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Abstract

Levels of certain circulating short-chain dicarboxylacylcarnitine (SCDA), long-chain dicar-

boxylacylcarnitine (LCDA) and medium chain acylcarnitine (MCA) metabolites are heritable

and predict cardiovascular disease (CVD) events. Little is known about the biological path-

ways that influence levels of most of these metabolites. Here, we analyzed genetics, epige-

netics, and transcriptomics with metabolomics in samples from a large CVD cohort to

identify novel genetic markers for CVD and to better understand the role of metabolites in

CVD pathogenesis. Using genomewide association in the CATHGEN cohort (N = 1490), we

observed associations of several metabolites with genetic loci. Our strongest findings were

for SCDA metabolite levels with variants in genes that regulate components of endoplasmic

reticulum (ER) stress (USP3, HERC1, STIM1, SEL1L, FBXO25, SUGT1) These findings

were validated in a second cohort of CATHGEN subjects (N = 2022, combined p = 8.4x10-

6
–2.3x10-10). Importantly, variants in these genes independently predicted CVD events.

Association of genomewide methylation profiles with SCDA metabolites identified two ER

stress genes as differentially methylated (BRSK2 and HOOK2). Expression quantitative

trait loci (eQTL) pathway analyses driven by gene variants and SCDA metabolites corrobo-

rated perturbations in ER stress and highlighted the ubiquitin proteasome system (UPS)

arm. Moreover, culture of human kidney cells in the presence of levels of fatty acids found in

individuals with cardiometabolic disease, induced accumulation of SCDA metabolites in

parallel with increases in the ER stress marker BiP. Thus, our integrative strategy implicates

the UPS arm of the ER stress pathway in CVD pathogenesis, and identifies novel genetic

loci associated with CVD event risk.
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Author Summary

Cardiovascular disease is a strongly heritable trait. Despite application of the latest geno-

mic technologies, the genetic architecture of disease risk remains poorly defined, and

mechanisms underlying this susceptibility are incompletely understood. In this study, we

performed genome-wide mapping of heart disease-related metabolites measured in the

blood as the genetic traits of interest (instead of the disease itself), in a large cohort of 3512

patients at risk of heart disease from the CATHGEN study. Our goal was to discover new

cardiovascular disease genes and thereby mechanisms of disease pathogenesis by under-

standing the genes that regulate levels of these metabolites. These analyses identified novel

genetic variants associated with metabolite levels and with cardiovascular disease itself.

Importantly, by utilizing an unbiased systems-based approach integrating genetics, gene

expression, epigenetics and metabolomics, we uncovered a novel pathway of heart disease

pathogenesis, that of endoplasmic reticulum (ER) stress, represented by elevated levels of

circulating short-chain dicarboxylacylcarnitine (SCDA) metabolites.

Introduction

Despite the strong heritability of cardiovascular disease (CVD), its underlying genetic architec-

ture remains incompletely characterized. Genomewide association studies (GWAS) have con-

verged on association of CVD with a locus on chromosome 9p21 [1], but the variants confer

modest risk and are of unclear functional significance. One limitation of GWAS studies for

complex diseases is the search for association with disease as a binary endpoint, rather than

with molecular markers that define risk. An alternative approach is to search for variations in

the genome that associate with variation in complex traits. In fact, many diseases can be

defined by an underlying quantitative scale, and these “intermediate” traits may have a stronger

functional relationship to the causative gene, thereby providing a stronger signal for the disease

process. Metabolite levels measured by the emerging tools of metabolomics may be particularly

useful for such studies. Indeed, integration of GWAS with metabolomic profiles in population-

based cohorts [2] has demonstrated that as much as 12% of variance in metabolite levels is

determined by single nucleotide polymorphisms (SNPs). However, most studies of this type

performed to date have not used disease-burdened cohorts, so clear linkages between genetic

signals, intermediate phenotypes and disease remain to be discovered.

Metabolomic profiling has identified novel biomarkers for CVD risk [3–5]. For example, a

cluster of heritable [6] short-chain dicarboxylacylcarnitine (SCDA) metabolites measured in

plasma (comprised of the mono-carnitine esters of short-chain, alpha-, omega-diacids), a clus-

ter of long-chain dicarboxylacylcarnitines (LCDA), and a cluster of medium-chain acylcarni-

tines (MCA) predict CVD events in cardiovascular cohorts [4, 5], in patients undergoing

coronary artery bypass grafting [3], and add incremental risk prediction to robust clinical mod-

els inclusive of>20 variables [5]. Little is known about the biological pathways represented by

these metabolites and how they may predispose to CVD. Thus, we hypothesized that integra-

tion of metabolomics with genetics, epigenetics, and transcriptomics could define novel mecha-

nisms of CVD pathogenesis by identifying metabolic quantitative trait loci (mQTL) that are

CVD risk factors. We performed a GWAS of metabolite levels in a large cardiovascular cohort

referred for cardiac catheterization (CATHGEN, N = 1490) and validated our findings in a sec-

ond cohort (CATHGEN, N = 2022). A proportion of study subjects (44%) did not have clini-

cally significant atherosclerotic coronary artery disease at time of catheterization; regardless, all

individuals were analyzed given that metabolites predict risk of CVD events even in individuals
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without coronary artery disease, and because these individuals are still at risk for these events.

We found that genetic loci that strongly associate with SCDA levels also predict incident CVD

events, and are linked to ER stress. Genes differentially methylated in subjects at the extremes

of SCDA levels also report on ER stress. Gene expression quantitative trait loci (eQTL) pathway

analysis identified ER stress as an expression module associated with disease risk, particularly

highlighting the ubiquitin proteasome system (UPS) arm of ER stress. Thus, this multi-plat-

form “omics” approach identified a molecular pathway (ER stress and dysregulation of the

UPS) associated with a prevalent complex disease.

Results

Table 1 displays baseline characteristics of the study population. PCA of metabolomic data

identified 14 factors with metabolites in each factor clustering within biochemical pathways

(S1 Table), and clustering similar to our previous studies [3–5, 7]. For this study, we performed

GWAS using the top three PCA-derived factors: factor 1 (composed of MCAmetabolites), fac-

tor 2 (composed of LCDA metabolites), and factor 3 (composed of SCDA metabolites), all of

which we have previously identified as predicting CVD events (S2 Table) [3–5]. S1 Fig details

the overall study flow.

Metabolic quantitative trait loci (mQTL) of metabolite levels reside in
genes reporting on ER stress

Factor 1, factor 2 and factor 3 scores were used as the quantitative traits in GWAS analysis to

identify mQTL. Q-Q plots suggested the presence of SNPs associated with levels of each of the

three metabolite factors (S2, S3 and S4 Figs). Several SNPs were significantly associated with

metabolite factor levels at genomewide significance (p�10−6) in additive models in the

Table 1. Baseline characteristics of study population.

Discovery (N = 1490) Validation (N = 2022)

Age, mean (SD) 57.6 (11.6) 62.2 (11.9)

Race

% White 68% 72%

% Black 21% 21%

Sex (% female) 48.7% 38.2%

BMI, mean (SD) 30.8 (7.9) 30.1 (7.0)

Ejection fraction, mean (SD) 58.7 (11.4) 56.5 (13.5)

Creatinine, mean (SD) 1.1 (0.9) 1.3 (1.5)

Diabetes (%) 28.0% 31.2%

Hyperlipidemia (%) 56.7% 59.4%

Hypertension (%) 67.4% 67.4%

Smoking (%) 51.2% 47.2%

Family history (%) 38.3% 36.2%

Number of diseased coronary arteries

0 50.9% 39.0%

1 16.7% 23.6%

2 15.1% 16.0%

3 17.3% 21.4%

Heart failure (%) 20.1% 26.6%

Renal disease (%) 1.2% 2.5%

doi:10.1371/journal.pgen.1005553.t001
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discovery cohort (Fig 1A–1F) and confirmed (p�0.05) in the validation cohort (Table 2). Spe-

cifically, eight SNPs were associated with factor 1 (MCA) levels in any race, but with only two

of these SNPs showing more than nominal significance in the validation cohort (Table 2):

rs10987728 (in cyclin dependent kinase 9 [CDK9]) and rs6738286 (intergenic between transi-

tion protein 1 [TNP1] and disrupted in renal carcinoma 3 [DIRC3]). Twelve SNPs were associ-

ated with factor 2 (LCDA) levels in any race (Table 2), with only two of them showing more

than nominal significance in the validation cohort (rs12129555 just downstream from poly-

meric immunoglobulin receptor [PIGR] and rs17025690 in Usher syndrome 2A [USH2a]).

Factor 3 (SCDA) showed the strongest mQTL with twelve SNPs being associated with SCDA

levels in any race (Table 2), and four of these SNPs showing more than nominal significance in

the validation cohort: rs2228513 in HERC1 HECT and RLD domain containing E3 ubiquitin

protein ligase family member 1 (HERC1), rs10450989 in ubiquitin specific protease 3 (USP3),

rs11771619 in round spermatid basic protein 1-like (RSBN1L), and rs1869075 (intergenic

between F-box protein 25 [FBXO25] and glutamate rich 1 [ERICH1]). Effect sizes (β, i.e. per 1

unit change in factor levels) ranged from to -0.38 to 2.17 (factor 1), -0.19 to 1.16 (factor 2), and

-0.43 to 1.72 (factor 3).

