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Abstract: Cerebral palsy (CP) is one of the most common causes of motor disability in childhood,
with complex and heterogeneous etiopathophysiology and clinical presentation. Understanding the
metabolic processes associated with the disease may aid in the discovery of preventive measures
and therapy. Tissue samples (caudate nucleus) were obtained from post-mortem CP cases (n = 9)
and age- and gender-matched control subjects (n = 11). We employed a targeted metabolomics
approach using both 1H NMR and direct injection liquid chromatography-tandem mass spectrometry
(DI/LC-MS/MS). We accurately identified and quantified 55 metabolites using 1H NMR and 186 using
DI/LC-MS/MS. Among the 222 detected metabolites, 27 showed significant concentration changes
between CP cases and controls. Glycerophospholipids and urea were the most commonly selected
metabolites used to develop predictive models capable of discriminating between CP and controls.
Metabolomics enrichment analysis identified folate, propanoate, and androgen/estrogen metabolism
as the top three significantly perturbed pathways. We report for the first time the metabolomic
profiling of post-mortem brain tissue from patients who died from cerebral palsy. These findings
could help to further investigate the complex etiopathophysiology of CP while identifying predictive,
central biomarkers of CP.
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1. Introduction

Cerebral palsy (CP) is the most common cause of severe neurodisability in children [1]. Although
the main underlying causal factor is considered to be birth asphyxia, the pathophysiology of the disease
is still not well understood. There are other causal factors that occur later in life that are hypothesized to
be involved in the development of CP [2–4]. Congenital malformations are rarely identified [5]. Genetic
predispositions with exposure to environmental factors can lead to CP. Common cerebral lesions seen
in CP include destructive injuries, predominantly in the white matter in preterm infants and in the gray
matter and the brainstem nuclei in full-term newborns [4]. The effect of these lesions, especially on
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the immature brain, could alter the series of developmental events [6]. Alteration in cell morphology
or function and cell death observed in hypoxic ischemia or in inflammatory conditions leading to
excessive production of proinflammatory cytokines [7,8], oxidative stress [9], maternal growth factor
deprivation [10], extracellular matrix modifications [10], and excessive release of glutamate [11] have
been shown to trigger the excitotoxic cascade and predispose the development of CP [12–15].

Cerebral palsy is a heterogeneous condition with multiple causes; clinical types and patterns of
neuropathology on brain imaging; multiple associated developmental pathologies, such as intellectual
disability, autism, epilepsy, and visual impairment; and, more recently, multiple rare pathogenic genetic
mutations [2,16–18]. This is a clinical spectrum with many causal pathways and many types and
degrees of disability [12]. These various pathways and etiologies have each resulted in a non-specific
non-progressive disorder of posture and movement control. Thus, CP should be considered as a
descriptive term for affected individuals, with each case requiring a detailed consideration of the
underlying etiology. The described feature of this condition is one of the challenges for researchers
due to the possibility of various underlying etiologies and confounders [12]. To our knowledge,
there is currently no method available for predicting those at greatest risk of developing the disease.
Moreover, only two strategies have succeeded in decreasing CP in 2-year-old children, which include
the use of hypothermia in full-term newborns with moderate neonatal encephalopathy [19,20] and the
administration of magnesium sulfate to mothers in preterm labor [21,22].

Among the new omics, metabolomics has the huge potential to advance our understanding of
many complex diseases by uniquely detecting rapid biochemical pathway alterations and uncovering
multiple biomarker panels, especially in various neurological disorders [23–31]. Over the past decade,
the search for useful biomarkers to accurately predict brain pathology has become a growing area of
interest. Biomarkers such as neuroimaging markers showing corticospinal tract integrity, metabolite
ratios in brain regions, and brain volumes [32,33], multiorgan injury markers [34], and inflammatory
markers [35,36] were studied as prediction models, however the description of metabolomic alterations
or the identification of clinically approved biomarkers in CP has not been reported. There is
accumulating evidence that metabolomic profiling of post-mortem brain tissue helps in understanding
the pathophysiology of neurologic, neurodegenerative, and psychiatric disorders [23,24,28,37–43].
Thus, this study aims to biochemically profile post-mortem brain tissue from patients who died from
CP and compare those with age-, and gender-matched controls. We believe that this approach will help
us to identify central biomarkers of the disease while uncovering previously unreported biochemical
pathways associated with the disease.

2. Results

Using 1H NMR and direct injection liquid chromatography-tandem mass spectrometry
(DI/LC-MS/MS), we biochemically profiled post-mortem human brain tissue from people who died
from CP and compared them with age- and gender-matched controls. We accurately identified and
quantified 55 metabolites using 1H NMR and 186 using DI/LC-MS/MS. Figure 1 represents a labelled
1D 1H NMR spectrum acquired from an extract of caudate nucleus harvested from a person who died
from CP.

Due to the complementarity between the two techniques, there was a certain degree of observed
overlap in terms of the metabolites measured (19 metabolites). To account for this, we took the average
value for the individual metabolites and used this concentration value in our analyses, leaving us with
222 metabolites. Principal component analysis (PCA) was performed on the data to check for any
intrinsic variation and subsequently remove any potential outliers (p < 0.05) based on the Hotelling’s
T2 plot. No outliers were detected. Univariate analysis of the data revealed that of the 222 metabolites,
27 of them were at statistically, significantly different concentrations between CP and control tissue
(Table 1; p < 0.05; q < 0.3). A full list of the 222 measured metabolites is available in Table S1 in the
Supplementary Materials.
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extract, the metabolites are listed as follows. 1: 3-Hydroxybutyrate; 2: 4-Aminobutyrate; 3: Acetate; 4: 
Adenine; 5: Adenosine; 6: Alanine; 7: Anserine; 8: Ascorbate; 9: Aspartate; 10: Carnitine; 11: 
Carnosine; 12: Choline; 13: Creatine; 14: Creatine phosphate; 15: Creatinine; 16: DSS; 17: 
Ethanolamine; 18: Formate; 19: Fumarate; 20: Glucose; 21: Glutamate; 22: Glutamine; 23: Glutathione; 
24: Glycine; 25: Histamine; 26: Homocitrulline; 27: Hypoxanthine; 28: Inosine; 29: Isobutyrate; 30: 
Isoleucine; 31: Isopropanol; 32: Lactate; 33: Leucine; 34: Lysine; 35: Methanol; 36: Methionine; 37: 
Myo-inositol; 38: N-Acetylaspartate; 39: Niacinamide; 40: O-Acetylcholine; 41: O-Phosphocholine; 42: 
Phenylalanine; 43: Propylene glycol; 44: Pyruvate; 45: sn-Glycero-3-phosphocholine; 46: Succinate; 
47: Taurine; 48: Threonine; 49: Tryptophan; 50: Tyrosine; 51: Uracil; 52: Urea; 53: Valine; 54: 
π-Methylhistidine; 55: τ-Methylhistidine. 

