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Abstract
Metabolomics provides valuable tools for the study of drug effects, unraveling the mechanism of action and variation

in response due to treatment. In this study we used electrochemistry-based targeted metabolomics to gain insights

into the mechanisms of action of escitalopram/citalopram focusing on a set of 31 metabolites from neurotransmitter-

related pathways. Overall, 290 unipolar patients with major depressive disorder were profiled at baseline, after 4 and

8 weeks of drug treatment. The 17-item Hamilton Depression Rating Scale (HRSD17) scores gauged depressive

symptom severity. More significant metabolic changes were found after 8 weeks than 4 weeks post baseline. Within

the tryptophan pathway, we noted significant reductions in serotonin (5HT) and increases in indoles that are known to

be influenced by human gut microbial cometabolism. 5HT, 5-hydroxyindoleacetate (5HIAA), and the ratio of 5HIAA/

5HT showed significant correlations to temporal changes in HRSD17 scores. In the tyrosine pathway, changes were

observed in the end products of the catecholamines, 3-methoxy-4-hydroxyphenylethyleneglycol and vinylmandelic

acid. Furthermore, two phenolic acids, 4-hydroxyphenylacetic acid and 4-hydroxybenzoic acid, produced through

noncanconical pathways, were increased with drug exposure. In the purine pathway, significant reductions in

hypoxanthine and xanthine levels were observed. Examination of metabolite interactions through differential partial

correlation networks revealed changes in guanosine–homogentisic acid and methionine–tyrosine interactions

associated with HRSD17. Genetic association studies using the ratios of these interacting pairs of metabolites

highlighted two genetic loci harboring genes previously linked to depression, neurotransmission, or

neurodegeneration. Overall, exposure to escitalopram/citalopram results in shifts in metabolism through noncanonical

pathways, which suggest possible roles for the gut microbiome, oxidative stress, and inflammation-related

mechanisms.

Introduction
Major depressive disorder (MDD) is a common, often

disabling condition affecting over 300 million individuals

worldwide1. Selective serotonin reuptake inhibitors

(SSRIs) are common first-line treatments for MDD2,3.

They are believed to increase the extracellular availability

of the neurotransmitter serotonin by limiting its reab-

sorption into the presynaptic cell, so that serotonin levels

are increased in the synaptic cleft and available for

binding to postsynaptic receptors. Responses to anti-

depressant medications are modest. Only about half the

patients respond to the first medication; only one in three
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achieves symptom remission, which is the virtual absence

of symptoms and the aim of treatment4. Some patients do

well on a single medication, while others require medi-

cation combinations or alternative interventions. Clinical

symptoms are insufficient to guide appropriate treatment

selection5 and, presently, treatments are therefore selected

empirically relying on a “trial and error” approach6,7.

Metabolomics, a promising new approach to under-

standing depression and other neuropsychiatric dis-

orders8–11, could help inform treatment selection12,13.

Metabolomic profiles provide informative readouts on

pathways and biological networks implicated in various

diseases or their treatments. Metabolomic signatures

have been identified for several psychiatric disorders,

such as MDD14, bipolar disorder15,16, and schizo-

phrenia17–19. Most studies of mood disorders have

implicated tryptophan (TRP), tyrosine, and purine

metabolism, since historically, neurotransmission and

serotonergic signaling were key focus areas of investi-

gation14. The TRP pathway along with its three branches

of metabolism to serotonin/melatonin/5-hydro-

xyindoleacetate, kynurenine (KYN), and indole deriva-

tives, seems to be affected in the depressed state20–28.

The purine pathway, whose regulation seems to be

connected to TRP metabolism, has also been implicated

in depression and other psychiatric disorders29. Among

patients in remission from a major depressive episode, a

metabolomic signature that included methionine, glu-

tathione along with metabolites in the purine and TRP

pathways, has been identified30.

Pharmacometabolomics has also revealed that patients’

metabolomic profiles (metabotypes), both prior to and

early during treatment, can inform treatment out-

comes10,31. This approach has been applied to anti-

hypertensive32 and antiplatelet33 therapies. We have used

this approach to predict treatment outcomes and to

identify specific metabolomic pathways that were changed

in response to sertraline34,35 and to ketamine36, a pro-

mising agent for treatment-resistant depression. We have

also employed a “pharmacometabolomics-informed

pharmacogenomics” research strategy11 to investigate the

role of genetics in response to citalopram or escitalo-

pram37,38, thereby advancing the goal of precision medi-

cine for depression31. However, the acute and longer-term

effects of treatment with citalopram or escitalopram on

pathways, critical to the pathobiology or pharmacotherapy

of depression, and the relationship to clinical outcomes

have not been reported.