In meta-analyses combining the race-stratified results, eleven SNPs were associated with

factor 1 (MCA) levels, with three of these SNPs showing more than nominal association

(Table 3); one of these (rs10987728 in CDK9) was also identified from race-stratified results

and two (rs16990949 in PDX1 C-terminal inhibiting factor 1 [PCIF1]) and rs543129 [inter-

genic between cutaneous T-cell lymphoma-associated antigen 1 (CTAGE1) and retinoblastoma

binding protein 8 (RBBP8)]) were new mQTL identified in these race meta-analyses. Eight

SNPs were associated with factor 2 (LCDA) levels (Table 3); one gene had been identified in

race-stratified analyses (ZNF521) but showed stronger association in the validation cohort in

these analyses, and rs352216 near frizzled class receptor 3 (FZD3) was a new mQTL. Factor 3

(SCDA) again had the largest number and strongest mQTL with fourteen SNPs associated

with SCDA levels, with eight SNPs showing more than nominal significance in the validation

cohort (Table 3). SNPs in USP3,HERC1 and OLFM4|SUGT1 (intergenic between olfactomedin

4 and SGT1, suppressor of G2 allele of SKP1 [S. cerevisiae]) had already been identified in

race-stratified analyses; additional mQTL identified in these race meta-analyses included

rs12589750 and rs3853422 (in or near stonin 2 [STON2] and sel-1 suppressor of lin-12-like (C.

elegans) [SEL1L]), rs930491 and rs11827377 (both intergenic between ribonucleotide reduc-

tase M1 [RRM1] and stromal interaction molecule 1 [STIM1]), rs11242866 (between solute

carrier family 22 (organic cation transporter), member 3 [SLC22A23] and PX domain contain-

ing 1 [PXDC1]), and rs4544127 (near FRAS1-related extracellular matrix protein 2 [FREM2]

and stomatin-like protein 3 [STOML3]).

Thus, to summarize, the most robust results overall were for mQTL associated with SCDA

metabolite levels (factor 3) including an mQTL composed of USP3 (rs10450989) and HERC1

(rs2228513); and a locus composed of STON2 (rs12589750) and SEL1L (rs3853422), with loci

meeting genomewide significance in the discovery cohort (p�10−6), strong significance in the

validation cohort (p = 2.4x10-3–7.7x10-7, except rs3853422 which only showed borderline sig-

nificance [p = 0.01]), and stronger association in the meta-analyses (p = 1.6x10-6–7.2x10-12).

The next strongest overall results for SCDA mQTL (based on race-stratified or race-combined

meta-analysis p-values) in descending order of significance were for RRM1|STIM1, OLFM4|

SUGT1, SLC22A23|PXDC1, RSBN1L, FBXO25|ERICH1, and FREM2|STOML3. The next stron-

gest results overall were for mQTL associated with LCDA (factor 2) levels with SNPs in PIGR,

ZNF521, USH2A and FZD3 showing more than nominal significance in the validation cohort.

Finally, mQTL associated with MCA (factor 1) levels included CDK9, DIRC3, CTAGE1|RBBP8,

and PCIF1.

Metabolomic Quantitative Trait Loci in CVD

PLOSGenetics | DOI:10.1371/journal.pgen.1005553 November 5, 2015 4 / 24



Fig 1. Manhattan plots of GWAS results.Displayed are Manhattan plots of the association results for GWAS (discovery cohort, whites only) with (A) factor
1 additive model, (B) factor 1 dominant model, (C) factor 2 additive model, (D) factor 2 dominant model, (E) factor 3 additive model and (F) factor 3 dominant
model.

doi:10.1371/journal.pgen.1005553.g001
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Table 2. Significant mQTL fromGWAS of metabolite factors 1, 2 and 3. Presented are SNPs meeting genomewide significance for association with fac-
tor 1 (MCAmetabolites), factor 2 (LCDAmetabolites) and factor 3 (SCDAmetabolites) in race-stratified analyses in the discovery cohort (p�10−6) also show-
ing nominal association (p�0.05) in the validation cohort, ranked by meta-analysis p-value.

Gene Factor SNP Chr:Pos MAF Model Racea Discovery pb Validation pb Meta pc

HERC1 3 rs2228513 15:63950887 0.05 Add W 2.2x10-6 3.2x10-6 7.9x10-10

HERC1 3 rs2228513 15:63950887 0.05 Dom W 3.2x10-6 1.2x10-3 5.0x10-8

USP3 3 rs10450989 15:63846508 0.05 Add W 2.2x10-6 3.1x10-6 2.3x10-10

USP3 3 rs10450989 15:63846508 0.05 Dom W 3.1x10-6 4.7x10-4 1.6x10-8

PIGR 2 rs12129555 1:207101264 0.03 Add B 2.4x10-7 2.5x10-3 2.1x10-8

PIGR 2 rs12129555 1:207101264 0.03 Dom B 2.4x10-7 1.2x10-3 7.6x10-9

LOC100289596|ZNF521 2 rs4800615 18:22622445 0.03 Add B 1.6x10-9 0.03 3.0x10-8

LOC100289596|ZNF521 2 rs4800615 18:22622445 0.03 Dom B 1.6x10-9 0.04 6.8x10-8

ZNF521 2 rs12965721 18:22648924 0.05 Add B 2x10-8 0.02 8.8x10-8

CDK9 1 rs10987728 9:130553040 0.01 Add W 5.6x10-6 1.2x10-3 7.4x10-8

CDK9 1 rs10987728 9:130553040 0.01 Dom W 5.6x10-6 9.3x10-4 5.7x10-8

USH2A 2 rs17025690 1:216119893 0.04 Add B 7.9x10-7 5.4x10-3 1.4x10-7

RSBN1L 3 rs11771619 7:77403278 0.02 Add B 2.3x10-6 7.6x10-3 4.4x10-7

RPL36AP40 2 rs9633819 11:25529987 0.03 Add B 7x10-7 0.04 2.3x10-6

RPL36AP40 2 rs9633819 11:25529987 0.03 Dom B 7x10-7 0.02 8.6x10-7

NFIA|TM2D1 2 rs17122575 1:62104766 0.06 Add B 2.9x10-7 0.01 2.6x10-7

TNP1|DIRC3 1 rs6738286 2:217994269 0.02 Add W 4.5x10-6 3.5x10-3 2.6x10-7

TNP1|DIRC3 1 rs6738286 2:217994269 0.02 Dom W 4.5x10-6 3.5x10-3 2.6x10-7

FBXO25|ERICH1 3 rs1869075 8:540949 0.10 Add B 3.2x10-6 7.1x10-3 5x10-7

PTPRT 2 rs6016673 20:40693779 0.02 Dom W 8.3x10-8 0.04 7.5x10-7

OLFM4|SUGT1 3 rs17573278 13:53995627 0.05 Add W 4.8x10-7 0.03 1.2x10-6

OLFM4|SUGT1 3 rs9591507 13:53929144 0.05 Add W 5.4x10-7 0.03 1.1x10-6

FER1L6|TMEM65 2 rs7816704 8:125263468 0.08 Add B 6.1x10-7 0.03 1.2x10-6

COL23A1 3 rs17081346 5:177895383 0.01 Add W 2.8x10-7 0.04 1.3x10-6

COL23A1 3 rs17081346 5:177895383 0.01 Dom W 2.8x10-7 0.04 1.3x10-6

COL23A1 3 rs17052428 5:177898958 0.01 Add W 2.8x10-7 0.04 1.3x10-6

COL23A1 3 rs17052428 5:177898958 0.01 Dom W 2.8x10-7 0.04 1.3x10-6

OLFM4|SUGT1 3 rs9285184 13:53977134 0.05 Add W 3.1x10-7 0.04 1.6x10-6

CACNA2D2 1 rs41291734 3:50513613 0.03 Add W 5.8x10-6 0.03 4.7x10-6

CACNA2D2 1 rs41291734 3:50513613 0.03 Dom W 2.5x10-6 0.02 2.2x10-6

PDGFD 2 rs12421553 11:103838440 0.21 Add B 7.5x10-7 0.02 1x10-6

EBF2|PPP2R2A 1 rs2170483 8:26133566 0.04 Add W 2.4x10-6 0.03 3.2x10-6

EBF2|PPP2R2A 1 rs2170483 8:26133566 0.04 Dom W 2.4x10-6 0.03 3.7x10-6

ELF3|GPR37L1 3 rs12139192 1:202003269 0.06 Add B 2.7x10-6 0.04 6.1x10-6

ELF3|GPR37L1 3 rs12139192 1:202003269 0.06 Dom B 2.7x10-6 0.02 1.8x10-6

SFTA1P 2 rs17148556 10:10676274 0.03 Add B 2.3x10-7 0.04 1.1x10-6

SFTA1P 2 rs17148556 10:10676274 0.03 Dom B 2.3x10-7 0.04 1.3x10-6

ZNF267 2 rs4889565 16:31897308 0.04 Dom W 9.1x10-6 0.02 4.3x10-6

MACROD2 2 rs2423983 20:15709520 0.08 Dom W 6.8x10-6 0.03 5.1x10-6

PLA2G4A|FAM5C 3 rs16829453 1:188836078 0.02 Add W 4.2x10-6 0.04 6.4x10-6

PLA2G4A|FAM5C 3 rs16829453 1:188836078 0.02 Dom W 4.3x10-6 0.03 5.5x10-6

MYO16 1 rs6492128 13:109271217 0.01 Add W 6.4x10-6 0.03 5.7x10-6

MYO16 1 rs6492128 13:109271217 0.01 Dom W 6.4x10-6 0.03 5.7x10-6

SLC6A11 1 rs3821754 3:10978825 0.01 Add W 4x10-6 0.04 6.1x10-6

SLC6A11 1 rs3821754 3:10978825 0.01 Dom W 4x10-6 0.04 6.1x10-6

(Continued)
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We have previously shown that all three metabolite factors predict risk of incident CVD