Figure 1. Typical (a) aliphatic and (b) aromatic region of 600 MHz 1H-NMR spectra of brain tissue
extract, the metabolites are listed as follows. 1: 3-Hydroxybutyrate; 2: 4-Aminobutyrate; 3: Acetate;
4: Adenine; 5: Adenosine; 6: Alanine; 7: Anserine; 8: Ascorbate; 9: Aspartate; 10: Carnitine; 11:
Carnosine; 12: Choline; 13: Creatine; 14: Creatine phosphate; 15: Creatinine; 16: DSS; 17: Ethanolamine;
18: Formate; 19: Fumarate; 20: Glucose; 21: Glutamate; 22: Glutamine; 23: Glutathione; 24: Glycine;
25: Histamine; 26: Homocitrulline; 27: Hypoxanthine; 28: Inosine; 29: Isobutyrate; 30: Isoleucine; 31:
Isopropanol; 32: Lactate; 33: Leucine; 34: Lysine; 35: Methanol; 36: Methionine; 37: Myo-inositol; 38:
N-Acetylaspartate; 39: Niacinamide; 40: O-Acetylcholine; 41: O-Phosphocholine; 42: Phenylalanine;
43: Propylene glycol; 44: Pyruvate; 45: sn-Glycero-3-phosphocholine; 46: Succinate; 47: Taurine; 48:
Threonine; 49: Tryptophan; 50: Tyrosine; 51: Uracil; 52: Urea; 53: Valine; 54: π-Methylhistidine; 55:
τ-Methylhistidine.
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Table 1. Statistically significant metabolite concentrations (µM; p < 0.05; q < 0.05) for CP vs control PM brain extracts. t-test values were calculated as a default and
values with (W) were calculated using the Wilcoxon–Mann–Whitney test.

HMDB Compound ID Mean (SD) of Control (µM) Mean (SD) of CP (µM) p-Value q-Value (FDR) Fold Change

HMDB00294 Urea 59.236 (37.499) 184.144 (14.774) 0.0074 (W) 0.299 −3.11

HMDB00148 L-Glutamic acid 499.627 (15.680) 6.767 (13.764) 0.0106 (W) 0.299 73.83

HMDB13456 PC(o-22:2(13Z,16Z)/22:3(10Z,13Z,16Z)) 1.187 (0.902) 0.335 (0.379) 0.0125 (W) 0.299 3.54

HMDB08276 PC(20:0/20:2(11Z,14Z)) 0.265 (0.190) 0.051 (0.110) 0.0166 (W) 0.299 5.16

HMDB13450 PC(o-22:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) 0.847 (0.710) 0.231 (0.404) 0.0166 (W) 0.299 3.66

HMDB00195 Inosine 8.082 (4.627) 14.333 (6.338) 0.0201 0.299 −1.77

HMDB13333 3-Hydroxy-9-hexadecenoylcarnitine 0.061 (0.062) 0.129 (0.076) 0.0204 (W) 0.299 -2.13

HMDB10379 LysoPC(14:0) 5.237 (1.153) 4.151 (0.665) 0.0224 0.299 1.26

HMDB13433 PC(o-18:1(9Z)/22:0) 1.334 (0.714) 0.638 (0.487) 0.023 0.299 2.09

HMDB13453 PC(o-22:1(13Z)/22:3(10Z,13Z,16Z)) 0.281 (0.180) 0.133 (0.069) 0.0248 0.299 2.12

HMDB07991 PC(16:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) 55.251 (4.352) 19.532 (5.971) 0.0249 0.299 2.83

HMDB08055 PC(18:0/22:5(4Z,7Z,10Z,13Z,16Z)) 9.151 (6.281) 3.871 (2.773) 0.0249 0.299 2.36

HMDB06083 Troxerutin 188.555 (18.953) 432.889 (25.759) 0.0250 (W) 0.299 −2.3

HMDB08048 PC(18:0/20:4(5Z,8Z,11Z,14Z)) 114.082 (59.935) 56.311 (43.130) 0.0264 0.299 2.03

HMDB00142 Formic acid 4.718 (2.078) 7.489 (3.055) 0.0269 0.299 −1.59

HMDB08057 PC(18:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) 23.314 (15.829) 11.438 (6.380) 0.0275 (W) 0.299 2.04

HMDB07892 PC(14:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) 0.405 (0.338) 0.139 (0.090) 0.028 0.299 2.91

HMDB0029205 LysoPC(26:0) 0.227 (0.197) 0.456 (0.235) 0.0293 0.299 −2.01

HMDB07874 PC(14:0/18:2(9Z,12Z)) 3.462 (3.478) 0.558 (0.715) 0.0297 (W) 0.299 6.21

HMDB03334 Symmetric dimethylarginine 0.638 (0.399) 1.405 (0.802) 0.0310 (W) 0.299 −2.2

HMDB10394 LysoPC(20:3(8Z,11Z,14Z)) 1.213 (0.902) 0.492 (0.500) 0.0310 (W) 0.299 2.46

HMDB08288 PC(20:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) 0.367 (0.230) 0.186 (0.100) 0.0332 0.299 1.98

HMDB11151 PC(O-16:0/18:2(9Z,12Z)) 10.915 (6.853) 5.759 (2.592) 0.0381 0.299 1.9

HMDB13469 SM(d18:0/24:1(15Z)(OH)) 1.353 (0.764) 2.168 (1.131) 0.0402 (W) 0.299 −1.6

HMDB13458 PC(o-24:0/18:3(6Z,9Z,12Z)) 0.909 (0.441) 0.536 (0.290) 0.0428 0.299 1.7

HMDB08138 PC(18:2(9Z,12Z)/18:2(9Z,12Z)) 189.522 (12.500) 60.640 (6.755) 0.0465 (W) 0.299 3.13

HMDB13411 PC(o-16:1(9Z)/16:1(9Z)) 0.720 (0.496) 0.362 (0.212) 0.048 0.299 1.99
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Those compounds highlighted in bold are considered statistically, significantly different. (W)-data
were non-normally distributed and the p-value was calculated by the Wilcoxon–Mann–Whitney test.

Having confirmed that there were significant differences between CP and control brains,
we wanted to investigate a number of machine learning techniques to identify which method worked
best for accurately discriminating between CP cases and controls. We used the variable importance
functions varimp in h2o and varImp in caret R packages to rank the models’ features in each of the
predictive algorithms. Feature predictors were estimated using a model-based approach. In other
words, a feature was considered important if it contributed to the model performance. We extracted 20
important predictors from each of the models used for predicting CP. From these 20 features, the top
metabolites were chosen and used to generate the specific predictive model. These were also compared
across the different machine learning approaches (Table 2).

Table 2. List of panels of metabolites used in different artificial intelligence methods. LR: logistic
regression; SVM: support vector machine; PLS-DA: partial least square-discriminant analysis, RF:
random forest; PAM: prediction analysis for microarrays; DL: deep learning.

Models Selected Features

LR PC ae C44:5, Urea

SVM PC ae C44:5, Urea, C9

PLS-DA PC ae C44:5, Urea, C9, PC aa C40:6, PC ae C40:1, PC ae C44:6

RF PC ae C44:5, Urea, C9, PC aa C40:6, PC ae C40:1

PAM Urea, PC ae C44:5, PC ae C44:6, C9, PC aa C40:6, PC ae C40:1

DL C9, PC ae C40:1, Urea, PC ae C44:6, PC ae C44:5

Table 3 lists the average AUCs, sensitivity values, and specificity values calculated on the holdout
test sets. Of all the methods employed, prediction analysis for microarrays (PAM) performed the best
in terms of AUC, sensitivity and specificity combined.

Table 3. Results for the various predictive modeling techniques employed.

LR SVM PLS-DA RF PAM DL

AUC (95% CI) 0.861 (0.688–1) 0.925 (0.73–1) 0.929 (0.8–1) 0.899 (0.6–1) 0.93 (0.8–1) 0.937 (0.8–1)

Sensitivity 0.842 0.778 0.870 0.889 0.899 0.833

Specificity 0.909 0.625 0.725 0.850 0.855 0.667

Metabolomics enrichment analysis highlighted six metabolic pathways as significantly disturbed
in the CP brain as compared with controls. These include folate metabolism, propanoate metabolism,
androgen and estrogen metabolism, androstenedione metabolism, pterine metabolism, and steroid
metabolism (Figure 2).
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3. Discussion

To our knowledge, this is the first study to use targeted and quantitative metabolomics to
biochemically profile post-mortem brain tissue from people who died from CP and compared them
with age- and gender-matched controls. Our univariate analysis of the concentration data highlighted
27 metabolites to be significantly different concentrations between CP and control brains (Table 1).