This report used metabolomic analyses with selected

metabolites in the tryptophan, tyrosine, purine, toco-

pherol, and the related pathways in a sample of non-

psychotic depressed outpatients who were treated for

8 weeks with citalopram or escitalopram to address the

following questions:

– The metabolomic signature of exposure to

escitalopram/citalopram: which metabolite changes

occurred from baseline to week 4, and from baseline

to week 8 of treatment?

– The metabolomic signature of response: which

metabolomic changes were related to changes in

depressive symptoms (HRSD-17), longitudinally, in

the overall population and also in responders versus

nonresponders?

– The interrelationships between metabolites: what are

the relationships among metabolites, both within

and between pathways, before and after treatment

with the drug?

Methods
Study design and participants

We used samples from the Mayo Clinic NIH-

Pharmacogenomics Research Network-Antidepressant

Pharmacogenomics Medication Study (PGRN-AMPS)

which recruited a total of 803 MDD patients39. Patient

selection, symptomatic evaluation, and blood sample

collection for the PGRN-AMPS clinical trial have been

described elsewhere24,38–40. Briefly, MDD patients were

required to have a baseline HRSD17 score ≥ 14, and all

patients who completed 8 weeks of treatment (n= 290)

were treated with one of the two SSRIs, citalopram or

escitalopram. Depressive symptoms were assessed with

HRSD17 at baseline, week 4, and week 8 of SSRI treat-

ment. Blood samples were collected at these same time

points.

The HRSD17 was used to ascribe “response”—defined as

at least 50% reduction in the total score from baseline to

exit; “remission” —an exit HRSD17 score of 7 or less; and

“complete-non-response”—less than 30% reduction in the

HRSD17 total score from baseline to exit39. Genome-wide

association studies for plasma concentrations of the SSRIs

and metabolite levels40 and for response41 in this trial

have been published previously. The trial was designed as

a parallel to the large National Institute of Mental Health

—funded “the Sequenced Treatment Alternatives to

Relieve Depression” (STAR*D) clinical trial42 for the

purpose of replication of the identified genetic markers.

Metabolomic profiling

A targeted, liquid chromatography–electrochemical

coulometric array (LCECA) metabolomics platform43 was

used to assay metabolites in plasma samples from the

three time points, baseline, 4 weeks, and 8 weeks. This

platform was used to identify and quantify 31

neurotransmitter-related metabolites (against standards)

primarily from the TRP, tyrosine, and tocopherol path-

ways, including serotonin. A list of the metabolites that

were quantitatively measured using this platform is pre-

sented in Table 1.
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Analysis method

The long-gradient LCECA method used for this analysis

can resolve compounds at picogram levels through elec-

trochemical detection (resulting from oxidation or

reduction reactions) including multiple markers of oxi-

dative stress and protection. This method utilizes a 120-

min gradient from (0%) organic modifier with an ion-

pairing agent (i.e., pentane sulfonic acid) to a highly

organic mobile phase with methanol (80%)/isopropanol

(10%)/acetonitrile (10%). An array of 16 serial coulometric

electrochemical detectors is set at incremental potentials

from 0 to 900mV, responding to oxidizable compounds

such as tocopherol in lower potential sensors and higher

oxidation potential compounds such as hypoxanthine in

the higher potential channels.

Analysis sequence and data output

At the time of preparation, a pool was created from

small aliquots of each sample in the study, which was then

treated identically to a sample. All of these assays were

executed in sequences that included mixed standard, five

samples, pool, five samples, mixed standard, and so on

and so forth. In this study, all sample run orders were

randomized. The sequences decreased possible analytical

artifacts during further data processing. Data were time

normalized to a pool at the midpoint of the study, aligning

major peaks to 0.5 s and minor peaks to 0.5–2 s. Details

on the LCECA methods are described in previously

published work35,41,44–50.

Data analysis

All data preprocessing and analysis were performed

with R (version 3.4.2) and Bioconductor (version 3.3)

statistical packages.