events, however the results from those studies were most robust for the SCDAmetabolites [5].

Given these prior results, and the strength and consistency of findings for the SCDAmetabolite

factor in these GWAS analyses, we chose to focus the remainder of our analyses on this factor.

Fig 2 and S5 Fig display Locus Zoom plots for these eight mQTL most strongly associated with

SCDAmetabolite factor levels. Interestingly, the majority of these (i.e. HERC1, USP3, STIM1,

SUGT1, FBXO25 and SEL1L) encode proteins reporting on endoplasmic reticulum (ER) stress.

SCDAmQTL SNPs also associate with incident cardiovascular events

SCDAmQTL were tested for association with incident CVD events using Cox proportional

hazards time-to-event analyses in the combined discovery and validation datasets, using meta-

analysis of race- and dataset-stratified results, unadjusted for multiple comparisons. Of these

eight mQTL (15 SNPs) loci, four SNPs predicted mortality in additive models: HERC1

rs2228513 (p = 0.05 in race combined, p = 0.04 in whites only), RRM1 rs11826962 (p = 0.03),

and FBOX025 rs1869075 (p = 2.5x10-4 for blacks only, not significant in race combined analy-

ses), with USP3 rs10450989 showing a trend for association (p = 0.06 in race combined,

p = 0.05 in whites only). FREM2|STOML3 rs4544127 showed a trend for association

(p = 0.06). We observed for the HERC1 SNP a 33% event rate for non-carriers and a 36% event

rate for carriers of at least one copy of the minor G allele (the same allele associated with higher

SCDA levels, S3 Table). Adjustment for SCDA levels in these models resulted in attenuation of

the association between mQTL and CVD event (S3 Table), suggesting that the relationship

between these mQTL and CVD events is in part mediated through SCDA metabolite levels.

mQTL SNPs are associated with SCDA independent of risk factors

To ensure that the relationships between SNPs and SCDA levels were not confounded by renal

disease, we further adjusted for glomerular filtration rate. This adjustment caused no or mini-

mal attenuation of the association for our strongest SNPs (S3 Table). In multivariable models,

we found minimal attenuation of the association between most SNPs and SCDA levels (S3

Table), suggesting that these SNPs have effects on SCDA levels unrelated to other comorbidi-

ties. There was attenuation of association of SNPs near RRM1|STIM1 and STON2|SEL1L after

adjustment (although still significant at p<0.05, unadjusted for multiple comparisons), sug-

gesting that these SNPs have effects on SCDA levels mediated through these clinical factors, in

particular renal disease.

Table 2. (Continued)

Gene Factor SNP Chr:Pos MAF Model Racea Discovery pb Validation pb Meta pc

OLFM4|SUGT1 3 rs894840 13:53973955 0.09 Add W 8.7x10-6 0.03 8.4x10-6

LOC100289576|GPRC5C 1 rs8071255 17:72429618 0.01 Add W 7.2x10-6 0.04 1.1x10-5

LOC100289576|GPRC5C 1 rs8071255 17:72429618 0.01 Dom W 7.2x10-6 0.04 1.1x10-5

SPATA8|LOC91948 1 rs1500631 15:98079217 0.01 Add W 7.8x10-6 0.05 1.4x10-5

SPATA8|LOC91948 1 rs1500631 15:98079217 0.01 Dom W 7.8x10-6 0.05 1.4x10-5

MAF: Minor allele frequency; Add: additive; Dom: dominant.
aB: black, W: white
bsex, age and race-specific PC adjusted (4 PCs for whites, 2 PCs for blacks).
cmeta-analysis combining discovery and validation cohorts, for race-stratified analyses, adjusted for sex, age and race-specific PCs.

doi:10.1371/journal.pgen.1005553.t002

Metabolomic Quantitative Trait Loci in CVD

PLOSGenetics | DOI:10.1371/journal.pgen.1005553 November 5, 2015 7 / 24



Table 3. Significant mQTL for GWAS of metabolite factors, race meta-analyses. Presented are SNPs meeting genomewide significance for association
with factor 1 (MCAmetabolites), factor 2 (LCDAmetabolites) and factor 3 (SCDAmetabolites) in race-combined meta-analyses in the discovery cohort
(p�10−6) also showing nominal association (p�0.05) in the validation cohort, ranked by meta-analysis p-value.

Gene Factor SNP Chr:Position MAF Wa MAF Ba MAF Oa Model Disc pb Valid pb Meta pc

STON2 3 rs12589750 14:81891157 0.001 0.10 0.02 Add 2.0x10-6 7.7x10-7 7.2x10-12

STON2 3 rs12589750 14:81891157 0.001 0.10 0.02 Dom 1.5x10-6 3.5x10-5 3.3x10-10

SULF2|PREX1 3 rs1886848 20:46695252 0 0.05 0.01 Add 9.9x10-12 0.02 1.2x10-10

ZNF521 2 rs12965721 18:22648924 0.16 0.05 0.14 Add 8.5x10-6 1.7x10-5 7.7x10-10

RRM1|STIM1 3 rs930491 11:4199848 0.0004 0.07 0.02 Add 3.1x10-8 2.0x10-3 2.2x10-9

RRM1|STIM1 3 rs930491 11:4199848 0.0004 0.07 0.02 Dom 6.8x10-6 8.2x10-4 4.1x10-8

RRM1|STIM1 3 rs11827377 11:4200685 0.0004 0.07 0.02 Add 3.1x10-8 2.4x10-3 2.7x10-9

RRM1|STIM1 3 rs11827377 11:4200685 0.0004 0.07 0.02 Dom 3.1x10-8 1.0x10-3 5.2x10-8

USP3 3 rs10450989 15:63846508 0.05 0.004 0.02 Add 5.0x10-6 4.9x10-5 1.5x10-9

USP3 3 rs10450989 15:63846508 0.05 0.004 0.02 Dom 6.9x10-6 1.1x10-3 7.0x10-8

HERC1 3 rs2228513 15:63950887 0.05 0.004 0.02 Add 5.0x10-6 1.3x10-4 4.5x10-9

HERC1 3 rs2228513 15:63950887 0.05 0.004 0.02 Dom 6.8x10-6 2.4x10-3 1.9x10-7

ZNF521 2 rs4800615 18:22622445 0.12 0.03 0.12 Add 1.5x10-7 3.1x10-4 8.8x10-10

ZNF521 2 rs4800615 18:22622445 0.12 0.03 0.12 Dom 1.3x10-6 8.0x10-4 1.4x10-8

LIN7A 1 rs11114645 12:81280092 0.02 0.08 0.04 Add 3.6x10-9 0.01 8.9x10-9

RRM1|STIM1 3 rs11826962 11:4200923 0.0002 0.05 0.01 Add 2.4x10-8 0.02 4.7x10-8

RRM1|STIM1 3 rs11826962 11:4200923 0.0002 0.05 0.01 Dom 5.5x10-6 0.02 1.8x10-6

LIN7A 1 rs12304000 12:81282585 0.02 0.14 0.04 Add 1.1x10-8 0.02 5.3x10-8

CDK9 1 rs10987728 9:130553040 0.01 0.00 0.01 Add 5.6x10-6 1.2x10-3 7.4x10-8

CDK9 1 rs10987728 9:130553040 0.01 0.00 0.01 Dom 5.6x10-6 9.3x10-4 5.7x10-8

OLFM4|SUGT1 3 rs9591507 13:53929144 0.05 0.12 0.04 Add 4.3x10-7 6.4x10-3 1.0x10-7

SLC22A23|PXDC1 3 rs11242866 6:3593956 0.001 0.06 0.02 Dom 3.0x10-6 3.6x10-3 1.3x10-7