We achieved consistently good diagnostic performance (AUC > 0.80) using six different Machine
Learning approaches. PAM analysis, following cross validation, yielded an AUC (95% CI) = 0.930
(0.8–1) with a sensitivity and specificity of 0.899 and 0.855, respectively. LR had the smallest AUC
among all the algorithms used. This was probably due to its sensitivity and not being the most ideal
method for nonlinear analysis. When we looked at all the variables used as predictors in all of the
models, we identified glycerophospholipids (PC ae C44:5, PC ae C44:5, PC ae C44:6, 40:1, 40:6) and
urea to be the common denominators.

In our univariate analysis, we found that glutamate was included in the top significantly different
metabolites in CP brains. Glutamic acid, known as a key molecule in cellular metabolism, is the most
abundant fast excitatory neurotransmitter in the nervous system [44]. Glutamic acid is believed to
be involved in cognitive functions such as learning and memory in the brain due to its function in
synapsis [44]. In brain injury or disease, excess glutamate can accumulate outside the cells. This process
causes calcium ions to enter cells, leading to neuronal damage and eventual cell death, known as
excitotoxicity [45]. Excitotoxicity due to glutamate occurs as part of the ischemic cascade and is
associated with stroke and diseases like amyotrophic lateral sclerosis, lathyrism, and Alzheimer’s
disease [46–48]. A fundamental process that leads to perinatal brain damage with hypoxic-ischemic
injury is believed to be the damage to neurons with excitotoxicity [49].
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The potential sources of cellular glutamate available for release during ischemia include astrocytes,
oligodendrocytes, axons, and cells from neighboring structures such as the choroid plexus. Of these
sources, ischemic glutamate release from astrocytes has been well characterized in gray matter [50] as
well as periventricular white matter which is a lesion associated with chronic neurologic morbidity,
especially CP seen in premature neonates [51]. Moreover, in animal models, prenatal magnesium
sulfate use had prevented local glutamate level elevation and neurologic impairment after an
excitotoxic brain lesion [52]. This effect was more significant in males compared to females [52].
It is not surprising that our results supported the previous reports on the importance of glutamate
metabolism in lesions associated with CP.

Glycerophospholipids or phosphoglycerides are the most significant metabolites identified in
CP in our machine learning techniques. Glycerophospholipids function in signal induction and
transport. They provide the precursors for prostanglandins and leukotrienes [53] for biological
responses [54]. They are also involved in apoptosis, modulation of the activities of transporters,
and membrane-bound enzymes [55–57]. Marked alterations in neural membrane glycerophospholipid
composition have been reported to occur in neurological disorders such as Alzheimer’s disease,
depression, and anxiety [54,58,59]. These alterations result in changes in membrane fluidity and
permeability. These processes along with the accumulation of lipid peroxides and compromised energy
metabolism may be responsible for the neurodegeneration observed in CP [60,61]. Umbilical cord
metabolomic profiles in neonates with perinatal asphyxia who have substantial risk to develop CP
showed significant alterations in amino acids, acylcarnitines, and glycerophospholipids [62] similar to
our findings in the brain tissue of patients with CP.

Machine learning techniques also identified urea as a good predictive variable across all of our
models. In neurodegenerative disorders such as Huntington’s disease, changes in urea levels were
identified in post-mortem brain tissues [63]. Widespread elevation of urea has also been reported
in brain tissues with Alzheimer’s disease [64], suggesting that urea cycle disruption could also
be a unifying pathogenic feature of neurodegenerative diseases. Excessive levels of urea and its
nitrogenous precursor ammonia are neurotoxic, as evidenced by uremic encephalopathy and the urea
cycle disorders. Urea cycle disorders are genetic disorders caused by a mutation that results in a
deficiency of enzymes in the urea cycle [65]. These enzymes are responsible for removing ammonia
from the blood stream. In urea cycle disorders, nitrogen accumulates, resulting in hyperammonemia
that can cause irreversible brain damage, with manifestations ranging from lethargy and abnormal
behavior such as disordered sleep and neurological posturing through to acute psychosis, seizure,
coma, and death [66]. Similarly, uremic encephalopathy typically occurs in patients with renal
failure, which can lead to symptoms ranging from mild fatigue and generalized weakness to seizure
and coma [67]. There have been no previous reports showing an association between urea cycle
abnormalities and CP. Argininemia, which is a rare urea cycle defect disorder, has been reported
in a small case series of young children leading to progressive spastic tetraplegia, poor physical
growth, and mental retardation with seizures mimicking CP [68]. Our study is the first showing
altered urea concentration in the post-mortem CP brain tissue supporting previous studies about other
neurological disorders.

The results of the pathway enrichment analysis highlighted folic acid metabolism as the
most perturbed biochemical pathway. Methylation cycle and folate metabolism are important in
neurotransmitter regulation, nerve myelination, and DNA synthesis. Thus, folate metabolites play a
critical role in cognitive function and neuromuscular stability. A previous study showed a possible
protective effect of prenatal folic acid supplementation on CP development [69]. There is evidence
that children with CP show dysregulation of methylation capacity and folate metabolism despite
adequate levels of folate and vitamin B12 [70]. Maintenance of methylation activity is crucial
for RNA and DNA synthesis and subsequent growth and development as well as maintaining
neurodevelopment. Interestingly, there is a cerebral folate deficiency syndrome described in children
with developmental delay and deceleration of head growth, psychomotor retardation, and hypotonia.
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One-third of these children develop ataxia, spasticity, dyskinesia, speech difficulties, and seizures
similar to children with CP [71]. In mouse models, folate deficiency has been demonstrated to
decrease neurotransmitter acethylcholine activity, which in turn significantly decreases cognitive
performance [72]. Furthermore, low serum folate concentrations were also found in patients with
Alzheimer’s disease and dementia [73]. There is also evidence of the beneficiary effect of folate therapy
on both EEG patterns and neuropsychological performance in patients with neuropathy and cerebral
atrophy [74].

Additionally, our pathway enrichment analysis identified propionate metabolism as being
significantly perturbed in CP brains. Propionate is the most common short-chain fatty acid produced by
the human gut microbiota in response to indigestible carbohydrates such as fiber in the diet. Propionate
and other short-chain fatty acids are produced in the body during normal cellular metabolism following
enteric bacterial fermentation of dietary carbohydrates and proteins [75]. Propionate-producing enteric
bacteria, including unique Clostridial, Desulfovibrio, and Bacteriodetes species, have been isolated from
patients with regressive autism spectrum disorders [76,77]. Propionate is also present naturally in a
variety of foods and is a common food preservative in refined wheat and dairy products. Under normal
circumstances, these short-chain fatty acids are primarily metabolized in the liver. However, if there
are genetic and/or acquired aberrations in metabolism [78], higher than normal levels of short-chain
fatty acids can be present in the circulating blood, and can cross the gut–blood and blood–brain
barriers. They can concentrate intracellularly, particularly in acidotic conditions, where they may
have deleterious effects on brain development and function [79]. This could be important in the
context of neurological disorders, since propionate is known to affect cell signaling, neurotransmitter
synthesis and release, mitochondrial function/CoA sequestration, lipid metabolism, immune function,
gap junction modulation, and gene expression [79–84], all of which have been implicated in a variety
of neurological disorders including autism spectrum diseases [79,85]. Intracerebroventricular infusions
with propionate produced short bouts of behavioral and electrophysiological effects, coupled with
biochemical and neuropathological alterations in adult rats, consistent with those seen in autism
disorder [86–89]. A recent study showed infusions with propionate or butyrate altered the brain
acylcarnitine and phospholipid profiles [90], which are known to affect membrane fluidity, peroxisomal
function, gap junction coupling capacity, signaling, and neuroinflammation [79], supporting our
findings as earlier defined in CP brain tissues.

