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Abstract

Pseudomonas aeruginosa is a common, Gram-negative environmental organism. It can be a significant pathogenic factor of 

severe infections in humans, especially in cystic fibrosis patients. Due to its natural resistance to antibiotics and the ability to 

form biofilms, infection with this pathogen can cause severe therapeutic problems. In recent years, metabolomic studies of 

P. aeruginosa have been performed. Therefore, in this review, we discussed recent achievements in the use of metabolomics 

methods in bacterial identification, differentiation, the interconnection between genome and metabolome, the influence 

of external factors on the bacterial metabolome and identification of new metabolites produced by P. aeruginosa. All of 

these studies may provide valuable information about metabolic pathways leading to an understanding of the adaptations of 

bacterial strains to a host environment, which can lead to new drug development and/or elaboration of new treatment and 

diagnostics strategies for Pseudomonas.
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Introduction

Pseudomonas aeruginosa is a common, Gram negative 

environmental organism. It is often isolated from plants, 

fruits, soil, and water environments, such as rivers, lakes, 

and swimming pools. In particular circumstances, P. aer-

uginosa may be a significant pathogenic factor of severe 
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and often opportunistic infections in humans. It typically 

infects airways and urinary tracts, causes blood infections, 

and is the most common cause of burn injury infections, 

hot-tub dermatitis, and outer ear infections (known as 

swimmer’s ear). P. aeruginosa is the most frequent colo-

nizer of medical devices (catheters, nebulizers, humidi-

fiers) and is one of the pathogens that cause nosocomial 

infections, such as ventilator-associated pneumonia, 

meningoencephalitis, and sepsis (Bassetti et al. 2018). 

Treatment of P. aeruginosa infections can be difficult due 

to its natural and acquired resistance to antibiotics (Brei-

denstein et al. 2011).

Pseudomonas aeruginosa is one of the most common 

organisms isolated from the  respiratory tract of cystic 

fibrosis patients (Bendiak and Ratjen 2009). The occur-

rence of the infection increases with age and can reach 

80% in adults (Behrends et al. 2013). Several studies have 

shown that this infection leads to higher rates of pulmo-

nary exacerbation and hospitalization in addition to more 

rapid disease progression, which leads to irreversible 

and destructive changes in the respiratory system and as a 

consequence, to chronic respiratory failure. It is also asso-

ciated with more frequent cystic fibrosis complications, 

such as malnutrition or diabetes (Emerson et al. 2002; 

Kosorok et al. 2003; Nixon et al. 2001).

A characteristic feature of the genus Pseudomonas is 

biofilm formation and fluorescent dyes and siderophore 

production (Leon 1979; Peix et al. 2018; Winstanley et al. 

2016). Moreover, microorganisms belonging to this genus 

show a high capability of utilizing different substrates and 

a high tendency toward antibiotic resistance. P. aeruginosa 

shows significant adaptation capabilities, as in the case of 

the development of chronic infections in patients with 

cystic fibrosis (CF). At this stage, the pathogen is practi-

cally impossible to eradicate.

Research on the system biology of P. aeruginosa has 

been carried out for a long time at different levels of molec-

ular organization (genome, transcriptome, and proteome), 

resulting in detailed information about the genomic struc-

ture. The  size of the P. aeruginosa genome is around 

6.5 Mbp. However, the size range for different strains is 

between 5.2 and 7 Mbp (Schmidt et al. 1996). There are 

5021 genes with more than 70% sequence identity between 

different P. aeruginosa strains, and among them, around 

4500 genes with > 98% identity. It is suggested that about 

4000 genes are common to the majority of the P. aerugi-

nosa strains (they are so-called ‘core genome’) (Parkins 

et al. 2018). The core genome is accompanied by genes 

that are present in a smaller number of strains. It is esti-

mated that the complete set of genes found in different 

P. aeruginosa strains include between 10,000 and 40,000 

genes. The arrangement of the genome may differ between 

strains; therefore, the identification of regions suitable for 

gene markers is difficult.

Information about P. aeruginosa gene and protein data 

is available from several databases: (1) the Pseudomonas 

Genome Database, which now has more than 200 complete 

Pseudomonas genomes (Winsor et al. 2016); (2) Pseudo-

Cyc with 121 pathways and over 800 enzymatic reactions 

(Romero and Karp 2003); and (3) the SYSTOMONAS 

database for the analysis of Pseudomonas systems biol-

ogy (Choi et al. 2007). The information is also available 

in commonly used databases, such as KEGG (Kanehisa 

et  al. 2017), PubChem  (Kim et  al. 2016), and HMDB 

(Wishart et al. 2013).

In recent years, metabolomic studies of P. aeruginosa have 

also been performed. The metabolome is the set of all relatively 

small compounds present in the cell and released to the envi-

ronment. These low molecular weight compounds (<1500 Da) 

play different roles as substrates, intermediates, and products 

of metabolism (Fiehn 2002; Pearson 2007). The information 

about the presence and concentration of metabolites reflects 

the activity of metabolic pathways in the cell. Metabolomic 

studies usually rely on two analytical laboratory techniques 

for metabolite identification and quantification: (1) mass spec-

troscopy coupled with chromatography (C/MS) or (2) nuclear 

magnetic resonance (NMR) spectroscopy.

Metabolomic studies may help solve the scientific prob-

lems unsolved by using other approaches used in system 

biology, such as identification of new metabolic pathways 

(Patti et al. 2012). These studies can provide us with data 

regarding virulence factors and adaptation features of a 

given strain to the host environment, and thereby provide 

a useful prognostic tool in P. aeruginosa infections. Due to 

rapid culture-independent tests, diagnosis of urgent cases 

and also their targeted treatment can occur quickly. These 

types of studies may also be used in the development of 

new strategies regarding the prevention and treatment 

of infections caused by microorganisms (Xu et al. 2014).

