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Context: Metabolomic profiling of amino acids and acylcarnitines has revealed consistent patterns
associated with metabolic disease.

Objective: This study used metabolomic profiling to identify analytes associated with insulin sen-
sitivity (SI) and conversion to type 2 diabetes (T2D).

Design: A multiethnic cohort from the Insulin Resistance Atherosclerosis Study.

Setting: Community-based.

Patients: A total of 196 subjects (European American, Hispanic, and African American) were se-
lected to represent extremes of the SI distribution and conversion to T2D between baseline and
followup exams.

Main Outcome: Mass spectrometry–based profiling of 69 metabolites. Subjects participated in a
frequently sampled iv glucose tolerance test to measure SI and acute insulin response. T2D status
was determined by a 2-hour oral glucose tolerance test.

Results: Logistic regression analysis from 72 high and 75 low SI subjects revealed significantly
decreased glycine and increased valine, leucine, phenylalanine, and combined glutamine and
glutamate (P � .0079–7.7 � 10�6) in insulin-resistant subjects. Ethnic-stratified results were stron-
gest in European Americans. Comparing amino acid profiles between subjects that converted to
T2D (76 converters; 70 nonconverters) yielded a similar pattern of associations: decreased glycine
and increased valine, leucine, and combined glutamine and glutamate (P � .016–.00010). Impor-
tantly, �-cell function as a covariate revealed a similar pattern of association.

Conclusions: A distinct pattern of differences in amino acids were observed when comparing
subjects with high and low levels of SI. This pattern was associated with conversion to T2D, re-
maining significant when accounting for �-cell function, emphasizing a link between this meta-
bolic profile and insulin resistance. These results demonstrate a consistent metabolic signature
associated with insulin resistance and conversion to T2D, providing potential insight into under-
lying mechanisms of disease pathogenesis. (J Clin Endocrinol Metab 100: E463–E468, 2015)
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Risk for developing type 2 diabetes (T2D) is due to the
complex interactions of genetics, lifestyle, and envi-

ronmental factors. Primary characteristics of T2D are re-
duced insulin secretion compounded by an attenuated re-
sponse. Even with recent advances made through genetic
studies (1), the underlying metabolic mechanisms of T2D,
especially insulin resistance, remain poorly understood.
Although high-throughput technologies have accelerated
genetic research, the recent advent of technologies for
comprehensive metabolic analysis, often termed “metabo-
lomics,” have created new capabilities for understanding
metabolic diseases such as T2D and its contributors, eg,
insulin resistance, �-cell function, and body mass index
(BMI). Mass spectrometry (MS) -based profiling of a wide
range of metabolic intermediates has revealed not only
changes in single metabolites, but comprehensive metabo-
lomics profiles (2).

Recent metabolic profiling of serum or plasma amino
acids and acylcarnitines has revealed a strikingly consis-
tent pattern, especially of amino acid profiles, associated
with multiple presentations of metabolic disease including
obesity (3), coronary artery disease (4, 5), active vs sed-
entary lifestyle (6), and more recently, development of
T2D (7). Additional studies have addressed this amino
acid pattern in exercise weight loss (8) and response to
bariatric surgery or dietary weight loss (9). A consistent
pattern of reduced glycine and increased levels of valine
and leucine associated with metabolic dysregulation has
been observed with both basal (10) and dynamic measures
of insulin resistance (8). Although most studies have been
performed in European-derived samples, an analysis in
Chinese and Asian-Indian men (10) suggested a conserved
metabolic risk profile in other ethnicities. With this foun-
dation, we examined the association of metabolomic pro-
files in three ethnic groups ascertained and examined using
a common protocol that included dynamic measures of
glucose homeostasis. These analyses included comparing
subjects with high and low insulin sensitivity (SI) and also
assessed metabolomic profile changes when individuals
converted to T2D.