Finally, we found that the sex steroid metabolism pathway was significantly altered in the brain
tissue of patients with CP. Although there is paucity of data on the effect of sex steroids in the
development of CP, estradiol has been shown to have a dose-dependent protection on oxygen-induced
apoptotic cell death in oligodendrocytes in animal models [83]. This may suggest a possible role for
estrogens in the prevention of neonatal oxygen-induced white matter injury [91]. Although sex steroid
levels were low for both genders after birth, our preliminary finding should be investigated more
deeply to identify the correlation with the better survival rates of female premature babies compared to
males [92]. Estrogen could be effective in modulating glutamate-induced neurotoxicity [85]. However,
the mechanism underlying estrogen’s neuroprotective effect is not fully clarified [93]. Moreover,
as previously mentioned, there may be a gender-specific neuroprotective effect of magnesium sulfate
in the premature brain [52]. When plasma levels of androgens were analyzed in male subjects with
autism compared to males with mental retardation and control subjects, androgenic hormone levels
were not different among the groups, except that the DHEAS levels were higher in mentally retarded
patients with CP compared to age-matched mentally retarded patients without CP or controls [94].

In our study, the number of cases and controls was small due to the difficulties in obtaining the
post-mortem brain tissues from patients with CP. Clinical information for both cases and controls was
limited. The age and gender for cases and controls were matched with the best available samples
in the NIH NeuroBioBank. The biopsy specimens were obtained from the same but one anatomical
location of each brain to be analyzed.
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4. Materials and Methods

4.1. Tissue Samples

Only a limited number of specimens and tissue was available for this pilot study. Tissue samples
(caudate nucleus) were obtained from post-mortem CP cases (n = 9) and age- and gender-matched
control subjects (n = 11). Tissues were obtained from the Harvard University Tissue Resource Center,
the University of Maryland Brain and Tissue Bank, and the University of Miami Miller School of
Medicine, which are all Brain and Tissue Repositories of the NIH NeuroBioBank. This study was
approved by the Beaumont Health System’s Human Investigation Committee (HIC No.: 2018-387).
The methods were carried out in accordance with the approved guidelines. Details such as age, gender,
race, and post-mortem delay can be found in Table S2 in the Supplementary Materials.

4.2. Sample Preparation

Samples were stored at −80 ◦C prior to preparation. Subsequently, samples were lyophilized
and milled to a fine powder under liquid nitrogen to limit the amount of heat production. For 1H
NMR, 50 mg samples were extracted in 50% methanol/water (1 g/mL) in a sterile 2 mL Eppendorf
tube. The samples were mixed for 20 min and sonicated for 20 min, and the protein was removed by
centrifugation at 13,000× g at 4 ◦C for 30 min. Supernatants were collected, dried under vacuum using
a Savant DNA SpeedVac (Thermo Scientific, Waltham, MA USA), and reconstituted in 285 µL of 50 mM
potassium phosphate buffer (pH 7.0), 30 µL of sodium 2,2-dimethyl-2-silapentane-5-sulfonate (DSS),
and 35 µL of D2O [95]. A 200 µL portion of the reconstituted sample was transferred to a 3 mm Bruker
NMR tube for analysis. All samples were housed at 4 ◦C in a thermostatically controlled SampleJet
autosampler (Bruker-Biospin, Billerica, MA, USA) and heated to room temperature over 3 minutes
prior to analysis by NMR.

For analysis by targeted mass spectrometry, the tissue samples were analyzed using the
commercially available AbsoluteIDQ p180 (Biocrates, Innsbruck, Austria) kit. In brief, 10 mg (±3 mg)
of milled tissue were extracted in 300 µL of solvent (85% ethanol and 15% phosphate buffered saline
solution). The samples were shaken at 700 rpm for 10 min, followed by sonication for 20 min,
and centrifuged at 13,000× g for 20 min. The supernatant was collected and 10 µL were used for
analysis with the kit. A 10 µL portion of blank, 3 zero samples, 7 calibration standards, and 3 quality
control samples were loaded onto the filters in the upper 96-well plate and dried under nitrogen using a
positive pressure processor (Waters Technologies Corporation, Milford, MA, USA). Subsequently, 50 µL
of phenylisothiocyanate derivatization solution were added to each well and left at room temperature
for 20 min. The plate was subsequently dried under nitrogen for 60 min, followed by the addition of
300 µL of methanol containing 5 mM ammonium acetate for the extraction of metabolites. The plate
was shaken at 700 rpm for 30 min and the extracts filtered to the lower collection plate using the
positive pressure processor. Eluates were diluted with water for the analysis of the metabolites with
the workflow using ultra-pressure liquid chromatography mass spectrometry (UPLC-MS) and diluted
with running solvent for flow injection analysis (FIA)-MS (for lipids).

4.3. Data Collection and Metabolic Profiling

Using a randomized running order, all 1D 1H NMR data were recorded at 300 (±0.5) K on a
Bruker ASCEND HD 600 MHz spectrometer (Bruker-Biospin, Billerica, MA, USA) coupled with a
5 mm TCI cryoprobe. For each sample, 256 transients were collected as 64k data points with a spectral
width of 12 kHz (20 ppm), using a pulse sequence called CPP WaterSupp (Bruker pulse program:
pusenoesypr1d) developed by Mercier et al. [96] and an inter-pulse delay of 9.65 s. The data collection
protocol included a 180-s temperature equilibration period, fast 3D shimming using the z-axis profile of
the 2H NMR solvent signal, receiver gain adjustment, and acquisition. The free induction decay signal
was zero filled to 128k and exponentially multiplied with a 0.1 Hz line broadening factor. The zero and
first order phase constants were manually optimized after Fourier transformation and a polynomial
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baseline correction of the free induction decay (FID; degree 5) was applied for precise quantitation.
All spectra were processed and analyzed using Chenomx NMR Suite (v8.0, Chenomx, Edmonton,
AB, Canada).

As previously noted, targeted MS analysis was carried out using AbsoluteIDQ p180 kit (Biocrates
Life Sciences AG, Innsbruck, Austria). Data was acquired using a Xevo TQ-S mass spectrometer
coupled to an Acquity I Class UPLC system (Waters Technologies Corporation, Milford, MA, USA) as
per the manufacturer’s instructions. The system allows for the accurate quantification of up to 188
endogenous metabolites including amino acids, acylcarnitines, biogenic amines, glycerophospholipids,
sphingolipids, and sugars. Sample registration and the automated calculation of metabolite
concentrations and export of data were carried out with Biocrates MetIDQ software. We accurately
identified and quantified 59 metabolites using 1H NMR and 173 using DI/LC-MS/MS. Some overlap
was observed (22 metabolites) between the two platforms and as such, we reported the average values
for each individual metabolite measured using both analytical platforms.

4.4. Statistical Analysis

Using MetaboAnalyst (v4.0) [97], the data were analyzed using a two-tailed Student’s t-test to
determine the statistical significance between the metabolite concentration in CP and corresponding
controls (p < 0.05, FDR < 0.3).

We selected a representative set of six artificial intelligence algorithms, which have been applied
for problems of data classification in the bioinformatics field. These included logistic regression
(LR), prediction analysis for microarrays (PAM), partial least square-discriminant analysis (PLS-DA),
deep learning (DL), random forest (RF), and support vector machine (SVM).