CADM2|VGLL3 3 rs6796873 3:86168194 0.002 0.23 0.05 Add 1.8x10-6 0.01 3.7x10-7

AFAP1L2 1 rs493347 10:116133734 0.009 0.28 0.08 Dom 6.7x10-6 0.02 5.0x10-7

STON2|SEL1L 3 rs3853422 14:81900169 0.001 0.04 0.0009 Add 7.6x10-6 0.01 6.3x10-7

STON2|SEL1L 3 rs3853422 14:81900169 0.001 0.04 0.0009 Dom 7.6x10-6 0.02 1.6x10-6

RAMP1 3 rs3769047 2:238769892 0.003 0.02 0.04 Add 6.8x10-6 0.04 6.4x10-6

RAMP1 3 rs3769047 2:238769892 0.003 0.02 0.04 Dom 2x10-7 0.04 6.6x10-7

FZD3 2 rs352216 8:28426891 0.001 0.08 0.02 Add 9.4x10-6 0.01 1.2x10-6

FZD3 2 rs352216 8:28426891 0.001 0.08 0.02 Dom 6.1x10-6 4.2x10-3 2.8x10-7

PCIF1 1 rs16990949 20:44575493 0.04 0.07 0.03 Add 5.6x10-6 0.01 1.3x10-6

PCIF1 1 rs16990949 20:44575493 0.04 0.07 0.03 Dom 3.6x10-6 7.3x10-3 5.1x10-7

FREM2|STOML3 3 rs4544127 13:39538666 0.006 0.12 0.03 Dom 6.5x10-6 8.7x10-3 7.3x10-7

CTAGE1|RBBP8 1 rs543129 18:20057092 0.02 0.20 0.11 Add 7.1x10-6 4.9x10-3 4.8x10-7

CTAGE1|RBBP8 1 rs543129 18:20057092 0.02 0.20 0.11 Dom 5.8x10-6 0.02 2x10-6

FLJ40606|PCIF1 1 rs8114598 20:44562900 0.04 0.07 0.03 Add 5.7x10-6 0.02 2.9x10-6

FLJ40606|PCIF1 1 rs8114598 20:44562900 0.04 0.07 0.03 Dom 3.6x10-6 0.01 1.2x10-6

PLTP|FLJ40606 1 rs16990934 20:44553194 0.04 0.07 0.03 Add 1.7x10-6 0.02 1.2x10-6

PLTP|FLJ40606 1 rs16990934 20:44553194 0.04 0.07 0.03 Dom 1.0x10-6 0.01 4.7x10-7

GATA3|SFTA1P 1 rs7908673 10:8786636 0.13 0.41 0.14 Add 2.1x10-6 0.03 2.3x10-6

LOC151121|LOC389033 2 rs2165440 2:130007996 0.03 0.13 0.09 Add 4.6x10-7 0.03 1.2x10-6

C14orf105 3 rs10139566 14:57960474 0.01 0.14 0.05 Dom 6.3x10-6 0.02 2.2x10-6

GATA3|SFTA1P 1 rs7908673 10:8786636 0.13 0.41 0.14 Add 2.1x10-6 0.03 2.3x10-6

NFIA|TM2D1 2 rs17122575 1:62104766 0.003 0.06 0.02 Add 2.9x10-7 0.05 5.1x10-6

ZFAT|LOC286094 2 rs7820325 8:135969632 0.30 0.22 0.30 Add 6.9x10-6 0.03 6.0x10-6

(Continued)
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Methylation in ER stress genes is different in individuals with extremes of
SCDAmetabolites

Visual comparison of the distribution of methylated probes revealed similar distributions in

individuals with high and low SCDA levels (N = 46, combined methylation discovery and vali-

dation datasets, S6 Fig). After filtering based on Δβ values, the presence of multiple correlated

probes in a gene, and adjustment for estimated cell type proportions, sex, age and race, probes

in 28 genes showed differential methylation in SCDA extremes (i.e. |Δβ|�0.10 in�2 probes

within a gene). Differential methylation in three of these genes was confirmed in the validation

set based on |Δβ|�0.10 (BRSK2,Hook2 and LMTK3, Table 4). Two of these genes, including

the most significant one, report on ER stress: Hook2 (four probes, Δβ 0.25–0.30) and BRSK2

(four probes, Δβ 0.11–0.20). Hook2may be involved in pathways contributing to the ubiquitin

proteasome system (UPS) arm of ER stress via its role in establishment and maintenance of

pericentrosomal localization of aggresomes (complexes of misfolded proteins, chaperones and

proteasomes) [8]. BRSK2 encodes brain selective kinase 2, a serine/threonine kinase of the

AMPK family that acts as a checkpoint kinase in response to DNA damage induced by UV

irradiation. BRSK2 protein levels are down-regulated in response to ER stress and ER stress

promotes localization of BRSK2 to the ER [9]. Knockdown of endogenous BRSK2 expression

enhances ER stress-mediated apoptosis in human pancreatic carcinoma and HeLa cells [9].

Expression quantitative trait loci (eQTL) analyses also implicate the
ubiquitin proteasome arm of ER stress

Blood RNA microarray data were generated for N = 1204 CATHGEN individuals. We began

by examining cis effects for the identified SNPs; however, many of the top SNPs did not have

available cis-transcripts after extensive QC. Rs9591507,rs17573278, rs894840, and rs9285184

(all in OLFM4|SUGT1), rs11771619 (RSBN1L), rs1869075 (FBXO25), and rs1886848 (SULF2)

showed evidence of cis-regulation (S4 Table). HERC1 and USP3 are not well-represented on

the microarray (one probe per gene); there was only a minimal trend toward association

between the HERC1 and USP3 SNPs withHERC1 expression (p = 0.16 and 0.19, respectively)

and no association with the USP3 transcript.

We then performed eQTL analyses to find evidence of trans-acting pathways (S4 Table).

When analyzed as single transcripts, among the top ten transcripts associated with HERC1

rs2228513 and USP3 rs10450989 were USP39 (p = 0.0002 and p = 0.0004, respectively) and

CYLD (p = 0.00015 and p = 0.0007), suggesting that these SNPs show functional relationships

with expression of trans-acting pathways related to the UPS arm of ER stress. USP39 has a role

in pre-mRNA splicing and is essential for recruitment of the U4/U6.U5 tri-snRNP to the pre-

spliceosome. The tumor suppressor CYLD is a deubiquitinating enzyme, acts as a negative

Table 3. (Continued)

Gene Factor SNP Chr:Position MAF Wa MAF Ba MAF Oa Model Disc pb Valid pb Meta pc

SLC35B1 1 rs8186 17:47778793 0.04 0.15 0.05 Add 5.1x10-6 0.04 8.2x10-6

LOC100289139|LRRC4C 2 rs12270585 11:39882450 0.0004 0.10 0.02 Dom 7.0x10-6 0.05 0.13

C18orf20|CDH7 2 rs1787927 18:62587346 0.002 0.10 0.05 Add 1.1x10-6 0.02 0.16

MAF: minor allele frequency; Add: additive model; Dom: dominant model.
aW: white, B: black, O: other race
brace-stratified results sex, age and race-appropriate PC adjusted, and then combined using meta-analysis.
cmeta-analysis combining discovery and validation cohorts, race-stratified results combined.

doi:10.1371/journal.pgen.1005553.t003
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regulator of NF-kappa-B signaling, and plays a pro-inflammatory role in vascular smooth mus-

cle cells [10]. Cis- and trans-eQTL analyses were not adjusted for multiple comparisons, as we

were looking for focused functional effects for each SNP.

Using GSEA [11], we then identified KEGG pathways of transcripts associated with each

SNP; nominal p-values are reported. The most significant pathway associated withHERC1

rs2228513 was “ubiquitin mediated proteolysis” (p = 0.01; p = 0.12 for USP3 rs10450989). The

Fig 2. Genomic region plots for significant mQTL associated with SCDA levels. Displayed are LocusZoom plots with -log10(p-value) (left Y-axis) and
LD (right Y-axis), additive model, discovery cohort: (A) USP3|HERC1, whites only; (B) STON2|SEL1L, race meta-analysis; (C) RRM1|STIM1, race meta-
analysis; (D)OLFM4|SUGT1, whites only.

doi:10.1371/journal.pgen.1005553.g002
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most significant pathway for rs10450989 was “RNA degradation” (p = 0.03). Pathways associ-

ating with the other SNPs reported on various cellular processes: rs930491 and rs11827377

(RRM1|STIM1) with RNA polymerase pathway (both p = 0.001); rs11826962 (RRM1|STIM1)

with JAK-STAT signaling pathway (p<0.0002); rs17573278 (OLFM4|SUGT1) with Alzhei-

mer’s disease pathway (p = 0.008); rs894840 (OLFM4|SUGT1) with glycosaminoglycan biosyn-

thesis (p<0.0002); rs12589750 and rs3853422 (STON2|SEL1L) with ribosome pathway

(p<0.0001 and p = 0.001, respectively) and FC Gamma R mediated phagocytosis pathway

(p = 0.001 for both). The Alzheimer’s disease pathway includes components of ER stress and

there is evidence that neuronal death in Alzheimer’s disease may arise from ER dysfunction.