Materials and Methods

Study subjects
The study design, recruitment, and phenotyping in the Insulin

Resistance Atherosclerosis Study (IRAS) have been described
(11). Briefly, individuals of European-American, Hispanic, and
African-American ethnicity were recruited to reflect an equal
representation of glucose tolerance status (normal glucose tol-
erance [NGT]), impaired glucose tolerance [IGT], and T2D),
ethnicity, sex, and age (40–49, 50–59, and 60–69 y). Partici-
pants completed an oral glucose tolerance test, a frequently sam-
pled iv glucose tolerance test (FSIGTT), and anthropometric

measures. SI and acute insulin response (AIR) were obtained
using the FSIGTT with minimal model analyses (12, 13). AIR
was measured 8 minutes following glucose infusion as the mean
insulin increment in plasma insulin concentration above basal
concentration. Disposition Index, a measure of �-cell compen-
sation for insulin resistance, was calculated as SI � AIR. At a
5-year followup examination participants were evaluated for
conversion to T2D by oral glucose tolerance test. The 1999
World Health Organization criteria were used to define T2D
(fasting glucose concentration �7.0 mmol/L, 2-hour plasma glu-
cose concentration �11.1 mmol/L, or treatment with hypogly-
cemic medications) and IGT (2-hour plasma glucose level be-
tween �7.8 and �11.1 mmol/L).

For the initial comparison of high and low SI, plasma samples
from 147 individuals were selected in each ethnic group using the
same general criteria. Samples (60% female, 40% male) were
chosen from individuals who had diagnoses of NGT or IGT at
baseline, and were drawn from the top and bottom 15% of SI. To
minimize extremes of BMI, samples were chosen from individ-
uals whose BMI was � 1 SD from the mean BMI of subjects that
converted to T2D between exams.

In a second analysis, additional plasma samples were included
from each ethnic group to test whether metabolomic profiles
were associated with conversion from NGT or IGT to T2D be-
tween exams. “Nonconverter” subjects had to be NGT at both
exams. A total of 70 nonconverter subjects from the high SI/low
SI subjects met these criteria and 27 T2D converters met these
criteria. An additional 49 plasma samples were chosen from T2D
converters for a total of 76 samples.

Analysis
Amino acids and acylcarnitines were analyzed in stored

plasma by tandem mass spectometry (MS/MS) as described pre-
viously (3, 5, 14–16). All MS/MS analyses employed stable-iso-
tope dilution with internal standards from Isotec, Cambridge
Isotope Laboratories and CDN Isotopes. Modest degradation of
aromatic amino acids was observed, consistent with extended
storage. Relative proportions of other amino acids were consis-
tent with proper preservation.

Logistic regression models were run to evaluate associations
between outcomes (high/low SI and T2D conversion) and mea-
sured metabolites adjusting for age, sex, ethnicity, recruitment
site, and BMI with and without AIR. Race-stratified logistic re-
gression models were also examined. Odds ratios were calcu-
lated based on a 1-SD change in the metabolite and P � .0018
was considered significant due to correlation among metabolites
(overall multivariate correlation �0.80; Supplemental Figure 1).

Results

In the first analysis, subjects with SI from the extremes of
the distribution were profiled in metabolomic analysis
(Table 1). High SI subjects were significantly more insulin
sensitive, younger, and had a lower BMI and fasting glu-
cose (P � 4.5 � 10�6). Distribution of sex and AIR did not
differ (P � .20).

Logistic regression analysis accounting for age, sex,
ethnicity, recruitment site, and BMI, revealed a distinct
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amino acid profile of decreased glycine and increased va-
line and phenylalanine (P � 7.0 � 10�4), associated with
insulin resistance (Table 2) with nominally significant in-
creases in serine, leucine, tyrosine, and combined glu-
tamine and glutamate (P � .022). A 22% lower level of
glycine (P � 7.7 � 10�6) with increases of 11–15% in
valine and phenylalanine were observed in low SI subjects
and corresponded to odds ratios of 0.17 for glycine to over
2.4 for valine and phenylalanine. Adjustment for AIR to
assess the influence of �-cell function had minimal effect
(Table 2).

Ethnic-stratified analyses were also evaluated in each
ethnicity sample independently. Demographic and amino
acid data are summarized in Supplemental Table 1. The
association with decreased glycine was observed in Euro-

pean Americans and African Americans with comparable
evidence for association but the Hispanic regression did
not converge (Supplemental Table 2, A–C). Results for
other amino acids (eg, branched chain, phenylalanine)
that were characteristic of the differences seen between
high and low SI individuals were mirrored in the analysis
of European-American samples (Supplemental Table 2A),
more weakly in African Americans (Supplemental Table
2B), and with little evidence of association in Hispanics
(Supplemental Table 2C).