Using publicly available toolboxes in R, important parameters for each model were optimized so
that the best prediction performance could be achieved [98–103]. In order to assess model performance
of each approach or algorithm, the data were split into training and testing sets (80% and 20%
respectively). In an attempt of avoiding sampling bias, the splitting process was repeated ten times
and the AUC values were averaged out. Sensitivity and specificity values were calculated at 95%
confidence intervals.

4.5. Metabolite Pathway Enrichment Analysis

Metabolite set enrichment analysis (MSEA) was completed using MetaboAnalyst (v4.0) [97].
Metabolite names were converted to Human Metabolome Database (HMDB) identifiers. The raw
data was subjected to sum normalization and autoscaling. The pathway-associated metabolite set
was the chosen metabolite library, and all compounds in this library were used. Pathways with a raw
p value < 0.01 were considered to be significantly altered upon CP.

5. Conclusions

We report for the first time a targeted, quantitative metabolomic approach for profiling
post-mortem human brain tissue from patients with CP. Metabolomic analysis provided new insights
into the dysregulated brain metabolism associated with CP. The metabolites and associated biochemical
pathways identified herein could potentially facilitate the understanding of the underlying complex
pathophysiology associated with CP as well as possible central biomarkers for early detection and
prediction of CP. There is a need for future studies to confirm our current preliminary data in more
accessible biomatrices.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/9/2/27/s1,
Table S1: Metabolite Concentrations (µM) for CP vs. Control PM Brain Extracts. Those compounds highlighted in
bold are considered statistically, significantly different (p < 0.05; q < 0.05). t-test values were calculated as a default
and values with (W) were calculated using the Wilcoxon Mann Whitney test. Table S2. A list of the available
demographic information. PM-post-mortem.

http://www.mdpi.com/2218-1989/9/2/27/s1
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37. Graham, S.F.; Chevallier, O.P.; Kumar, P.; Türkoğlu, O.; Bahado-Singh, R.O. High resolution metabolomic
analysis of asd human brain uncovers novel biomarkers of disease. Metabolomics 2016, 12, 62. [CrossRef]

38. Graham, S.F.; Chevallier, O.P.; Roberts, D.; Hölscher, C.; Elliott, C.T.; Green, B.D. Investigation of the human
brain metabolome to identify potential markers for early diagnosis and therapeutic targets of alzheimer’s
disease. Anal. Chem. 2013, 85, 1803–1811. [CrossRef] [PubMed]

39. Graham, S.F.; Holscher, C.; Green, B.D. Metabolic signatures of human alzheimer’s disease (ad): 1h nmr
analysis of the polar metabolome of post-mortem brain tissue. Metabolomics 2014, 10, 744–753. [CrossRef]

40. Graham, S.F.; Holscher, C.; McClean, P.; Elliott, C.T.; Green, B.D. 1 h nmr metabolomics investigation of an
alzheimer’s disease (ad) mouse model pinpoints important biochemical disturbances in brain and plasma.
Metabolomics 2013, 9, 974–983. [CrossRef]

http://dx.doi.org/10.1111/dmcn.14038
http://www.ncbi.nlm.nih.gov/pubmed/30294845
http://dx.doi.org/10.1021/acs.jproteome.8b00224
http://www.ncbi.nlm.nih.gov/pubmed/29762036
http://dx.doi.org/10.1038/jp.2016.139
http://www.ncbi.nlm.nih.gov/pubmed/27608295
http://dx.doi.org/10.3233/JAD-161226
http://www.ncbi.nlm.nih.gov/pubmed/28453477
http://dx.doi.org/10.3390/metabo7020028
http://www.ncbi.nlm.nih.gov/pubmed/28629125
http://dx.doi.org/10.1007/s11306-016-0957-1
http://dx.doi.org/10.1021/acs.jproteome.6b00049
http://dx.doi.org/10.3389/fneur.2015.00237
http://dx.doi.org/10.1038/nm.3466
http://dx.doi.org/10.1371/journal.pmed.1002482
http://www.ncbi.nlm.nih.gov/pubmed/29370177
http://dx.doi.org/10.1053/j.semperi.2016.09.005
http://dx.doi.org/10.3389/fped.2015.00112
http://www.ncbi.nlm.nih.gov/pubmed/26779464
http://dx.doi.org/10.2217/bmm.14.116
http://www.ncbi.nlm.nih.gov/pubmed/25731212
http://dx.doi.org/10.1002/mrdd.10006
http://www.ncbi.nlm.nih.gov/pubmed/11921381
http://dx.doi.org/10.1186/s12974-015-0397-2
http://www.ncbi.nlm.nih.gov/pubmed/26407958
http://dx.doi.org/10.1007/s11306-016-0986-9
http://dx.doi.org/10.1021/ac303163f
http://www.ncbi.nlm.nih.gov/pubmed/23252551
http://dx.doi.org/10.1007/s11306-013-0610-1
http://dx.doi.org/10.1007/s11306-013-0516-y


Metabolites 2019, 9, 27 13 of 16

41. Graham, S.F.; Kumar, P.K.; Bjorndahl, T.; Han, B.; Yilmaz, A.; Sherman, E.; Bahado-Singh, R.O.; Wishart, D.;
Mann, D.; Green, B.D. Metabolic signatures of huntington’s disease (hd): (1)h nmr analysis of the polar
metabolome in post-mortem human brain. Biochim. Biophys. Acta 2016, 1862, 1675–1684. [CrossRef]
[PubMed]

42. Graham, S.F.; Pan, X.; Yilmaz, A.; Macias, S.; Robinson, A.; Mann, D.; Green, B.D. Targeted biochemical
profiling of brain from huntington’s disease patients reveals novel metabolic pathways of interest. Biochim.
Biophys. Acta 2018, 1864, 2430–2437. [CrossRef] [PubMed]

43. Graham, S.F.; Turkoglu, O.; Kumar, P.; Yilmaz, A.; Bjorndahl, T.C.; Han, B.; Mandal, R.; Wishart, D.S.;
Bahado-Singh, R.O. Targeted metabolic profiling of post-mortem brain from infants who died from sudden
infant death syndrome. J. Proteome Res. 2017, 16, 2587–2596. [CrossRef] [PubMed]

44. Cotman, C.W.; Foster, A.; Lanthorn, T. An overview of glutamate as a neurotransmitter. Adv. Biochem.
Psychopharmacol. 1981, 27, 1–27. [PubMed]

45. Beal, M.F. Role of excitotoxicity in human neurological disease. Curr. Opin. Neurobiol. 1992, 2, 657–662.
[CrossRef]

46. Battaglia, G.; Bruno, V. Metabotropic glutamate receptor involvement in the pathophysiology of amyotrophic
lateral sclerosis: New potential drug targets for therapeutic applications. Curr. Opin. Pharmacol. 2018, 38,
65–71. [CrossRef] [PubMed]

47. Wang, R.; Reddy, P.H. Role of glutamate and nmda receptors in alzheimer’s disease. J. Alzheimers Dis. 2017,
57, 1041–1048. [CrossRef]

48. Walker, J.E. Glutamate, gaba, and cns disease: A review. Neurochem. Res. 1983, 8, 521–550. [CrossRef]
49. Choi, D.W.; Rothman, S.M. The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death.