The ER is also thought to play an important structural role in phagocytosis.

Finally, we performed GSEA for the correlation between SCDA levels with genomewide

RNA expression; nominal p-values are reported. The most significant KEGG pathways were

oxidative phosphorylation (p<0.0002), Parkinson’s disease (p<0.0002), cardiac muscle con-

traction (p<0.0002), porphyrin and chlorophyll metabolism (p = 0.002), and the proteasome

pathway (p = 0.008). The proteasome is an integral component of the UPS arm of ER stress,

degrading cellular proteins that are modified by ubiquitin. Also, an integral part of the Parkin-

son’s disease pathway includes components of the UPS.

Biochemical characterization of SCDAmetabolites

In this and prior studies [4–6], SCDA were measured using a flow-injection-MS/MS method

that is ideal for rapid profiling of samples, but full resolution of isomeric species comprising

each SCDAmetabolite peak is not achieved. C6-DC represents a SCDA that loads heavily on

the PCA-derived SCDA factor in our studies, which can be comprised of either the branched-

chain methylglutaryl acylcarnitine or the straight chain adipoyl acylcarnitine isomers. To

resolve these metabolites, we adapted a liquid chromatography (LC)-MS/MS method [12].

Peak identification was facilitated by in-house chemical synthesis of internal standards for the

two targeted analytes [13]. Using this method, we re-analyzed 29 human plasma samples from

our original studies [5] that contained the highest C6-DC levels. We found that in the majority

of individuals (19 of 29), the clearly predominant C6-DC isomer was the branched-chain

3-methylglutaryl carnitine metabolite, and in in 23 of the 29 individuals levels of the branched

chain isomer were higher than the straight chain isomer (S7 Fig). The correlation between the

C6-DC measured by flow injection-MS/MS with each of these LC-MS/MS measured isomers

further confirms that it is primarily the branched-chain isomer accounting for the signal (r2 =

-0.06, p = 0.8 for straight chain isomer; r2 = 0.67, p = 1.8x10-4 for branched-chain isomer).

Table 4. Whole genomemethylation profiling. Genes showing highest degree of differential methylation between individuals with high and low SCDA lev-
els with |Δβ|>0.10 in the discovery and validation datasets.

Gene Chromosome (bp location) No. Probesa Δβb Lowest p-value model 1c Lowest p-value model 2d

BRSK2 11 (1411129..1483919) 8 0.11–0.20 2x10-3 7x10-4

HOOK2 19 (12873817..12886434) 4 0.25–0.30 6x10-3 0.10

LMTK3 19 (49000897..49002338) 3 0.10–0.12 0.07 0.20

anumber of differentially methylated probes within gene
bmethylated (M) and unmethylated (U) signal intensities and overall methylation levels (β) were calculated as the ratio of methylated to total signal (i.e. β =

M / (M + U)) where β ranges from 0 (unmethylated) to 1 (methylated). Δβ was calculated for the difference in overall methylation levels between high and

low SCDA level individuals.
cnominal p-value, unadjusted for multiple comparisons; adjusted for estimated cell proportions.
dnominal p-value, unadjusted for multiple comparisons; adjusted for estimated cell proportions, age, race and sex.

doi:10.1371/journal.pgen.1005553.t004
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Interestingly, one potential source of the branched-chain 3-methylglutaryl carnitine metabolite

is the branched-chain amino acid leucine. Our previous studies have shown an association of

branched-chain amino acid metabolites with coronary artery disease [4, 7].

ER stress markers increase in conjunction with SCDAmetabolites in
cultured cells

The above findings linking ER stress to SCDA metabolites led us to question whether nutrient-

induced accumulation of dicarboxylacylcarnitines would be accompanied by ER stress in cul-

tured cells. Exposure of human HEK293 kidney cells to 500 uM fatty acids for 24 hours (a con-

dition designed to mimic elevated fatty acid levels observed in human obesity) increased

cellular production and efflux of several long, medium and short-chain dicarboxylacylcarni-

tines (Fig 3A and 3B). Interestingly, fatty acid-induced production of dicarboxylacylcarnitines

was accompanied by elevated expression of the molecular chaperone protein BiP (Fig 3C), a

well-recognized marker of ER stress. At low doses of the ER stress agent tunicamycin (lower

than required to cause cytotoxicity), fatty acid exposure also augmented BiP expression (Fig

3C). Together, these results point to an intriguing connection between cellular carbon load,

dicarboxylic acylcarnitines and proteotoxicity.

Discussion

We have analyzed metabolomics, genetics, epigenetics and transcriptomics together to estab-

lish genomewide associations between a cluster of SCDA metabolites that predict CVD events

and specific genetic loci. Our findings implicate the UPS arm of ER stress as a factor influenc-

ing SCDA levels and CVD event pathogenesis. Several previous studies have successfully

mapped metabolites to genetic loci [2], but primarily have not triangulated such genetic varia-

tion with disease endpoints and functional studies. Key findings of the current study include:

(1) SNPs and CpG probes in genes reporting on components of ER stress were associated with

levels of SCDA metabolites previously shown to predict CVD events [3–5]; (2) several of these

SNPs themselves also predicted CVD events; (3) some of the SNPs/genes were linked with

SCDAmetabolites and ER stress through eQTL analyses; (4) the isomeric composition of the

peak containing the major SCDAmetabolite C6-DC was clarified; and (5) in cultured cells,

nutrient-induced accumulation of SCDA metabolites occurred in parallel with increases in the

ER stress marker BiP. Subjects in the CATHGEN cohort have a high prevalence of obesity,

hyperlipidemia and diabetes (Table 1). Thus, our in vitro experiment may be viewed as a

mimetic of the metabolic environment to which CATHGEN subjects are commonly exposed.

Our strongest finding was for two SNPs (HERC1 rs2228513 and USP3 rs10450989) that are

in LD (r2 = 0.99) despite being separated by 104 kB. Rs2228513 is a missense variant (serine to

phenylalanine) that is predicted to be “probably damaging” by PolyPhen, but no functional

evaluation has been reported. Rs10450989 is an intronic SNP. The HERC gene family encodes

a group of large proteins that contain multiple structural domains including a C-terminal

HECT domain found in a number of E3 ubiquitin protein ligases. HERC1 is involved in mem-

brane trafficking and may also act as an E3 ubiquitin-protein ligase, a protein that accepts ubi-

quitin from an E2 ubiquitin-conjugating enzyme and then directly transfers the ubiquitin to

targeted substrates. Rs2228513 corresponds to residue 3152, which does not map to a specific

domain in the protein. Our eQTL results suggest that this SNP is associated with differential

expression of genes within a pathway reporting on the UPS. USP3 encodes ubiquitin-specific

protease 3 which mediates release of ubiquitin from degraded proteins by disassembly of the

polyubiquitin chains in the ER. Deubiquitination has been implicated in cell cycle regulation,

proteasome-dependent protein degradation, and DNA repair [14]. Interestingly, an intergenic
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SNP 58 kB upstream from USP3 (rs10519210) was the strongest SNP associated with heart fail-

ure in a GWAS from the CHARGE consortium [15]. Rs10519210 not associated with SCDA

levels in our study (p = 0.16) and is not in LD with rs10450989 (r2 = 0.002). Our next strongest

finding was for a locus in/near STON2 and SEL1L. Rs12589750 is an intronic SNP within

STON2 and rs3853422 is intergenic between STON2 and SEL1L. SEL1L plays a role in the ER-

Fig 3. Dicarboxylic (DC) acylcarnitines measured in HEK 293 cell lysates (A) and conditioned medium (B)
after 24 h exposure to BSA alone or in complex with 500 uM fatty acids (FA, oleate:palmitate, 1:1). C)
Representative Western blot analysis of the ER stress protein, BiP, in HEK 293 cells treated 24 h with 500 uM
FA ± increasing doses of tunicamycin (NT; no treatment, Vehicle (DMSO), 8 ng/mL and 32 ng/mL
tunicamycin). High dose tunicamycin (500 ng/mL) served as a positive control. Asterisks indicate significant
difference between BSA and FA experiments (p<0.05).

doi:10.1371/journal.pgen.1005553.g003
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associated protein degradation (ERAD) machinery, and is part of a complex necessary for the

retrotranslocation of misfolded proteins from the ER lumen to the cytosol where they are then

degraded by the proteasome in a ubiquitin-dependent manner. Dysfunctional protein degrada-

tion causes ER stress.