Preprocessing

This study’s data extraction protocol followed the

STORBE guidelines46. All metabolite data were first

checked for missing values (none were detected at >20%

missing abundances) and were subjected to imputation by

the k-nearest neighbor algorithm51. Data were then log2

Table 1 List of metabolites and pathways analyzed in the study

Metabolite by pathways Abbreviation Metabolite by pathways Abbreviation

Tryptophan Phenylalanine/tyrosine

3-Hydroxykynurenine 3OHKY 4-hydroxybenzoic acid 4HBAC

5-Hydroxyindoleacetic acid 5HIAA

5-Hydroxytryptophan 5HTP Purine

Indole-3-acetic acid I3AA Guanine G

Kynurenine KYN Guanosine GR

Serotonin 5HT Hypoxanthine HX

Tryptophan TRP Uric acid URIC

Xanthine XAN

Tyrosine Paraxanthine PXAN

4-Hydroxyphenylacetic acid 4HPAC Xanthosine XANTH

4-Hydroxyphenyllacetic acid 4HPLA

Homogentisic acid HGA 1 Carbon+ GSH

Homovanillic acid HVA Methionine MET

Methoxy-hydroxyphenyl glycol MHPG Cysteine CYS

Tyrosine TYR

Vanillylmandelic acid VMA Other

Salicylate SA

Tocopherol Alpha-Methyltryptophan AMTRP

Tocopherol-alpha ATOCO Indole-3-propionic acid I3PA

Tocopherol-delta DTOCO Theophylline Theophylline

Tocopherol-gamma GTOCO
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transformed and scaled to unit variance prior to statistical

analyses.

Univariate analysis

To define the effect of drug exposure over 4 weeks and

8 weeks of treatment, linear mixed effects models (using

the R package nlme52) were fitted on each metabolite

adjusting for age, gender, and HRSD17 scores at baseline

with subjects as random variable. Analyses were con-

ducted separately for 4 and 8 weeks. Linear mixed effects

models were also used to determine associations between

the changes in metabolites and changes in HRSD17 over

time, with age and gender as covariates, and using sub-

jects as random variable. All p-values were used to cal-

culate the false discovery rates by Benjamini–Hochberg

method53, and a cutoff point of 10% was used. A two-step

regression strategy was used to find metabolites with

significant temporal changes and significant differences

between responders and nonresponders using the

maSigPro library in R54. First, a least-squared technique

was employed to identify differential metabolites in a

global regression model, using dummy variables for

experimental groups. Second, stepwise regression was

applied to select variables that differed between the

experimental groups and find significantly different

metabolite profiles between the groups.

Partial correlation networks with cluster subgraph analysis

The relationship between metabolites in a complex

disease setting can be represented in terms of partial

correlation networks, where each node represents a

metabolite and each edge between two metabolites

represents that two variables are not independent after

conditioning on all variables in the dataset. These edges

have a weight, edge weights, which are the partial corre-

lation coefficients. Here, we estimated the partial corre-

lation matrix for all of the metabolites using the least

absolute shrinkage and selection parameter (LASSO) to

obtain the sparse inverse covariance matrix to avoid

overfitting and spurious correlations. Thus, it can be

reasonably expected that the regularized partial correla-

tion networks will provide accurate estimates of the

underlying relationships between the metabolites in

metabolic pathways and reactions. The LASSO regular-

ization parameter was set via EBIC or Extended Bayesian

Information criterion50. Finally, the walktrap algorithm,

which is based on random walks to capture cluster

structures in a network, is used to identify clusters of

strongly interacting metabolites45. The final network with

cluster subgraphs is formed by the median pairwise partial

correlations over 1000 bootstrap estimations and plotted

using the Fruchterman–Reingold layout. We further

included the HRSD17 scores in our partial correlation

network models to perform differential network analysis.

The overall statistical impact of HRSD17 scores on the

metabolite interactions was calculated based on measur-

ing structure invariance between two networks, high

HRSD17 and low HRSD17 networks, constructed using a

median split of the variable. Permutation tests were used

to determine the significance of structure and edge

invariances between the two networks55. The

metabolite–metabolite partial correlations that were of

differential strength between networks of high and low

HRSD17 networks were further validated for significant

interaction effects through linear regression analysis.