Annu. Rev. Neurosci. 1990, 13, 171–182. [CrossRef]
50. Anderson, C.M.; Swanson, R.A. Astrocyte glutamate transport: Review of properties, regulation,

and physiological functions. Glia 2000, 32, 1–14. [CrossRef]
51. Back, S.A.; Craig, A.; Kayton, R.J.; Luo, N.L.; Meshul, C.K.; Allcock, N.; Fern, R. Hypoxia-ischemia

preferentially triggers glutamate depletion from oligodendroglia and axons in perinatal cerebral white
matter. J. Cereb. Blood Flow Metab. 2007, 27, 334–347. [CrossRef] [PubMed]

52. Daher, I.; Le Dieu-Lugon, B.; Dourmap, N.; Lecuyer, M.; Ramet, L.; Gomila, C.; Ausseil, J.; Marret, S.;
Leroux, P.; Roy, V.; et al. Magnesium sulfate prevents neurochemical and long-term behavioral consequences
of neonatal excitotoxic lesions: Comparison between male and female mice. J. Neuropathol. Exp. Neurol. 2017,
76, 883–897. [CrossRef] [PubMed]

53. Hermansson, M.; Hokynar, K.; Somerharju, P. Mechanisms of glycerophospholipid homeostasis in
mammalian cells. Prog. Lipid Res. 2011, 50, 240–257. [CrossRef] [PubMed]

54. Farooqui, A.A.; Horrocks, L.A.; Farooqui, T. Glycerophospholipids in brain: Their metabolism, incorporation
into membranes, functions, and involvement in neurological disorders. Chem. Phys. Lipids 2000, 106, 1–29.
[CrossRef]

55. Fuchs, B.; Schiller, J.; Cross, M.A. Apoptosis-associated changes in the glycerophospholipid composition
of hematopoietic progenitor cells monitored by 31p nmr spectroscopy and maldi-tof mass spectrometry.
Chem. Phys. Lipids 2007, 150, 229–238. [CrossRef]

56. Farooqui, A.A.; Horrocks, L.A.; Farooqui, T. Interactions between neural membrane glycerophospholipid
and sphingolipid mediators: A recipe for neural cell survival or suicide. J. Neurosci. Res. 2007, 85, 1834–1850.
[CrossRef]

57. Yang, Y.; Lee, M.; Fairn, G.D. Phospholipid subcellular localization and dynamics. J. Biol. Chem. 2018, 293,
6230–6240. [CrossRef]

58. Frisardi, V.; Panza, F.; Seripa, D.; Farooqui, T.; Farooqui, A.A. Glycerophospholipids and
glycerophospholipid-derived lipid mediators: A complex meshwork in alzheimer’s disease pathology.
Prog. Lipid Res. 2011, 50, 313–330. [CrossRef]

59. Muller, C.P.; Reichel, M.; Muhle, C.; Rhein, C.; Gulbins, E.; Kornhuber, J. Brain membrane lipids in major
depression and anxiety disorders. Biochim. Biophys. Acta 2015, 1851, 1052–1065. [CrossRef]

60. Villamil-Ortiz, J.G.; Barrera-Ocampo, A.; Arias-Londono, J.D.; Villegas, A.; Lopera, F.; Cardona-Gomez, G.P.
Differential pattern of phospholipid profile in the temporal cortex from e280a-familiar and sporadic
alzheimer’s disease brains. J. Alzheimers Dis. 2018, 61, 209–219. [CrossRef]

http://dx.doi.org/10.1016/j.bbadis.2016.06.007
http://www.ncbi.nlm.nih.gov/pubmed/27288730
http://dx.doi.org/10.1016/j.bbadis.2018.04.012
http://www.ncbi.nlm.nih.gov/pubmed/29684586
http://dx.doi.org/10.1021/acs.jproteome.7b00157
http://www.ncbi.nlm.nih.gov/pubmed/28608686
http://www.ncbi.nlm.nih.gov/pubmed/6108689
http://dx.doi.org/10.1016/0959-4388(92)90035-J
http://dx.doi.org/10.1016/j.coph.2018.02.007
http://www.ncbi.nlm.nih.gov/pubmed/29529498
http://dx.doi.org/10.3233/JAD-160763
http://dx.doi.org/10.1007/BF00965107
http://dx.doi.org/10.1146/annurev.ne.13.030190.001131
http://dx.doi.org/10.1002/1098-1136(200010)32:1&lt;1::AID-GLIA10&gt;3.0.CO;2-W
http://dx.doi.org/10.1038/sj.jcbfm.9600344
http://www.ncbi.nlm.nih.gov/pubmed/16757980
http://dx.doi.org/10.1093/jnen/nlx073
http://www.ncbi.nlm.nih.gov/pubmed/28922852
http://dx.doi.org/10.1016/j.plipres.2011.02.004
http://www.ncbi.nlm.nih.gov/pubmed/21382416
http://dx.doi.org/10.1016/S0009-3084(00)00128-6
http://dx.doi.org/10.1016/j.chemphyslip.2007.08.005
http://dx.doi.org/10.1002/jnr.21268
http://dx.doi.org/10.1074/jbc.R117.000582
http://dx.doi.org/10.1016/j.plipres.2011.06.001
http://dx.doi.org/10.1016/j.bbalip.2014.12.014
http://dx.doi.org/10.3233/JAD-170554


Metabolites 2019, 9, 27 14 of 16

61. Zhang, J.; Zhang, X.; Wang, L.; Yang, C. High performance liquid chromatography-mass spectrometry
(lc-ms) based quantitative lipidomics study of ganglioside-nana-3 plasma to establish its association with
parkinson’s disease patients. Med Sci. Monit. Int. Med J. Exp. Clin. Res. 2017, 23, 5345–5353. [CrossRef]

62. Walsh, B.H.; Broadhurst, D.I.; Mandal, R.; Wishart, D.S.; Boylan, G.B.; Kenny, L.C.; Murray, D.M.
The metabolomic profile of umbilical cord blood in neonatal hypoxic ischaemic encephalopathy. PLoS ONE
2012, 7, e50520. [CrossRef] [PubMed]

63. Handley, R.R.; Reid, S.J.; Brauning, R.; Maclean, P.; Mears, E.R.; Fourie, I.; Patassini, S.; Cooper, G.J.S.;
Rudiger, S.R.; McLaughlan, C.J.; et al. Brain urea increase is an early huntington’s disease pathogenic event
observed in a prodromal transgenic sheep model and hd cases. Proc. Natl. Acad. Sci. USA 2017, 114,
E11293–E11302. [CrossRef] [PubMed]

64. Xu, J.; Begley, P.; Church, S.J.; Patassini, S.; Hollywood, K.A.; Jullig, M.; Curtis, M.A.; Waldvogel, H.J.;
Faull, R.L.; Unwin, R.D.; et al. Graded perturbations of metabolism in multiple regions of human brain in
alzheimer’s disease: Snapshot of a pervasive metabolic disorder. Biochim. Biophys. Acta 2016, 1862, 1084–1092.
[CrossRef] [PubMed]

65. Summar, M.L.; Mew, N.A. Inborn errors of metabolism with hyperammonemia: Urea cycle defects and
related disorders. Pediatr. Clin. N. Am. 2018, 65, 231–246. [CrossRef] [PubMed]

66. Stone, W.L.; Jaishankar, G.B. Urea Cycle Disorders; StatPearls Publishing: Treasure Island, FL, USA, 2018.
67. Baluarte, J.H. Neurological complications of renal disease. Semin. Pediatr. Neurol. 2017, 24, 25–32. [CrossRef]

[PubMed]
68. Wu, T.; Li, X.; Ding, Y.; Liu, Y.; Song, J.; Wang, Q.; Li, M.; Qin, Y.; Yang, Y. Seven patients of argininemia

with spastic tetraplegia as the first and major symptom and prenatal diagnosis of two fetuses with high risk.
Zhonghua Er Ke Za Zhi = Chin. J. Pediatr. 2015, 53, 425–430.