Other mQTL included SNPs near RRM1 and STIM1; STIM1 encodes a calcium sensor in

the ER that translocates to the plasma membrane upon calcium store depletion to activate cal-

cium release-activated calcium channels. STIM1 induction, redistribution and clustering are

important during ER stress when calcium stores are depleted [16]. FBXO25 is one of 68 human

F-box proteins that serve as specificity factors for a complex composed of s-phase-kinase asso-

ciated protein 1 (Skp1) and cullin1 (SCF), that act as protein-ubiquitin ligases, targeting pro-

teins for destruction across the UPS. FBXO25 is cardiac specific and acts as a ubiquitin E3

ligase for cardiac transcription factors [17]. Rs17573278 and rs9591507 are intergenic SNPs

>400 kB downstream from OLFM4 and SUGT1. SUGT1 is required cell cycle transitions and

encodes a novel subunit of the SCF ubiquitin ligase complex [18]. OLFM4 encodes an anti-apo-

ptotic protein that promotes tumor growth. The functions of the other SCDAmQTL loci are

unclear.

Given the strength of association of SCDAmetabolites (factor 3) with CVD and their partic-

ular strength of association in the current GWAS analyses, we chose to focus our subsequent

analyses on SCDA. However, we did also identify mQTL for LCDA and MCA, both of which

have also been shown to predict CVD events. LCDA are metabolic intermediates of long chain

fatty acid oxidation in the mitochondria or peroxisomes. The most significant mQTL for

LCDAmetabolite levels included PIGR, USH2a, ZNF521 and FZD3. PIGR is a member of the

immunoglobulin superfamily and ZNF521 is involved in regulation of early B-cell factor, sug-

gesting a potential relationship between LCDA levels and immune and/or inflammatory path-

ways as a link to CVD. MCA are byproducts of mitochondrial fatty acid oxidation. The most

significant mQTL for MCA show no obvious potential biologic relationship to mitochondrial

function and/or CVD. More epidemiologic and functional work is necessary to clarify these

links.

Importantly, and unique to this study, we have observed an association of mQTL and dis-

ease phenotypes. The SNPs most significantly associated with SCDA levels (HERC1 and USP3)

were also associated with CVD events, with a consistent direction of effect (G allele associating

with higher SCDA levels and events). STIM1|SEL1L SNPS were not associated with CVD

events despite their strong association with SCDA levels; this may be due to limited power

related to the low MAF in racial subsets. Adjustment for SCDA levels in these models resulted

in attenuation of the association between SNP and CVD event suggesting that the relationship

between underlying mQTL and CVD events is in part or in full mediated through SCDA

metabolites and not through a different biological pathway. In combination, these results sug-

gest potential functional and pathway relationships between SCDAmetabolites and CVD

events.

We also integrated transcriptomics and whole genome methylation with SNP and metabo-

lomic data sets. eQTL identified ER stress pathways, and specifically those reporting on the ubi-

quitin proteasome pathway, as associated with the SNPs linked to SCDA via GWAS, and with

SCDAmetabolites themselves. Whole genome methylation identified epigenetic regulation of

genes in ER stress pathways to be associated with extreme SCDA levels. These results support

the concept that these polymorphisms and ER stress underlie the relation between SCDA

metabolites and CVD events. Finally, we clarified the biochemical structure of the metabolite

most strongly accounting for the C6-DC SCDA peak; these results will enable more accurate

identification of the source pathways for C6-DC and other SCDA in future studies.
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Many SCDAs result from the catabolism of amino acids, ω-oxidation of fatty acids or per-

haps represent products of microbial metabolism [19], but the reasons for their accumulation

in plasma in at-risk subjects, and how they may be related to CVD pathogenesis remain uncer-

tain. Based on the convergence of GWAS, transcriptomic, metabolomic and functional data

presented herein, we hypothesize that genetic and epigenetic variation predisposes to increased

susceptibility to ER stress through proteasome dysfunction (reflected by the observation of

upregulation of expression of ER stress genes), with ER stress in turn contributing to increased

production of SCDA metabolites. This pathway of increased ER stress then leads to increased

risk of CVD events, with SCDA metabolites and the genetic variants themselves predicting

increased risk by reporting on this pathway (Fig 4). Epigenetic variation could be the influence

of environmental or lifestyle factors inducing methylation changes; in this working model, diet

and lifestyle-induced dyslipidemia and hyperglycemia could result in methylation changes as a

regulatory mechanism to handle nutrient overload, thus predisposing to dysregulated ER stress

which then leads to subsequent CVD events.

The UPS arm of the ER is responsible for the removal of misfolded proteins but is some-

times insufficient, for example, in the setting of increased production of misfolded proteins.

Fig 4. Representation of metabolomics, GWAS, eQTL, andmethylation leading to convergence on ER stress as a pathway for CVD event
pathogenesis.

doi:10.1371/journal.pgen.1005553.g004
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The associated proteasome functional insufficiency can lead to cellular dysfunction and cell

death, with cardiomyocytes being particularly vulnerable due to limited regenerative capability

[20]. The UPS has been hypothesized to be involved in atherosclerosis based on the recognized

roles of inflammation, oxidative stress, and endothelial dysfunction in this condition, and the

intertwined relationships between the UPS and those pathways [21]. Preclinical evidence of the

role of the UPS in atherosclerosis includes studies showing that oxidized LDL inhibits protea-

somal activity in macrophages leading to apoptosis [22], and data suggesting that the UPS may

contribute to foam cell formation by suppression of apoptosis of lipid-bearing macrophages by

aggregated LDL in in vitromodels [23]. Studies of proteasome inhibition have shown conflict-

ing data; Hermann et al. found aggravation of atherosclerosis [24] and myocardial dysfunction

[25] in pigs treated with proteasome inhibition, whereas a recent study showed reversal of ure-

mia-induced atherosclerosis with proteasome inhibition in rabbits [26].

Human studies suggesting the role of the UPS in atherosclerosis are limited. Very small

studies have shown greater amounts of ubiquitin conjugates in carotid endarterectomy tissues

with unstable as compared with stable plaque morphologies [27] and increased UPS activity in

carotid tissue from patients with symptomatic compared with asymptomatic carotid disease

[28]. While preclinical studies have suggested the role of UPS in atherosclerosis as secondary to

oxidative stress or other pathophysiologies, our identification of genetic variants in UPS/ER

stress genes using unbiased analyses in our human cohorts provides strong support for the

direct etiologic role of the UPS in promoting long-term cardiovascular risk. Importantly, we

note that while ER stress is a common pathway in several disorders, we believe that the conver-

gence of results on the UPS highlights its unique relationship to SCDA metabolism.

Our findings could have significant translational implications beyond CVD. Our primary

objective of discovery of novel genetic risk variants using an mQTL approach was successful;

the unexpected finding of genetic variation predisposing to ER stress could have much broader

importance to human disease. Indeed, the response to ER stress is a trait that is known to be

heritable in humans [29], but the genetic architecture has not been characterized. Equally as

important, our data suggest the presence of easily quantifiable circulating biomarkers of ER

stress, traditionally measureable only in tissue through ER stress-responsive gene expression

studies. Thus, these results could have more wide-reaching implications for ER stress research

in humans. Our prior work solidified the role of SCDA metabolites as predictors of CVD

events [4, 5]; the current study has implications for clinical translation using SCDAmetabolites

for improved risk stratification even beyond CVD given the central role of normal and dys-

functional ER stress in health and disease.

The strengths of this study are the use of a priori defined discovery and validation cohorts;

integration of genetics, epigenetics, metabolomics, transcriptomics in large cohorts; and careful

biochemical refinement of the most strongly associated SCDAmetabolite. Importantly, this

represents one of the first studies to successfully identify genetic variants through mapping of

intermediate metabolomic traits that themselves associate with disease endpoints. Our prior

work had consistently identified SCDA metabolites as incremental predictors of CVD events,

but little was known about the biological pathways underlying that association; the genome-

wide, multiple platform molecular approach taken in our study facilitated identification of the

UPS more rapidly than other scientific methods. This work also adds an important finding to

the metabolomics literature, namely that SCDA metabolites may be reporting on increased or

dysregulated ER stress and specifically to proteasome functional insufficiency or dysregulation.

There are limitations to the study; the study population was comprised of individuals

referred due to a suspicion of CVD and thus represents a disease-prone population. However,

we note that 44% of study participants did not have significant coronary artery disease,

highlighting the importance of the detailed angiographic phenotype to ensure that coronary
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artery disease is not confounding the relationship between genetic factors and outcome. Fur-

ther, the high burden of CVD risk factors mirrors that of the general population, enabling gen-

eralizability of the study findings. Some of the results were isolated to a racial subset because

the identified SNPs were either monomorphic or extremely rare in other races, underscoring

the potential importance of including non-Caucasian races in such studies. Race-stratified

sequencing of these genomic regions may identify different variants in these genes present in

other races that may also serve as SCDA and CVD genetic variants. We a priori chose a p-value

�10−6 as genomewide significant based on the commonly used threshold at the time we

embarked on this study, and as a balance between the overly conservative Bonferroni correc-

tion and presence of linkage disequilibrium across the genome. More contemporary GWAS

platforms cover a greater number of SNPs and include imputed SNPs in analysis, thus p<10−8

is now often considered genomewide significant; most of the key SNPs in this study would

meet that threshold in combined meta-analyses, but not in the discovery cohort alone. The sig-

nificance level also did not account for testing of two genetic models and for race-stratified

analyses, however, most of the identified mQTLs would remain significant even after account-

ing for such multiple testing (p<3.0x10-7). More importantly, the use of a validation cohort

and convergence of diverse omic’ data on the UPS obviate concerns about type I error with the

threshold used for this study. Finally, while our study overall analyzed metabolomics with

genetics, epigenetics and transcriptomics, not all individuals were profiled with all platforms,

such that we co-analyzed genetic, epigenetic and transcriptomic data with metabolomics data

one pair at a time. The ultimate goal for an eventual true systems biology approach would inte-

grate all molecular platforms to unravel molecular pathways. However, to our knowledge this

is the largest study deploying four diverse platforms in conjunction with cardiovascular event

outcomes to date, and our consistent findings across platforms support further mechanistic

interrogation of the identified pathway.