Candidate metabolic trait GWAS with HGA/GR and MET/TYR

ratios

For 288 of the 290 subjects in this study we had geno-

type data for the Illumina human 610-Quad BeadChips

(Illumina, San Diego, CA, USA) available, as described

previously38,41. Genotype QC using PLINK and imputa-

tion followed standard protocols. Briefly, raw genotype

data were filtered for variants with call rate <5%, minor

allele frequency (MAF) <5%, and Hardy–Weinberg equi-

librium HWE p < 1 × 10−549. The data was then subjected

to prephasing using SHAPEIT2 (ver. 2.12)48, followed by

imputation with IMPUTE2 (ver. 2.3.2)47 using 1000 gen-

omes phase 3 version 556 haplotypes as a reference. Post-

imputation QC included filtering variants for IMPUTE

info score < 0.5, call rate and MAF < 5%, and HWE p < 1 ×

10−5, resulting in a final set of 5.55 mio SNPs with 99.14%

genotyping rate. To remove any potential for spurious

associations due to population stratification, we used a set

of about 100,000 SNPs pruned for the LD structure and

retrieved the first five principal component eigenvectors

(PCs). Metabolite data for the HGA/GR and Met/TYR

ratios were log transformed, centered to zero mean, and

scaled to unit variance. In addition, for candidate GWAS,

we excluded values that were more than 4 standard

deviations from the mean. We then performed GWAS for

HGA/GR and MET/TYR at each time point while

adjusting for age, sex, and PCs 1–5. We reran the GWAS

additionally adjusting for HDRS17 scores at each time

point to eliminate the effects linked to depression severity.

Results
Patient characteristics

Plasma metabolite data were available from 290 MDD

patients. The average age of the patient cohort was 39.8

(±13.1) years. Females comprised of 66% of the study

cohort, while males were at 34%. The response rate to the

drug, based on HRSD17 scores, was 69.3% after 8 weeks,

compared with 30.7% who were classified as non-

responders for this study. The depressive status of the

patients, as determined by the HRSD17 scores, decreased

over time with the drug treatment, from an average of

21.9 (±4.9) at baseline to 11.6 (±6.4) at week 4 and 8.6
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(±5.5) at week 8. Demographic and clinical characteristics

are detailed in Supplemental Table 1.

Metabolite changes at weeks 4 and 8 compared with

baseline, in response to the drug

Several metabolites in the purine, tryptophan, and tyr-

osine pathways changed, following 4 weeks of drug ther-

apy. However, perturbations in the metabolite levels were

in general, greater and more significant after 8 weeks of

treatment (Supplemental Table 2). Figure 1 illustrates

changes within key pathways evaluated after 8 weeks of

treatment.

Tryptophan pathway

Dramatic changes were observed in serotonin (5HT)

and the ratio 5HIAA/5HT, both at week 4 and week 8. At

both time points, 5HT showed substantial decreases and

the 5HIAA/5HT ratio was significantly elevated. While

TRP itself did not show a notable change, its indole-

containing metabolite I3AA was significantly elevated, as

was the ratio of I3AA/TRP, possibly indicating a shift

away from the serotonergic pathway of TRP metabolism.

Interestingly, another indole-containing compound that is

known to be produced only by gut microbiota in humans,

I3PA, was also increased at 8 weeks (unadjusted p-value <

0.02). No statistically significant alterations were observed

in the KYN branch of TRP metabolism.

Tyrosine pathway

A similar trend of a shift to noncanonical branches of

tyrosine metabolism was also observed in this pathway.

MHPG, the major metabolite of the neurotransmitter

norepinephrine and the ratio MHPG/TYR showed sig-

nificant reductions in their blood levels at both 4 and

8 weeks while VMA, a norepinephrine end metabolite,

showed significant elevations at 8 weeks compared with

baseline. A phenolic acid, 4HPAC, and its ratio to TYR

(4HPAC/TYR) were significantly increased at both 4 and

8 weeks. Another phenolic derivative from the phenyla-

lanine/tyrosine pathway, 4-hydroxybenzoic acid

(4HBAC), was also significantly elevated at 8 weeks.

Fig. 1 Metabolic signature of drug exposure. a Shows the heatmap of metabolite changes at baseline, week 4, and week 8, normalized to baseline

levels. b–d Show changes within the purine, tryptophan, and tyrosine pathways
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Purine pathway

The purine metabolites HX and XAN and the ratio

XAN/XANTH were decreased significantly, while the

ratios PXAN/XAN and URIC/XAN were elevated at

8 weeks compared with baseline, indicating a similar

decline in the canonical pathway of purine metabolism, as

observed in the tryptophan and tyrosine pathways.

Other metabolites that showed significant changes,

albeit at unadjusted p values <0.05, were the purine

metabolites, G, PXAN, and XANTH; the TRP metabolite,

5HTP; the tyrosine metabolite, HGA; and other metabo-

lites, such as salicylic acid (SA).