69. Gao, J.; Zhao, B.; He, L.; Sun, M.; Yu, X.; Wang, L. Risk of cerebral palsy in chinese children: A n:M matched
case control study. J. Paediatr. Child Health 2017, 53, 464–469. [CrossRef]

70. Schoendorfer, N.C.; Obeid, R.; Moxon-Lester, L.; Sharp, N.; Vitetta, L.; Boyd, R.N.; Davies, P.S. Methylation
capacity in children with severe cerebral palsy. Eur. J. Clin. Investig. 2012, 42, 768–776. [CrossRef]

71. Nabiuni, M.; Rasouli, J.; Parivar, K.; Kochesfehani, H.M.; Irian, S.; Miyan, J.A. In vitro effects of fetal rat
cerebrospinal fluid on viability and neuronal differentiation of pc12 cells. Fluids Barriers CNS 2012, 9, 8.
[CrossRef]

72. Chan, A.; Tchantchou, F.; Graves, V.; Rozen, R.; Shea, T.B. Dietary and genetic compromise in folate
availability reduces acetylcholine, cognitive performance and increases aggression: Critical role of s-adenosyl
methionine. J. Nutr. Health Aging 2008, 12, 252–261. [CrossRef] [PubMed]

73. Lovati, C.; Galimberti, D.; Pomati, S.; Capiluppi, E.; Dolci, A.; Scapellato, L.; Rosa, S.; Mailland, E.;
Suardelli, M.; Vanotti, A.; et al. Serum folate concentrations in patients with cortical and subcortical
dementias. Neurosci. Lett. 2007, 420, 213–216. [CrossRef] [PubMed]

74. Botez, M.I.; Peyronnard, J.M.; Berube, L.; Labrecque, R. Relapsing neuropathy, cerebral atrophy and folate
deficiency. A close association. Appl. Neurophysiol. 1979, 42, 171–183. [PubMed]

75. Mortensen, P.B.; Clausen, M.R. Short-chain fatty acids in the human colon: Relation to gastrointestinal health
and disease. Scand. J. Gastroenterol. Suppl. 1996, 216, 132–148. [CrossRef] [PubMed]

76. Finegold, S.M.; Molitoris, D.; Song, Y.; Liu, C.; Vaisanen, M.L.; Bolte, E.; McTeague, M.; Sandler, R.; Wexler, H.;
Marlowe, E.M.; et al. Gastrointestinal microflora studies in late-onset autism. Clin. Infect. Dis. 2002, 35,
S6–S16. [CrossRef] [PubMed]

77. Finegold, S.M.; Dowd, S.E.; Gontcharova, V.; Liu, C.; Henley, K.E.; Wolcott, R.D.; Youn, E.; Summanen, P.H.;
Granpeesheh, D.; Dixon, D.; et al. Pyrosequencing study of fecal microflora of autistic and control children.
Anaerobe 2010, 16, 444–453. [CrossRef] [PubMed]

78. Conn, A.R.; Fell, D.I.; Steele, R.D. Characterization of alpha-keto acid transport across blood-brain barrier in
rats. Am. J. Physiol. 1983, 245, E253–E260. [CrossRef]

79. Thomas, R.H.; Meeking, M.M.; Mepham, J.R.; Tichenoff, L.; Possmayer, F.; Liu, S.; MacFabe, D.F. The enteric
bacterial metabolite propionic acid alters brain and plasma phospholipid molecular species: Further
development of a rodent model of autism spectrum disorders. J. Neuroinflamm. 2012, 9, 153. [CrossRef]

80. Koh, A.; Molinaro, A.; Stahlman, M.; Khan, M.T.; Schmidt, C.; Manneras-Holm, L.; Wu, H.; Carreras, A.;
Jeong, H.; Olofsson, L.E.; et al. Microbially produced imidazole propionate impairs insulin signaling through
mtorc1. Cell 2018, 175, 947–961. [CrossRef]

http://dx.doi.org/10.12659/MSM.904399
http://dx.doi.org/10.1371/journal.pone.0050520
http://www.ncbi.nlm.nih.gov/pubmed/23227182
http://dx.doi.org/10.1073/pnas.1711243115
http://www.ncbi.nlm.nih.gov/pubmed/29229845
http://dx.doi.org/10.1016/j.bbadis.2016.03.001
http://www.ncbi.nlm.nih.gov/pubmed/26957286
http://dx.doi.org/10.1016/j.pcl.2017.11.004
http://www.ncbi.nlm.nih.gov/pubmed/29502911
http://dx.doi.org/10.1016/j.spen.2016.12.004
http://www.ncbi.nlm.nih.gov/pubmed/28779862
http://dx.doi.org/10.1111/jpc.13479
http://dx.doi.org/10.1111/j.1365-2362.2011.02644.x
http://dx.doi.org/10.1186/2045-8118-9-8
http://dx.doi.org/10.1007/BF02982630
http://www.ncbi.nlm.nih.gov/pubmed/18373034
http://dx.doi.org/10.1016/j.neulet.2007.04.060
http://www.ncbi.nlm.nih.gov/pubmed/17532571
http://www.ncbi.nlm.nih.gov/pubmed/464598
http://dx.doi.org/10.3109/00365529609094568
http://www.ncbi.nlm.nih.gov/pubmed/8726286
http://dx.doi.org/10.1086/341914
http://www.ncbi.nlm.nih.gov/pubmed/12173102
http://dx.doi.org/10.1016/j.anaerobe.2010.06.008
http://www.ncbi.nlm.nih.gov/pubmed/20603222
http://dx.doi.org/10.1152/ajpendo.1983.245.3.E253
http://dx.doi.org/10.1186/1742-2094-9-153
http://dx.doi.org/10.1016/j.cell.2018.09.055


Metabolites 2019, 9, 27 15 of 16

81. Morland, C.; Froland, A.S.; Pettersen, M.N.; Storm-Mathisen, J.; Gundersen, V.; Rise, F.; Hassel, B. Propionate
enters gabaergic neurons, inhibits gaba transaminase, causes gaba accumulation and lethargy in a model of
propionic acidemia. Biochem. J. 2018, 475, 749–758. [CrossRef]

82. Hoyles, L.; Snelling, T.; Umlai, U.K.; Nicholson, J.K.; Carding, S.R.; Glen, R.C.; McArthur, S. Microbiome-host
systems interactions: Protective effects of propionate upon the blood-brain barrier. Microbiome 2018, 6, 55.
[CrossRef] [PubMed]

83. van den Berge, M.; Jonker, M.R.; Miller-Larsson, A.; Postma, D.S.; Heijink, I.H. Effects of fluticasone
propionate and budesonide on the expression of immune defense genes in bronchial epithelial cells. Pulm.
Pharmacol. Ther. 2018, 50, 47–56. [CrossRef] [PubMed]

84. Pluciennik, F.; Verrecchia, F.; Bastide, B.; Herve, J.C.; Joffre, M.; Deleze, J. Reversible interruption of gap
junctional communication by testosterone propionate in cultured sertoli cells and cardiac myocytes. J. Membr.
Biol. 1996, 149, 169–177. [CrossRef] [PubMed]

85. Frye, R.E.; Rossignol, D.A. Mitochondrial dysfunction can connect the diverse medical symptoms associated
with autism spectrum disorders. Pediatr. Res. 2011, 69, 41r–47r. [CrossRef] [PubMed]