Our results highlight the power of combined molecular analyses and mapping of intermedi-

ate disease-related biomarkers for identifying the genetic architecture underlying common

complex diseases, and could lead to improved CVD event risk prediction models as well as fur-

ther mechanistic investigations of the role of the ubiquitin proteasome system in CVD.

Materials and Methods

Study design

The overall objective of this study was to integrate metabolomic, genetic (genomewide associa-

tion study [GWAS]), transcriptomics and epigenetic data in a large human cohort to identify

the genetic architecture regulating metabolite levels (metabolites shown to be incrementally

predictive of CVD events [4, 5]) and thereby identify novel CVD risk genes. The analytic pro-

cess was as follows (S1 Fig): (1) a GWAS was conducted of metabolite factor levels in a discov-

ery cohort (N = 1490) individuals from the CATHGEN biorepository; (2) SNPs meeting

genomewide significance from the discovery cohort were validated in a second cohort

(N = 2022) CATHGEN subjects; (3) to identify potential epigenetic variation regulating SCDA

metabolite levels (factor 3), analyses of whole genome methylation profiling of CATHGEN

individuals with extremes of SCDA metabolite levels was performed (N = 46); (4) to elucidate

potential downstream biological pathways, these validated GWAS SNPs were then tested for

association using genomewide transcriptomic data (i.e., eQTL, N = 1204 CATHGEN individu-

als); similar analyses were conducted using SCDA metabolite levels and transcriptomic data.

These analyses identified the UPS arm of ER stress and functional in vitro studies of that path-

way were then conducted.
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Study population

Individuals were selected from the CATHGEN biorepository of patients referred for evaluation

of ischemic heart disease recruited sequentially through the cardiac catheterization laboratories

at Duke University (Durham, NC) [30]. After informed consent, blood was obtained from the

femoral artery, immediately processed to separate plasma, and frozen at -80°C. Individuals

were fasting for a minimum of six hours prior to collection. Patients with severe pulmonary

hypertension or transplant were excluded. The discovery cohort for mQTL GWAS analysis of

metabolite levels consisted of a coronary artery disease (CAD) case-control sample; CAD cases

were defined as having one to three coronary arteries with clinically significant stenosis (i.e.

>50%). Controls were defined as not having clinically significant CAD (i.e. zero coronary

arteries with>50% stenosis) and being free of cardiovascular disease, peripheral vascular dis-

ease and with a normal ejection fraction (LVEF>40%), and were matched to cases on age, race

and sex (745 cases and 745 matched controls). This CAD definition was also used as a covari-

able in multivariable models assessing the association between mQTL and metabolite levels. To

ensure generalizability of the mQTL results, the validation cohort for the metabolite GWAS

consisted of a sequential cohort of 2022 CATHGEN individuals [30], and was not constrained

on CAD or other status. Significant mQTL were tested for association with incident CVD

events (death at any time during follow-up). All CATHGEN participants provided informed,

written consent for participation in the CATHGEN biorepository at the time of enrollment.

The Duke Institutional Review Board (IRB) approved the CATHGEN biorepository and this

substudy.

GWAS genotyping

The Illumina Human Omni1-Quad Infinium Bead Chip (Illumina, San Diego, CA, USA) was

used for genotyping in both the discovery and validation cohorts following the manufacturer’s

protocol using 200 nanograms of DNA. Quantification of DNA samples prior to genotyping

was performed using the Quant-iT PicoGreen dsDNA reagent in a 96-well plate format (Life

Technologies, Grand Island, NY, USA). DNA quality was assessed using gel electrophoresis.

All samples were scored on a zero to five scale and samples with a score<3 were not further

used. Briefly, the samples were denatured and amplified overnight, followed by fragmentation,

precipitation and resuspension. DNA was then hybridized to the Illumina BeadChip for 16–24

hours, washed to remove unhybridized DNA, and then labeled with nucleotides to extend the

primers to the DNA sample. After the genotyping protocol, BeadChips were imaged using the

Illumina iScan system. Genotypes were called using Illumina’s GenomeStudio V2010.2 soft-

ware (version 1.7.4 Genotyping module). Any SNPs with<98% call frequency, minor allele fre-

quency (MAF)<0.01 in all races, or out of Hardy-Weinberg equilibrium (p<10−6) were

excluded, resulting in the following number of autosomal SNPs for analysis: 785,945 in whites;

881,891 in blacks; and 871,209 in the “other” race (primarily Native American). Samples with

<98% call rates for all SNPs, gender mismatches, cryptic relatedness, or with outlying ethnicity

(as determined by multidimensional scaling plots of a linkage disequilibrium-pruned set of

SNPs) were excluded (172 samples).

Metabolomic profiling

Quantitative determination of levels of 63 metabolites (45 acylcarnitines, 15 amino acids, total

ketones, β-hydroxybutyrate, and total non-esterified fatty acids [NEFA]) was performed in

N = 3512 individuals from the CATHGEN study (N = 1490 for discovery cohort, N = 2022 for

validation cohort), using methods as we have done previously [4–6]. Ketones (total and β-

hydroxybutyrate) and NEFA were measured on a Beckman-Coulter DxC600 clinical chemistry
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analyzer, using reagents fromWako (Richmond, VA). For MS-profiled metabolites (acylcarni-

tines, amino acids), proteins were first removed by precipitation with methanol. Aliquoted

supernatants were dried, and then esterified with hot, acidic methanol (acylcarnitines) or n-

butanol (amino acids). Analysis was done using tandem flow injection MS with a Quattro

Micro instrument (Waters Corporation, Milford, MA). Quantification of the “targeted” inter-

mediary metabolites was facilitated by addition of mixtures of known quantities of stable-iso-

tope internal standards. Given the use of internal standards permitting absolute quantification

of the metabolites in micromolar concentrations, values below the lower limits of quantifica-

tion (LOQ) were reported and analyzed as “0”. Metabolites with>25% of values below LOQ

were not analyzed (two acylcarnitines: C6 and C7-DC).

RNAmicroarray

RNA purification processing was done utilizing Qiagen PAXgene Blood RNAMDx Kits in fro-

zen whole blood PAXgene tubes. Strict adherence to the PAXgene Blood RNAMDx Kit Hand-

book, Second Edition, July 2005 protocol was maintained throughout the purification process.

The purification process failed on 384 samples (four batches of ninety-six samples each) during

processing for unidentified reasons and the samples were not repeated. Biotinylated total RNA

was generated using the Illumina TotalPrep RNA amplification kit (Life Technologies, Grand

Island, NY, USA); 200 nanograms of RNA was used for the kit. The quality of the RNA was

determined using the Bioanalyzer RNA Nano chip assay (Agilent, Santa Clara, CA, USA).

Quantification of the RNA was determined using the Quant-iT RiboGreen RNA Assay Kit.

Samples with RIN scores less than 6.0 were not carried forward. The Human HT-12v3 Expres-

sion BeadChip (Illumina, San Diego, CA) was used for quantitative RNA profiling and scanned

on the Illumina iScan system according to manufacturer’s protocol. Biotinylated RNA (750

nanograms) was hybridized to the BeadChip and washed; Cy3-SA was then introduced to the

hybridized samples and the BeadChips scanned on the Illumina iScan system according to

manufacturer’s protocol. Quality control (QC) and background subtraction was performed

using Illumina GenomeStudio tools. Probes with a detection p-value<0.05 and detected in

>50% of samples were retained for analysis. Expression values were log2 transformed and

quantile normalized using Robust Multichip Average (RMA) methods. Results were visually

inspected for outliers and sample failures after plotting for variance components comprising

eight distinct and standard QC variables at the plate, chip and individual level. A total of

12,800 probes passed the detection and QC filters and 1204 samples passed the QC and outlier

filters.