In parallel we evaluated association of 45 acylcar-
nitines (Supplemental Table 3) between the high and
low SI samples. The associations were nominal and
largely insignificant with the most significant being
3-hydroxy-butyryl carnitine/�-hydroxy butyryl carni-

Table 1. Characteristics (Combined Ethnicities) of High and Low SI Subjects

Trait

Combined Subjects
(n � 147)

High SI Subjects
(n � 72)

Low SI Subjects
(n � 75)

P ValueaMean � SD Median Mean � SD Median Mean � SD Median

Age, y 56 � 9 56 53 � 8 52 59 � 8 62 4.5E � 06
Female, % 61% 64% 57% .42
BMI, kg/m2 29.0 � 4.3 28.7 26.8 � 3.4 26.3 31.2 � 3.9 30.5 1.4E � 11
SI, �10�5/pmol/L/min 2.86 � 3.22 0.90 5.61 � 2.51 4.87 0.22 � 0.27 0.15 1.1E � 28
AIR, pmol/L 452 � 455 300 403 � 395 290 499 � 504 345 .20
Disposition index (SI � AIR), �10�5/min 1008 � 1450 335 1936 � 1604 1404 117 � 199 9 1.7E � 14
Fasting glucose, mg/dl 101 � 15 97 94 � 11 92 107 � 15 104 1.2E � 08
a Comparison of high and low SI samples using a two-tailed t test with unequal variance.

Table 2. Logistic Regression Analysis Comparing Amino Acids of High and Low SI Samples

Metabolite,
�mol/L

High SI
Subjects (n � 72)

Low SI
Subjects (n � 75)

High SI (n � 72):
Low SI (n � 75)a

High SI (n � 72):
Low SI (n � 75)b

Mean � SD Median Mean � SD Median OR 95% CI P Valuec OR 95% CI P Valuec

Glycine 258 � 68 249 202 � 50 194 0.17 0.076–0.36 7.7 � 10�6 0.17 0.079–0.38 1.3 � 10�5

Alanine 341 � 69 332 386 � 80 382 1.48 0.90–2.42 .12 1.47 0.90–2.40 .13
Serine 102 � 23 102 91 � 19 90 0.51 0.30–0.88 .015 0.52 0.30–0.90 .021
Proline 163 � 54 157 173 � 42 166 1.2 0.75–1.93 .44 1.17 0.74–1.88 .49
Valine 192 � 32 186 225 � 36 225 2.42 1.46–4.40 .00070 2.81 1.61–4.89 .00030
Leucine or

isoleucine
134 � 26 135 155 � 29 153 2 1.12–3.33 .0079 2.4 1.14–4.41 .0023

Methionine 19 � 5 17 20 � 6 18 1.58 0.75–3.33 .22 1.83 0.84–3.99 .13
Histidine 77 � 13 77 76 � 13 74 0.88 0.57–1.36 .55 0.94 0.60–1.46 .78
Phenylalanine 64 � 12 64 72 � 14 71 3.77 1.76–8.06 .00060 3.8 1.77–8.16 .00060
Tyrosine 68 � 13 68 79 � 18 76 1.93 1.10–3.39 .022 2.07 1.14–3.76 .016
Asparagine and

aspartate
55 � 45 46 54 � 42 44 0.6 0.27–1.35 .23 0.6 0.27–1.33 .2

Glutamine and
glutamate

91 � 31 86 111 � 37 101 2.47 1.38–4.39 .0023 2.57 1.14–4.38 .0018

Ornithine 54 � 13 52 53 � 14 52 0.76 0.48–1.21 .25 0.81 0.50–1.31 .4
Citrulline 32 � 9 32 32 � 9 32 0.9 0.58–1.41 .66 0.9 0.56–1.43 .65
Arginine 79 � 16 75 81 � 17 80 1.23 0.80–1.90 .34 1.31 0.83–2.07 .24

Abbreviations: CI, confidence interval, OR, odds ratio.
a Covariates: age, sex, BMI, and ethnicity.
b Covariates: age, sex, BMI, ethnicity, and AIR.
c Values in bold indicate statistical significance corrected for multiple comparisons (P � 0.0018).
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tine (C4-OH; P .0074). Thus, the focus of this report is
on the amino acid analysis.