86. MacFabe, D.F.; Cain, D.P.; Rodriguez-Capote, K.; Franklin, A.E.; Hoffman, J.E.; Boon, F.; Taylor, A.R.;
Kavaliers, M.; Ossenkopp, K.P. Neurobiological effects of intraventricular propionic acid in rats: Possible
role of short chain fatty acids on the pathogenesis and characteristics of autism spectrum disorders. Behav.
Brain Res. 2007, 176, 149–169. [CrossRef] [PubMed]

87. MacFabe, D.F.; Cain, N.E.; Boon, F.; Ossenkopp, K.P.; Cain, D.P. Effects of the enteric bacterial metabolic
product propionic acid on object-directed behavior, social behavior, cognition, and neuroinflammation in
adolescent rats: Relevance to autism spectrum disorder. Behav. Brain Res. 2011, 217, 47–54. [CrossRef]
[PubMed]

88. Shultz, S.R.; Macfabe, D.F.; Martin, S.; Jackson, J.; Taylor, R.; Boon, F.; Ossenkopp, K.P.; Cain, D.P.
Intracerebroventricular injections of the enteric bacterial metabolic product propionic acid impair cognition
and sensorimotor ability in the long-evans rat: Further development of a rodent model of autism. Behav.
Brain Res. 2009, 200, 33–41. [CrossRef]

89. Shultz, S.R.; MacFabe, D.F.; Ossenkopp, K.P.; Scratch, S.; Whelan, J.; Taylor, R.; Cain, D.P.
Intracerebroventricular injection of propionic acid, an enteric bacterial metabolic end-product, impairs
social behavior in the rat: Implications for an animal model of autism. Neuropharmacology 2008, 54, 901–911.
[CrossRef]

90. Broeder, C.E.; Brenner, M.; Hofman, Z.; Paijmans, I.J.; Thomas, E.L.; Wilmore, J.H. The metabolic
consequences of low and moderate intensity exercise with or without feeding in lean and borderline
obese males. Int. J. Obes. 1991, 15, 95–104.

91. Gerstner, B.; Lee, J.; DeSilva, T.M.; Jensen, F.E.; Volpe, J.J.; Rosenberg, P.A. 17beta-estradiol protects against
hypoxic/ischemic white matter damage in the neonatal rat brain. J. Neurosci. Res. 2009, 87, 2078–2086.
[CrossRef]

92. Zisk, J.L.; Genen, L.H.; Kirkby, S.; Webb, D.; Greenspan, J.; Dysart, K. Do premature female infants really do
better than their male counterparts? Am. J. Perinatol. 2011, 28, 241–246. [CrossRef] [PubMed]

93. Lan, Y.L.; Zhao, J.; Li, S. Estrogen receptors’ neuroprotective effect against glutamate-induced neurotoxicity.
Neurol. Sci. 2014, 35, 1657–1662. [CrossRef] [PubMed]

94. Tordjman, S.; Anderson, G.M.; McBride, P.A.; Hertzig, M.E.; Snow, M.E.; Hall, L.M.; Ferrari, P.; Cohen, D.J.
Plasma androgens in autism. J. Autism Dev. Disord. 1995, 25, 295–304. [CrossRef] [PubMed]

95. Ravanbakhsh, S.; Liu, P.; Bjordahl, T.C.; Mandal, R.; Grant, J.R.; Wilson, M.; Eisner, R.; Sinelnikov, I.; Hu, X.;
Luchinat, C.; et al. Accurate, fully-automated nmr spectral profiling for metabolomics. PLoS ONE 2015,
10, e0124219. [CrossRef] [PubMed]

96. Mercier, P.; Lewis, M.J.; Chang, D.; Baker, D.; Wishart, D.S. Towards automatic metabolomic profiling of
high-resolution one-dimensional proton nmr spectra. J. Biomol. NMR 2011, 49, 307–323. [CrossRef] [PubMed]

97. Chong, J.; Soufan, O.; Li, C.; Caraus, I.; Li, S.; Bourque, G.; Wishart, D.S.; Xia, J. Metaboanalyst 4.0: Towards
more transparent and integrative metabolomics analysis. Nucleic Acids Res. 2018, 46, W486–W494. [CrossRef]
[PubMed]

98. Min, S.; Lee, B.; Yoon, S. Deep learning in bioinformatics. Brief. Bioinform. 2017, 18, 851–869. [CrossRef]
[PubMed]

http://dx.doi.org/10.1042/BCJ20170814
http://dx.doi.org/10.1186/s40168-018-0439-y
http://www.ncbi.nlm.nih.gov/pubmed/29562936
http://dx.doi.org/10.1016/j.pupt.2018.04.002
http://www.ncbi.nlm.nih.gov/pubmed/29627483
http://dx.doi.org/10.1007/s002329900017
http://www.ncbi.nlm.nih.gov/pubmed/8801349
http://dx.doi.org/10.1203/PDR.0b013e318212f16b
http://www.ncbi.nlm.nih.gov/pubmed/21289536
http://dx.doi.org/10.1016/j.bbr.2006.07.025
http://www.ncbi.nlm.nih.gov/pubmed/16950524
http://dx.doi.org/10.1016/j.bbr.2010.10.005
http://www.ncbi.nlm.nih.gov/pubmed/20937326
http://dx.doi.org/10.1016/j.bbr.2008.12.023
http://dx.doi.org/10.1016/j.neuropharm.2008.01.013
http://dx.doi.org/10.1002/jnr.22023
http://dx.doi.org/10.1055/s-0030-1268239
http://www.ncbi.nlm.nih.gov/pubmed/21046537
http://dx.doi.org/10.1007/s10072-014-1937-8
http://www.ncbi.nlm.nih.gov/pubmed/25228013
http://dx.doi.org/10.1007/BF02179290
http://www.ncbi.nlm.nih.gov/pubmed/7559294
http://dx.doi.org/10.1371/journal.pone.0124219
http://www.ncbi.nlm.nih.gov/pubmed/26017271
http://dx.doi.org/10.1007/s10858-011-9480-x
http://www.ncbi.nlm.nih.gov/pubmed/21360156
http://dx.doi.org/10.1093/nar/gky310
http://www.ncbi.nlm.nih.gov/pubmed/29762782
http://dx.doi.org/10.1093/bib/bbw068
http://www.ncbi.nlm.nih.gov/pubmed/27473064


Metabolites 2019, 9, 27 16 of 16

99. Alakwaa, F.M.; Chaudhary, K.; Garmire, L.X. Deep learning accurately predicts estrogen receptor status in
breast cancer metabolomics data. J. Proteome Res. 2018, 17, 337–347. [CrossRef] [PubMed]

100. Kuhn, M. Building predictive models in r using the caret package. J. Stat. Softw. 2008, 28, 26. [CrossRef]
101. Angermueller, C.; Parnamaa, T.; Parts, L.; Stegle, O. Deep learning for computational biology. Mol. Syst. Biol.

2016, 12, 878. [CrossRef] [PubMed]
102. Zou, H.; Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B Stat. Methodol.

2005, 67, 301–320. [CrossRef]
103. Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.G. Statistical power analyses using g*power 3.1: Tests for

correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1021/acs.jproteome.7b00595
http://www.ncbi.nlm.nih.gov/pubmed/29110491
http://dx.doi.org/10.18637/jss.v028.i05
http://dx.doi.org/10.15252/msb.20156651
http://www.ncbi.nlm.nih.gov/pubmed/27474269
http://dx.doi.org/10.1111/j.1467-9868.2005.00503.x
http://dx.doi.org/10.3758/BRM.41.4.1149
http://www.ncbi.nlm.nih.gov/pubmed/19897823
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Discussion 
	Materials and Methods 
	Tissue Samples 
	Sample Preparation 
	Data Collection and Metabolic Profiling 
	Statistical Analysis 
	Metabolite Pathway Enrichment Analysis 

	References