Statistical methods

Principal components analysis (PCA) with varimax rotation was used for data reduction of

metabolomic data from the combined cohorts (S1 Table and S2 Table) using SAS v9.1 (Cary,

NC). Factor 1 (composed of a cluster of medium-chain acylcarnitines [MCA]), factor 2 (com-

posed of a cluster of long-chain dicarboxylacylcarnitines [LCDA]), and factor 3 (composed of a

cluster of short-chain dicarboxylacylcarnitine [SCDA] metabolites [similar to our previous

studies [4, 5]]), were used as the quantitative traits for GWAS. Eigenstrat was used to define

principal components (PCs) in GWAS. Four eigenvectors were used as PCs in whites, two in

blacks, and seven in the “other” race category. Race-stratified linear regression models for each

SNP (additive and dominant), adjusted for age, sex, race-specific PCs and metabolite batch,

were constructed using PLINK [31]. Race-stratified results were also combined with meta-anal-

ysis using METAL [32]. Genomic inflation factors (λ) were<1.0. Significant SNPs were

defined as those showing genomewide significance (p<10−6) in the discovery cohort and
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nominal association (p<0.05, unadjusted for multiple comparisons) in the validation cohort.

Significant SNPs were then: (1) analyzed using meta-analysis of the cohorts using METAL

[32]; (2) tested for association with metabolite factor levels after adjustment for glomerular fil-

tration rate and in multivariable models (adjusted for BMI, hypertension, CAD, diabetes, left

ventricular ejection fraction, dyslipidemia, smoking and renal disease); and (3) tested for asso-

ciation with time-to-death using Cox-proportional hazards modeling in the combined cohorts.

Expression quantitative trait loci (eQTL) analyses of SNPs and SCDA levels were conducted

using linear regression adjusted for age, race, sex and batch. Gene Set Enrichment Analysis

(GSEA) [11], using the Preranked tool, was used on the resultant p-values for each SNP or

SCDA covariate effect on expression levels to identify enriched KEGG pathways. GWAS analy-

ses were corrected for multiple comparisons based on the above defined genomewide signifi-

cance; other analyses were not adjusted for multiple comparisons and nominal unadjusted p-

values are reported, with a p�0.05 considered statistically significant.

Whole genome methylation profiling

For the methylation studies, we analyzed blood samples from a discovery cohort composed of

11 individuals from the combined CATHGEN cohorts who had the highest SCDA factor levels

and 12 individuals with the lowest levels; and a validation cohort of 12 individuals with the

next highest SCDA factor levels and 11 individuals with the next lowest levels; all 46 individuals

were selected from those with RNA expression microarray data also available. DNA was iso-

lated from blood mononuclear cells and sodium bisulfite treated prior to being prepped for

analysis on the Illumina HumanMethylation 450K BeadChip following the manufacturer’s

guidelines, using the Zymo EZ DNAMethylation Kit using manufacture’s protocol (Zymo

Research Corporation Irvine, California USA). The alternative incubation condition recom-

mended if using the Illumina Infinium Methylation Assay was used (supplied in the manufac-

turer’s instruction manual appendix). Converted DNA was amplified, fragmented and

hybridized to the Human Methylation27, RevB bead chip pool of allele-differentiating

oligonucleotides.

We removed probes with detection p-value>.05 in>10% of samples, data based on fewer

than three beads, and probes previously identified as cross-reactive with other genomic loca-

tions [33]. Samples were checked for gender mismatch using principal components analysis

(PCA) of probes on chromosome X and assay controls were inspected to ensure good perfor-

mance on all samples. After QC, the original group of 485K probes was reduced to 473K

probes. Color bias correction and background adjustment were performed using lumi [34], fol-

lowed by quantile normalization of methylated, unmethylated, type I and type II probes sepa-

rately using wateRmelon [35]. Finally, we used Beta Mixture Quantile dilation (BMIQ) for

intra-array normalization [36]. After preprocessing, overall methylation levels (β) were calcu-

lated as the ratio of methylated to total signal (i.e. β = M / (M + U)) where M is the methylated

signal intensity for a probe, U is the unmethylated signal intensity, and β therefore ranges from

0 (unmethylated) to 1 (methylated). Δβ was calculated as the mean methylation difference

between the high and low SCDA groups at each probe. To identify candidate regions of inter-

est, we prioritized probes with |Δβ|>0.10 in the discovery set (N = 1287). After removing

probes with a common SNP (MAF>.01) in the CpG or single-base extension site, we filtered to

known genes containing at least two probes each with |Δβ|>0.10 within a 1 kB region (n = 97

probes in 28 genes). Finally, we restricted our probes with probes with |Δβ|>0.10 and the same

direction of effect in both datasets (i.e. hypermethylation in high SCDA samples versus low,

three genes). Although our primary criteria for follow-up were Δβ values and the presence of

multiple correlated probes in a gene, we also tested for differential methylation using linear
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models and empirical Bayes methods as implemented in limma [37]. Our standard model

adjusted for estimates of cell-type proportions present in each sample using the method of

Houseman, et al. [38]; we also ran a sensitivity analysis that additionally included age, sex and

race.

Biochemical characterization of C6-DC peak

Adipoyl carnitine and 3-methylglutaryl carnitine were synthesized from carnitine chloride and

the corresponding cyclic acid anhydride according to the method of Johnson [13]. Products

were confirmed by mass spectrometry. The liquid chromatography (LC)-MS/MS method of

Maeda et al. [12] was extensively modified. Acylcarnitines were derivatized to butyl esters. The

analytical platform was converted to a UPLC format using an Acquity UPLC HSS T3 column

and the ion pairing reagent was changed to triethyl ammonium acetate. The carnitines were

eluted using a linear gradient using water as solvent A and 95/5 v/v acetonitrile/water as solvent

B starting at 20% B.

Supporting Information

S1 Fig. Overall study design and study flow.

(TIF)

S2 Fig. Q-Q plots of genome-wide association results for metabolite factor 1 (MCA). Dis-

played are Q-Q plots for GWAS in the discovery cohort (adjusted for age, sex and PC-factors),

(A) additive model, whites only; (B) dominant model, whites only; (C) additive model, blacks

only; (D) dominant model, blacks only; (E) additive model, races combined; (F) dominant

model, races combined.

(TIF)

S3 Fig. Q-Q plots for genomewide association results for metabolite factor 2 (LCDA). Dis-

played are Q-Q plots for GWAS in the discovery cohort (adjusted for age, sex and PC-factors),

(A) additive model, whites only; (B) dominant model, whites only; (C) additive model, blacks

only; (D) dominant models, blacks only; (E) additive model, races combined; (F) dominant

model, races combined.

(TIF)

S4 Fig. Q-Q plots for genomewide association results for metabolite factor 3 (SCDA). Dis-

played are Q-Q plots for GWAS in the discovery cohort (adjusted for age, sex and PC-factors),

(A) additive model, whites only; (B) dominant model, whites only; (C) additive model, blacks

only; (D) dominant models, blacks only; (E) additive model, races combined; (F) dominant

model, races combined.

(TIF)

S5 Fig. Locus Zoom plots of SCDA (factor 3) mQTL. Displayed are LocusZoom plots with

-log10(p-value) (left Y-axis) and LD (right Y-axis), discovery cohort: (A) RSBN1L, additive

model, blacks only; (B) FBXO25|ERICH1, additive model, blacks only; (C) FREM2|STOML3,

dominant model, race meta-analysis; (D) SLC22A23|PXCD1, dominant model, race meta-anal-

ysis.

(TIF)

S6 Fig. Distribution of differentially methylated probes in individuals at extremes of SCDA

levels. Displayed are plots of the distribution of methylated CpG probes in 10 individuals with

extremely low SCDA levels and 9 individuals with high SCDA levels. The x-axis displays the
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degree of differential methylation and the Y-axis displays the count for the number of probes.

(TIF)

S7 Fig. Biochemical refinement of C6-DC SCDAmetabolite. Displayed are levels of two iso-

mers of the C6-DC acylcarnitine metabolite: adipoyl and 3-methylglutaryl carnitine, in human

plasma samples from 29 individuals with the highest C6-DC acylcarnitines from our previous

studies, showing that the predominant isomer accounting for the high C6-DC levels is the

3-methylglutaryl carnitine.

(TIF)

S1 Table. Principal components analysis (PCA) in combined CATHGEN cohorts. Dis-

played are the 14 factors identified through PCA in the combined discovery and validation

CATHGEN cohorts (total N = 3512), with an annotated description of the top metabolites

loaded for a given factor, and a list of the individual metabolites with the highest factors loads

for each factor (absolute value of factor load>0.4).

(DOCX)

S2 Table. Factor loads for individual metabolites in the SCDA PCA-derived factor.

(DOCX)

S3 Table. Extended phenotypic analyses of top genetic variants identified from SCDA

GWAS. Presented are results for the association between our most significant SCDA GWAS

genetic variants after adjustment for glomerular filtration rate (GFR); in a multivariable model

adjusted for cardiovascular risk factors; and for time-to-event analyses for the relationship

between genetic variants and incident cardiovascular events.

(DOCX)

S4 Table. Differential expression analyses for top GWAS SNPs. This table displays p-values

for the analysis of differential expression using an additive model for the top SNPs identified

from the SCDA GWAS, for cis-acting transcripts, and for the individual trans-acting tran-

scripts for each SNP.

(DOCX)
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