In the second analysis, the amino acid measures of par-
ticipants that converted to T2D between the baseline and
5-year followup examination were compared with sam-
ples from participants that remained NGT. This analysis
included additional T2D converter samples (n � 49) to
increase power. Participants that converted to T2D did
not differ by age or sex (P � .058) but were obese, less
insulin sensitive, had lower AIR and Disposition Index,
and higher fasting glucose (P � .0023) (Table 3). Table 4
shows that a broadly similar pattern of association with
amino acids was observed with conversion to T2D: in-
creased valine (P � .00010) characterized T2D converters
with nominal association and consistent direction of effect
for glycine, leucine, phenylalanine, and combined glu-
tamine and glutamate. There were nominal differences
with the high/low SI comparisons; alanine increased and
aspartate/asparagine decreased in the T2D converters, but

not in the high/low SI comparison. Additional adjustment
for AIR, measure of �-cell insulin secretory capacity, or
lipid and blood pressure medication usage did not strongly
affect the evidence of association. In comparison, adjust-
ment for SI diminished significance for all amino acids
evaluated (Table 4). AIR was the strongest predictor of
conversion to T2D in earlier epidemiological studies in
IRAS (17, 18). Odds ratios for the T2D conversion anal-
ysis were broadly in the same range, but modestly lower
for significant associations compared with the high/low SI

analysis.

Discussion

A common metabolomic profile observed in a wide variety
of studies investigating different aspects of metabolic dys-
regulation (3–6, 8–10, 15, 19) is replicated in analyses
comparing subjects with high and low insulin sensitivity

Table 3. Characteristics (Combined Ethnicities) of T2D Converter and Nonconverter Subjects

Trait

Combined Subjects
(n � 146)

Nonconverter
(n � 70)

T2D Converter
(n � 76)

P ValueaMean � SD Median Mean � SD Median Mean � SD Median

Age, y 56 � 8 56 54 � 9 54 57 � 7 57 .058
Female, % 63% 64% 62% .76
BMI, kg/m2 29.6 � 5.4 28.5 28.3 � 4.3 27.6 30.9 � 6.0 29.8 .0023
SI, �10�5/pmol/L/min 2.44 � 2.78 1.43 3.64 � 3.10 4.18 1.34 � 1.87 1.02 4.4E � 07
AIR, pmol/L 404 � 399 286 546 � 474 397 273 � 256 179 4.2E � 05
Disposition index (SI � AIR), �10�5/min 868 � 1350 283 1495 � 1696 1038 290 � 414 119 1.5E � 07
Fasting glucose, mg/dl 101 � 13 99 95 � 10 94 108 � 13 106 1.8E � 10
a Comparison of high and low SI samples using a two-tailed t test with unequal variance. Bold indicates statistical significance (P � 0.05).

Table 4. Logistic Regression Analysis Comparing Amino Acids of T2D Converters and Nonconverters

Metabolite, �mol/L

Nonconverter

(n � 70)

T2D Converter

(n � 76)

T2D Converter (n � 76):

Nonconverter (n � 70)a
T2D Converter (n � 76):

Nonconverter (n � 70)b
T2D Converter (n � 76):

Nonconverter (n � 70)c

Mean � SD Median Mean � SD Median OR 95% CI P Valued Odds Ratio 95% CI P Valued OR 95% CI P Valued

Glycine 238 � 71 227 204 � 45 197 0.58 0.39–0.88 .0098 0.56 0.36–0.88 .011 0.8026 0.52–1.25 .33
Alanine 359 � 78 365 405 � 91 390 1.64 1.10–2.44 .016 1.79 1.15–2.70 .0089 1.4918 0.97–2.30 .069
Serine 98 � 20 99 92 � 20 91 0.79 0.53–1.20 .28 0.76 0.49–1.19 .24 0.9165 0.58–1.44 .71
Proline 168 � 51 162 175 � 43 166 1.1 0.76–1.59 .61 1.19 0.80–1.79 .39 1.0241 0.69–1.52 .91
Valine 201 � 36 195 232 � 36 235 2.22 1.47–3.33 .00010 2.08 1.37–3.23 .00080 1.7731 1.15–2.74 .0099
Leucine or isoleucine 140 � 30 141 155 � 30 157 1.59 1.09–2.33 .016 1.47 0.98–2.22 .065 1.3681 0.92–2.03 .12
Methionine 19 � 6 17 18 � 5 17 0.7 0.45–1.11 .14 0.67 0.40–1.11 .12 0.6478 0.39–1.06 .087
Histidine 77 � 13 77 73 � 14 72 0.78 0.55–1.10 .15 0.75 0.52–1.10 .14 0.8165 0.56–1.18 .28
Phenylalanine 67 � 13 66 72 � 12 72 1.56 1.01–2.44 .045 1.72 1.06–2.86 .027 1.1473 0.71–1.85 .57
Tyrosine 72 � 17 69 78 � 17 78 1.23 0.85–1.79 .26 1.41 0.93–2.13 .11 0.9307 0.61–1.41 .74
Asparagine and aspartate 55 � 44 44 35 � 32 15 0.42 0.24–0.73 .0022 0.41 0.23–0.75 .0036 0.4617 0.27–0.80 .0063
Glutamine and glutamate 97 � 32 92 112 � 35 109 1.82 1.16–2.78 .0080 1.75 1.12–2.78 .015 1.4813 0.93–2.37 .10
Ornithine 54 � 14 52 58 � 15 59 1.18 0.83–1.69 .36 1.09 0.74–1.59 .67 1.1976 0.83–1.74 .34
Citrulline 33 � 9 32 33 � 9 32 1.1 0.77–1.54 .62 1.02 0.70–1.49 .9 1.2642 0.86–1.87 .24
Arginine 80 � 17 78 86 � 18 87 1.3 0.90–1.85 .17 1.22 0.83–1.79 .31 1.3363 0.90–1.98 .15