Metabolomic changes associated with changes in

depressive symptoms (HRSD17)

Using linear mixed models, we examined the associa-

tion between temporal changes in metabolite levels

(across three time points, baseline, 4 weeks, and 8 weeks)

and the temporal changes in patients’ HRSD17 scores over

that period of time (see Fig. 2a–c and Supplemental Table

3). In the overall population, metabolites from the TRP

pathway were associated with changes in HRSD17 scores.

5HT, 5HIAA and the serotonin turnover marker 5HIAA/

5HT showed significant positive and negative associa-

tions, respectively, with decreases over time in HRSD17

scores (FDR-adjusted p values <0.01).

We further subcategorized the population based on

their HRSD17 scores after 8 weeks of treatment. If they

had at least a 50% reduction in their HRSD17 scores, from

baseline to exit, they were categorized as responders,

otherwise they were nonresponders. We examined whe-

ther the temporal associations between metabolite chan-

ges and HRSD17 scores significantly differed between

responders and nonresponders. The mean (±sd) HRSD17

scores in the responders and nonresponders were 21.86

(±5.17) and 22.03 (±4.28), respectively, at baseline, 10.10

(±5.77) and 15.03 (±6.58), respectively, at week 4, and 5.79

(±3.27) and 14.90 (±4.15), respectively, at week 8. 5HT

Fig. 2 Metabolite changes associated with HRSD17 scores. a 5HT (Serotonin), b 5HIAA/5HT ratio, and c 5HIAA (5-hydroxyindoleacetic acid).

Temporal changes in (d) HRSD17 scores, (e) 5HT, and (f) MHPG differed significantly between responders and nonresponders. The error bars represent

standard error of the mean
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temporal profiles significantly differed between the two

groups, with the levels being consistently higher in the

responders at baseline, week 4, and week 8, while the

decline in HRSD17 scores was significantly lower at both 4

and 8 weeks compared with baseline (Fig. 2d, e). Levels of

MHPG at baseline were significantly higher and the drop

in MHPG levels over time was significantly greater in

responders compared with nonresponders (Fig. 2f).

Relationships amongst metabolites at baseline and after

8 weeks of treatment

Biological systems are now increasingly viewed as

complex networks of interlinked entities, topological

analyses of which can reveal the underlying landscape of

biological functionalities. Gaussian graphical modeling

has been used to reconstruct pathway reactions in meta-

bolomics data57. Combining a partial correlation network

and genetic variation through GWAS has been shown to

provide an in-depth overview of the underlying mechan-

istic pathways58. Here, using regularized partial correla-

tion network analysis at baseline and also after week 8 of

drug exposure (Fig. 3), we assessed the

metabolite–metabolite interactions between tryptophan,

tyrosine, purine, and tocopherol pathways.

Regularized partial correlation networks of the meta-

bolites at baseline (Fig. 3a, b) and also at week 8 (Fig. 3c,

d) showed significant correlations between several meta-

bolites, both within and between pathways forming clus-

ters of interacting molecules. A list of statistically

significant partial correlations between metabolites at

baseline and week 8 are presented in Supplemental Table

4 A, B. Important observations through cluster subgraph

analysis showed that MET, TYR, and TRP formed a tight

cluster both at baseline and week 8. However, the strength

of interactions between MET and TYR was significantly

reduced at week 8, compared with baseline (~50%

reduction, permutation p value < 0.10). GR connection to

this cluster was significant at week 8 through interactions

with all three metabolites. HVA formed a significant

correlation with KYN at week 8 that was not observed at

baseline. Multiple other overlapping correlations in the

two networks were observed at both baseline and week 8,

suggesting that the majority of these interactions were a

result of housekeeping biological interactions and were

probably not entirely related to the drug effect.

Differential partial correlation networks associated with

HRSD17 scores at week 8

HRSD17 scores at week 8 indicated the depression status

of the patients post drug treatment. We compared two

partial correlation networks constructed with lower and

higher values of HRSD17 scores at week 8 (the outcome

status), using a median split, as a node. Our aim was to

examine if the associations between metabolites were

different between patients who responded to the drug

better than those who responded poorly. Several

metabolite–metabolite associations across the tyrosine,

tryptophan, and purine pathways were found to be

changed as a function of higher or lower outcome status

(Supplemental Table 5 A, B). At baseline, GR–MET,

TYR–MET, and KYN–URIC partial correlations were

most impacted, while at week 8, KYN–HVA,

KYN–3OHKY, 5HTP-G, and HGA–GR values were most

impacted by HRSD17 week 8 status (Fig. 3e, f). Two sets of

metabolite–metabolite interactions associated with the

outcome status, HGA–GR interactions at week 8 and

MET–TYR interactions at baseline, were further found to

be statistically significant in linear regression models

(highlighted in yellow in Fig. 3, e, f). The interaction plots

based on linear regression models are presented in Sup-

plemental Figs. 1 and 2. An interesting observation from

the differential analysis of networks at baseline was that

the partial correlations between metabolites that were

differential between the low versus high HRSD17 networks

involved several gut-microbe-related metabolites such as

HGA, I3AA, 5HIAA, 4HPLA, and 4HPAC amongst oth-

ers (Fig. 3e).

