

linked to a specific shift in the gut microbial community in
the diabetic patients (relative increase in Firmicutes) and to an

increase in the prevalence of T2D complications, as NAFLD
(Zhang et al., 2009). The role of the microbial community hosted

by diabese subjects in altering choline metabolism was also
tested by assessing the effects of antidiabetic medication (Huo
et al., 2009). As shown in Table 1, Huo et al. (2015) observed

increased serum levels of TMAO in overweight diabetic subjects
receiving metformin treatment versus untreated diabese controls,

which may indicate an intestinal bacterial regulation function
of metformin. It has already been suggested that antidiabetic

treatments have a beneficial effect on gut microbiota metabolism
(Huo et al., 2015), although the exact mechanisms are still unclear

(Moreno-Navarrete et al., 2012). The authors suggested a link
between the deregulation of choline metabolism in T2D and a

rupture of the intestinal barrier by oxidative stress (Wei et al.,
2008). In any case, a possible two-way relationship between

anti-T2D treatment and gut microbiota has been hypothesized.

Niacin Metabolism

Alterations in the niacin (vitamin B3) metabolism have

also been observed in association with obesity and T2D,
and due to the overlapping in the choline/niacin catabolic

pathways (i.e., via betaine and glycine metabolism), may also
reflect a dysregulation in choline metabolism (Huang et al.,
2012). Through a LC–MS-driven metabolomic approach, an

altered urinary excretion of nicotinuric acid (N-nicotinoyl-
glycine) was recently proposed as a potential marker of

metabolic syndrome diagnostic traits and of cardiometabolic
risk (Huang et al., 2012). Similarly, an association between

the presence of trigonelline (betaine nicotinate) and obese
and diabetic phenotypes has been proposed. Despite having

a possible exogenous (dietary) origin, trigonelline is mostly
biosynthesized by the gut microbiota during the conversion of

S-adenosylmethionine to S-adenosylhomocysteine (methionine
cycle). By applying a 1H-NMR-based metabolomics approach,

Salek et al. (2007) found lower levels of trigonelline in the urine
of diabetic (db/db) mice and humans, associated with a change

in energy and tryptophan metabolism. Further animal (Salek
et al., 2007; Won et al., 2013) and human studies (Calvani et al.,

2010) confirmed a decline of trigonelline in obesity and diabetes,
some authors suggesting that oxidative stress possibly has a role

(i.e., via glutathione store depletion) in the observed relationship
(Calvani et al., 2010). Trigonelline is known to be involved in

major physiological functions including lipid and carbohydrate
metabolism.

Co-metabolism of Organic Acids and
Derivates
Calvani et al. (2010) identified high levels of 2-
hydroxyisobutyrate in the urine of obese people, and the

change was associated with a reduced bacterial diversity in
‘obese’ gut microbiota possibly involved in nutrient and energy

harvest (Tables 1 and 2). In particular, 2-hydroxyisobutyrate
is a product of the microbial degradation of dietary proteins

that escape digestion in the upper gastrointestinal tract, and its
production has been associated with the presence of specific

microbial members such as Faecalibacterium prausnitzii (Li et al.,
2008), butyrate-producer species with anti-inflammatory effect

and to be in low levels in obese and diabese individuals compared
to healthy subjects (Qin et al., 2012). In addition, Campbell et al.

(2014) observed that obese subjects involved in a dietary weight
loss program had higher levels of tricarballylic acid after an

OGTT compared with the fasting concentrations. Interestingly,
tricarballylic acid is a product of gut microbial metabolism of

food-derived trans-aconitate, described as an additive contained
in the OGTT solution. Once again, the authors suggested a

two-way relationship between the obese and gut microbial
phenotype (tricarballylic acid production would in turn increase
the metabolic activity of specific gut microbes associated with its

production).

Co-metabolism of Phytochemicals and
Purines
Hippuric acid and 3-hydroxyhippuric acid are two normal
urinary components mainly derived from the degradation of

plant (poly)phenols and aromatic amino acids (i.e., phenylalanine
and tryptophan) by a range of gut microbes, recently found

to belong to Clostridium sp. (Li et al., 2008). The resulting
benzoic acid is then absorbed, subjected to glycine conjugation

reaction (by mitochondrial glycine N-acyltransferase) and finally
excreted in urine (Huo et al., 2015). Decreased levels of hippuric
acid (Salek et al., 2007; Calvani et al., 2010; Zhao et al.,

2010) and 3-hydroxyhippuric acid in urine have been related
to IGT and obesity (Zhao et al., 2010) in both animal and

human studies. In turn, the downregulation was reduced in
T2D patients after the treatment with sulfonylurea, suggesting

the drug potentially has a protector effect on gut microbiota
metabolism (Huo et al., 2015). However, a strict dietary

assessment is mandatory to dismiss any diet-dependent variation
among groups, due to the wide range of phenolic compounds

leading to these last-step metabolites following microbial and
human biotransformations (lack of specificity; Salek et al., 2007).

Moreover, the reasons for their putative associations with obesity
and T2D are unknown. Salek et al. (2007) suggested that

hippurate could be related to age progression and gender effects
on metabolism in T2D, but these suppositions need to be further

investigated.
Zhao et al. (2010) observed that subjects with IGT had a

reduced excretion of methyluric acid and methylxanthine, which
are products of the microbial metabolism of methylxanthines

contained for instance in coffee and tea. The authors tentatively
interpreted the observed changes as the result of an altered gut
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microbiota in the presence of insulin resistance, although their

putative role in glucose metabolism is still unknown.

CONCLUSION

Current public health burdens such as obesity and T2D
are complex, polygenic, multifactorial diseases with a strong

metabolic etiology. Gut microbiota have recently been proposed
as a crucial environmental factor in their development, but the

metabolic complexity of the symbiotic interaction between the
host individual and its microbial community, as well as the

impact of this crosstalk between body weight changes and glucose
homeostasis, are still unclear.

However, our review highlighted how few metabolomic

studies have been specifically conducted so far to identify the
role of the gut microbiota in the development and progression

of obesity and T2D, at least in humans.
Despite the scarcity, heterogeneity and intrinsic limitations

of the metabolomic studies conducted so far aimed at
identifying the role of the gut microbiota in the development

and progression of obesity and T2D (i.e., wide range of
BMI and/or glycemic status evaluated, important sources of

variability not considered including ethnic, gender effects, and
dietary assessments), the results obtained by these data-driven

metabolomic approaches are in line with findings independently
obtained from in vitro or animal model studies. Products of

the microbial/host metabolism of BA, vitamins (choline, niacin),
branched fatty acids, purines and phenolic compounds have

been described as being altered in (pre-)diabetic subjects, with
or without increased BMI, compared with healthy controls.

Moreover, few articles show a clear relation between metabolites
and their bacterial producers in terms of the complexity

of the gut microbiota and the cross-feeding mechanisms

that would have combined bacterial effects in the colon
ecosystem.

More efforts should be directed in the future toward
expanding our knowledge of the metabolic interactions of

the host and the gut microbiota, particularly through a strict
evaluation of the lifestyle factors (i.e., diet) strongly involved in

the modulation of this crosstalk.
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