Abbreviations: CI, confidence interval, OR, odds ratio.
a Covariates: age, sex, BMI, and ethnicity.
b Covariates: age, sex, BMI, ethnicity, and AIR.
c Covariates: age, sex, BMI, ethnicity, and SI.
d Values in bold indicate statistical significance corrected for multiple comparisons (P � 0.0018).
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measured by FSIGTT despite reduced power in the current
study due to sample size. Although the evidence for asso-
ciation and relative magnitude of effects may differ be-
tween studies, the pattern of reduced plasma glycine and
increased branched chain and aromatic amino acids in
metabolically less healthy subjects holds true. Largely the
same pattern is observed in an analysis of subjects that
converted to T2D during a 5-year followup period in
IRAS. This latter observation is consistent with the results
from a recent metabolomic assessment of incidence (20)
and conversion to T2D (7) in European Americans.

There are several novel features of this study: metabo-
lomic profiles have been analyzed in a multiethnic sample
in which each ethnicity was ascertained and examined in
a uniform way including dynamically measured insulin
sensitivity (SI) and �-cell secretory capacity (AIR). In this
study the differences in amino acid concentrations were
more striking in the European American sample than in
African Americans and Hispanics (Supplemental Table 2)
although overall patterns of decreased or increased con-
centrations were preserved in each ethnic sample. With
valine, for example, the sample mean concentrations were
206, 209, and 211 �mol/L for European American, Afri-
can American, and Hispanic, respectively. The difference
between the means of valine for the high SI and low SI

samples were 39.2, 28.7, and 32.2 �mol/L, respectively.
Thus, there was no obvious difference between ethnicities.
We hypothesize that metabolomic analysis of all IRAS
samples (�1200 subjects) would reveal consistent evi-
dence of association with the same pattern of amino acids
in each individual ethnic group.

Measurement of insulin sensitivity (SI) and �-cell se-
cretory capacity (AIR) has enabled us to perform a com-
parison of metabolomic profiles of insulin sensitive and
insulin resistant participants, confirming the metabolomic
pattern of amino acids associated with insulin sensitivity
is not limited to basal measures of insulin sensitivity. It is
important to note that these analyses accounted for major
contributors to SI: age, sex, and BMI. Importantly, the
FSIGTT protocol also included measurement of AIR. Ad-
justing for AIR in the analysis of metabolic data led to
negligible changes in the inferences (Table 4). Thus, ac-
counting for �-cell function validates the link between this
metabolic profile and insulin resistance. In addition, these
data demonstrate the central contribution that insulin re-
sistance leads to T2D susceptibility. Recent genetic studies
have identified primarily genes associated with �-cell de-
fects, leading some to speculate that the genetic basis of
T2D susceptibility is more strongly affected by �-cell func-
tion. It is noteworthy that the metabolomic pattern of
branched chain and aromatic amino acids, which we ob-
served has been demonstrated to be highly heritable in

other studies (5). Our observations add more evidence that
a distinct metabolomic profile is associated with metabolic
disease and reemphasizes the importance of understand-
ing the biochemistry and physiology which lead to these
associations. In addition, these results suggest the poten-
tial utility for metabolomic analysis in dissecting the ge-
netic contributions to insulin resistance and T2D
susceptibility.
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