Genetic influences on ratios of interacting metabolite pairs

change during SSRI treatment

To identify potential modulators of significant

metabolite–metabolite interactions and their differential

interactions over time, we performed genome-wide

association studies with the pairwise ratios of HGA/GR

and MET/TYR in 288 subjects at each time point. To this

end, we computed additive genetic associations of the two

ratios with 5.55 mio autosomal SNPs at each time point,

while adjusting for age, sex, time point-specific HRSD17

score, the first five PCs to account for population strati-

fication. The strongest signal for the HGA/GR ratio was

for rs55933921 on chromosome 7 (baseline: P= 8.59 ×

10−7; week 4: P= 3.05 × 10−3; week 8: P= 1.14 × 10−3) in

a locus spanning two genes, TAC1 (protachykinin-1) and

ASNS (asparagine synthetase [glutamine-hydrolyzing]).

The strongest signal for the MET/TYR ratio was for

rs2701431 on chromosome 15 (baseline: P= 5.57 × 10−3;

week 4: P= 2.00 × 10−4; week 8: P= 8.48 × 10−8) in the

AGBL1 (ATP/GTP-binding protein like 1) locus (Fig. 4).

Of note, genetic associations between these loci and

metabolite ratios were the strongest at the time point that

showed insignificant metabolite–metabolite interactions

on the HRSD17 score.

Discussion
We have applied a “targeted” electrochemistry-based

metabolomics platform to quantitate the metabolomic

profiles in MDD patients before and after SSRI treatment.

Specifically, we assayed 31 neurotransmission-related
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Fig. 3 Partial correlation networks (PCN). a PCN at baseline; b PCN at baseline after 1000 bootstrap estimations; c PCN at week 8, and d PCN at

week 8 after 1000 bootstrap estimations. The different clusters representing communities of closely associated metabolites are shown in different

colors. Differential PCN as a function of high versus low HRSD17 week 8 scores at (e) baseline and (f) week 8. The edges between metabolites most

impacted by higher HRSD17 week 8 scores are bolded in green, while those by lower HRSD17 week 8 scores are bolded in red
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Fig. 4 Plots showing regional association plots generated with SNiPA61 for: a the HGA/GR ratio at baseline and b the MET/TYR ratio at week 8
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metabolites that might have some relevance to MDD

pathophysiology, based on published literature, including

compounds from the tryptophan, tyrosine, and purine

pathways, in plasma samples from 290 MDD patients at

baseline, 4-, and 8 weeks of escitalopram/citalopram

treatment. Metabolomic profiles were correlated with

treatment response, defined as 50% reduction from

baseline HRSD17 scores. We found that plasma 5HT

concentration was the most significantly decreased

metabolite among all of the 31 metabolites after the drug

treatment. Higher baseline 5HT levels were associated

with better response to SSRI treatment. The 5HT levels in

responders remained higher than that those in non-

responders all through the treatment period. Compared

with the baseline metabolic state, significant shifts of

metabolomic profiles to noncanonical branches of the

three major pathways after drug exposure were noted,

such as increase in the production of indoles in TRP

metabolism, phenolic acids in phenylalanine/tyrosine

metabolism, and the PXAN/XAN ratio in the purine

pathway. In addition, changes in the catecholamine

branch of tyrosine metabolism like increase in VMA and

decrease in MHPG, and changes in the end products of

purine pathway, such as decreases in XAN and HX, were

identified in the MDD patients after drug exposure.

Patients who had high MHPG at baseline responded

better to SSRI treatment and their MHPG levels

decreased more significantly than nonresponders. Tem-

poral change in serotonin and 5HIAA significantly cor-

related with changes in HRSD17 scores over time. Partial

correlation analysis between metabolites revealed that

MET, TYR, and TRP formed a tight cluster of interacting

molecules in these MDD patients. However, the strength

of interactions (partial correlations) varied significantly

pre- and post treatment. GR association with this cluster

was significant at week 8. GWAS for the HGA/GR ratio

identified two genetic loci that mapped to the TAC1 and

ASNS genes, which are known to be involved in depres-

sion and neurotransmission, while the ratio MET/TYR

identified the gene AGBL1 previously linked to neuro-

degeneration in mice.

Overall, significant perturbations within and between

the tryptophan, tyrosine, and purine pathways due to the

drug exposure, were noted. These findings are consistent

with our previous metabolomic study of sertraline,

another SSRI, in depressed patients35, where perturba-

tions in TRP, in particular, changes in methoxyindole

pathway and the ratio of KYN/TRP were correlated with

treatment outcomes. Interestingly, plasma concentrations

of the indoles synthesized from TRP, I3AA, and I3PA,

were found to be significantly increased in the MDD

patients in this study after the SSRI treatment. Plasma

concentrations for I3AA and I3PA are known to be

influenced by gut microbiota. Both I3AA and I3PA are

aryl hydrocarbon receptor (AHR) agonists59, which could

activate AHR transcriptional activity and modulate

inflammation in the gut60–63 and brain64,65.

Indole-3-propionic acid is a potent hydroxyl radical

scavenger produced exclusively by the commensal gut

bacteria Clostridium sporogenes66 and normally found in

the plasma and cerebrospinal fluid. I3AA, on the other

hand, has been found to correlate significantly with both

anxiety and depressive symptoms in chronic kidney dis-

ease patients (CKD)67. I3AA can be produced from indole

by gut microflora68 in the intestines, or metabolized in

tissues from tryptamine69 and other TRP derivatives. At

uremic concentrations, I3AA has been linked to oxidative

stress via AHR in CKD patients70. However, neither I3AA

nor I3PA changes were correlated to changes in HRSD17

scores in our findings.

The most notable change in metabolic profiles after

SSRI exposure occurred in the TRP metabolite, 5HT

concentrations, which was expected from the mechanism

of action of SSRI38. Plasma 5HT originates from the

enterochromaffin cells in the gut and gets actively

absorbed and stored by blood platelets, which highly

express the 5HT transporter SLC6A4. SSRIs target

SLC6A4 and inhibit 5HT uptake by platelets in blood.

Therefore, a dramatic decrease in plasma 5HT con-

centration after the SSRI treatment can be expected in

these patients. A higher concentration of plasma 5HT,

which was stored in platelets, may reflect an elevated

activity of the 5HT transporter, and, as a result, greater

sensitivity to SSRIs in those patients. This hypothetical

situation might explain why patients with higher plasma

5HT concentrations responded better to SSRIs.

Altered metabolic activity of the purine cycle has been

linked with several MDD-related systemic responses, such

as increased proinflammatory and oxidative processes35.

The end products of purine metabolism, uric acid, a

potent antioxidant, have been reported to be found in

decreased levels in MDD71–73, while lower cerebro-spinal

fluid (CSF) levels of hypoxanthine and xanthine, the two

metabolites preceding uric acid, have previously been

linked with depression74. Ali-Sisto et al., on the contrary,

reported increased levels of xanthine to be associated with

MDD75. In our study, we observed higher baseline levels

of xanthine and hypoxanthine that decreased with the

drug treatment. We did not detect increases in uric acid,

but we did observe significant increases in the ratios of

paraxanthine/xanthine and xanthosine/xanthine due to

the drug exposure. This may indicate a potential bene-

ficial effect of the drug through reducing oxidative stress

by direct or indirect inhibition of the xanthine oxidase

enzyme system. XO is known to generate vascular oxi-

dative stress through reactive oxygen species production

by catalyzing the hypoxanthine → xanthine → urate

synthesis76. On the other hand, we observed increased
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associations between uric acid with 4HPLA and also with

HGA at week 8 compared with baseline. Uric acid is

known to function as an antioxidant (primarily in plasma)

and pro-oxidant (primarily within the cell)77. Para-

xanthine showed strong correlations to theophylline at all

time points. It may also be possible that we were not able

to detect significant increases in the levels of the anti-

oxidant, uric acid, and the known psychostimulant para-

xanthine78 due to their increased turnover rates brought

about by the drug treatment.

In the tyrosine/phenylalanine pathway, 4HPAC and

4HBAC, the phenolic acid metabolites, were found to be

significantly increased in MDD patients after SSRI treat-

ment. Although these can potentially come from diets

rich in plant-based foods, evidence suggests that these

compounds can be produced through microbial fermen-

tation of aromatic amino acids (AAAs) in the colon79.

Although changes in the concentration of those metabo-

lites were not associated with SSRI response in MDD

patients, those changes possibly indicate alterations in gut

microbiome or gut metabolism after citalopram/escitalo-

pram treatment. 4HBAC is known for its antioxidant

properties, as effective scavengers of free radicals and

reactive nitrogen species, such as peroxynitrite80. 4HPAC

is also known for its antioxidant, antiinflammatory, and

anticancer activities79.

The strong interactions between MET–TYR–TRP,

observed through partial correlation networks at baseline

confirms the connection between folate-mediated

methionine formation, leading to methyl donation reac-

tions that form the monoamine neurotransmitters ser-

otonin, dopamine, and epinephrine81,82. In depression,

this balance is known to be perturbed83. With the drug

exposure, we see further alterations in this balance at

week 8. In addition, we see that GR significantly correlates

with MET and TRP at week 8 post treatment. This may be

indicative of changes in methylation status of the ser-

otonin transporter84 through epigenetic mechanisms, in

response to the SSRI treatment in these depression

patients. At week 8, KYN–3OHKY association decreased

significantly with concomitant increases in associations

between KYN and the dopamine degradation product,

HVA, and this association was comparitively stronger in

patients who did not respond well to the treatment.

Using the ratios of metabolites significantly interacting

as intermediate phenotypes leads us to rediscover loci

known to be involved in neurotransmission/depression

and neurodegeneration. The strongest association signals

for baseline GR/HGA were within a locus on chromo-

some 7 containing two central genes: TAC1 (protachy-

kinin-1) that has been linked to depression and anxiety85

and ASNS (asparagine synthetase [glutamine-hydrolyz-

ing]) that is an important enzyme, the deficiency of which

leads to substantial neurodevelopmental deficits86.

Interestingly, patients with this deficiency (it is an inborn

error of metabolism) also show modest changes in neu-

rotransmitters. The strongest signal for MET/TYR was

within a locus on chromosome 15 containing the gene

AGBL1 (ATP/GTP binding protein-like 1) that has a role

in controlling the length of the polyglutamate side chains

on tubulin. This process is critical for neuronal survival,

and the lack of such control has been reported to result in

neurodegeneration in mice87. These findings underscores

the utility of our “Pharmacometabolomics-Informs-

Pharmacogenomics” approach33 to identify candidate

genes for further functional studies. Using this strategy,

we have previously identified SNP signals in the DEFB1

and AHR genes that were associated with severity of

depressive symptoms in these MDD patients28. DEFB1 is

an antimicrobial peptide which is highly expressed and

active in the gut88, playing a potentially important role in

maintaining gut–microbiome homeostasis89. These

results fit within the broadening body of information in

support of important roles for the “microbiota–gut–brain

axis” and inflammation in MDD pathophysiology.

Several limitations of this study warrant consideration.

Compared with other MDD patients recruited in the

PGRN-AMPS trial, study participants were “selected”

because they were able to complete all three visits (i.e.,

baseline, 4, and 8 weeks) and provide blood samples,

which would reduce the number of patients in the final

sample who did poorly. In addition, only Caucasians were

included in this study, and thus, a given inherent limita-

tion was developed from analyzing a subset of MDD

patients. Furthermore, the LCECA platform captures

information on only redox-active compounds in the tyr-

osine, tryptophan, purine, and sulfur amino acid pathways

and several markers of vitamin status and oxidative pro-

cesses. The integration of data from lipidomics and mass

spectrometry-based metabolomics platforms in future

studies, as well as inclusion of several confounding vari-

ables, such as body mass index, diet, and lifestyle factors,

would definitely help to better unravel the mechanistic

aspect of the drug response.

In conclusion, we analyzed the metabolomic profile in

290 MDD patients before and after citalopram/escitalo-

pram treatment. Noncanonical metabolic pathways rela-

ted to TRP, tyrosine, and purine metabolism were found

to be activated after the drug exposure. There was

crosstalk among these pathways at baseline depression

levels, which was significantly impacted by the drug

exposure. Significant increases in gut–microbiota-related

metabolites, such as the indoles and the phenolic acids,

were observed in the overall population. Patients who

responded to the drug compared to those who did not,

had significant differences in baseline levels as well as in

the trajectories of several metabolites, including several

gut–microbiota related metabolites, suggesting that the
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drug exposure might be impacting gut-microbial ecology

differently in the two groups. Overall, amelioration of

oxidative stress and increases in anti-inflammatory pro-

cesses seem to be part of the mechanism involved in

response to citalopram/escitalopram treatment.
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