In this article, we present a summary of the  recent 

achievements in the field of P. aeruginosa metabolomics. 

Metabolomic studies about P. aeruginosa strains com-

parison are shown in Table 1. Studies about interactions 

between two species of bacteria, such as quorum sensing 

and co-cultures, were also conducted. The individual met-

abolic profile of a strain depends on internal and external 

factors (such as genome structure and substrate availabil-

ity, respectively) (Fig. 1). 
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A closer look at an experiment 
in metabolomics

Experimental design, including metabolomic analytical 

parts, may differ depending on the  available materials, 

resources, and scientific questions to be answered. The iden-

tification of metabolomic changes resulting from different 

factors requires a distinct experimental approach. Neverthe-

less, the general experimental pattern is the same.

In metabolomics, as in many experiments, there are usu-

ally at least two sets of samples that are compared with one 

of them being the control (or reference) group. In general, 

metabolomic analyses cover two approaches to analyzing 

metabolites: (1) fingerprinting and (2) footprinting. The first 

contains the whole set of intracellular compounds, and 

the second tracks nutrient uptake and metabolite secretion 

(Behrends et al. 2014).

The typical workflow in microbiological metabolomic 

studies includes a few steps (Fig. 2).

Usually, in the first step, microorganisms are cultured 

in vitro. Appropriate disintegration (if intracellular metab-

olites studies are conducted) and an extraction method are 

then used. Metabolites from a chosen group (for instance, 

water-soluble) are isolated and concentrated. There are 

many possible approaches for metabolite sample prepara-

tion. This part of the process should be studied and depends 

on the purpose of the research.

In the next stage, metabolites are detected via analytical 

chemistry techniques. In the case of MS method, metabolites 

that are first separated by liquid or gas chromatography, then 

ionised, and detected by mass spectrometry instruments. 

This technique yields information about the mass to charge 

ratio of the analysed compounds, which could be detected 

by the most advanced instruments at very low femtomole to 

attomole detection limits. This information may be used for 

the identification of thousands of compounds in the sample 

Table 1  Metabolomic studies comparing Pseudomonas aeruginosa strains

Origin of samples Amount 

of sam-

ples

Type of metabolites Measurement method Statistic methods Metabo-

lites (in 

total)

Author, year

CF patients 179 Extracellular 1H NMR Linear modelling, 

‘sunburst’ plots

29 Behrends et al. (2013)

Reference 

strain PAO1 and CF 

isolate TBCF10839

2 Intra- and extracel-

lular

GC–MS PCA 243 Frimmersdorf et al. 

(2010)

CF patients 49 Extracellular 1H NMR PCA, PLS, OPLS-DA 85 Kozlowska et al. (2013)

CF patient (different 

breeding)

1 Living cells 1H HRMAS NMR Student’s t-test 24 Righi et al. (2018)

CF patients 3 Intra- and extracel-

lular

LC–MS PCA 221 Robroeks et al. (2010)

Clinical isolates: 

TBCF10839 and 

TBCF121838

2 Intracellular GC–MS Retention indices (RI) 80 Klockgether et al. 

(2013)

Reference 

strain PAO1 (differ-

ent breeding)

21 Intra- and extracel-

lular

1H NMR, 1H HRMAS 

NMR

PCA – Gjersing et al. (2007)

Fig. 1  Metabolomic studies of 

Pseudomonas aeruginosa 
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or used as the characteristic metabolite pattern “fingerprint,” 

in an untargeted approach to the studied specimen. NMR 

spectroscopy due to application of a magnetic field allows 

assignment of the chemical shifts of 1H and 13C nuclei in 

organic compounds. This method enables identification and 

quantification of metabolites but at a much higher concentra-

tion than MS, which is at the mM level and strongly depends 

on the duration of the experiment. The second limitation is 

the number of compounds that can be identified, which are 

in the range of several dozen. However, the NMR method 

ensures reliable compound identification via a combina-

tion of one- and two-dimensional (1D and 2D, respectively) 

spectra measurements. A more detailed description of this 

technique may be found in the review article by Dona et al. 

(2016) or in dedicated handbooks. Both of these methods 

are complementary and mostly used in metabolomic studies.

To extract the  information about metabolite type and 

concentration, the  raw data must be further processed. 

The metabolic profile (list of detected metabolites with cor-

responding concentrations) of a single sample is still a large 

set of data; therefore, a comparison of samples and graphical 

representation of results is not easy using the conventional 

approach. Different statistical and chemometric methods 

are used to find differences and prepare data visualiza-

tion. The most commonly used method in multivariate data 

analysis is the principal component analysis (PCA). This 

method is used as a starting point for further analysis. PCA 

is an unsupervised method, which means that the samples 

are underlying without any additional input data. It allows 

for the determination of variability and identification of 

outliers during all of the attempts. Additionally, it enables 

to determine the relationship between groups to find dif-

ferentiating metabolites. PCA may be used on a raw figure 

without any initial metabolite identification and quantifica-

tion (Gjersing et al. 2007).

The partial and orthogonal partial least squares methods 

(PLS and OPLS, respectively) are used to develop models, 

predict differences, and search for significant markers. Both 

of these methods are supervised methods, in which individ-

ual observations are assigned based on a specific parameter 

(such as membership in a given group). A more detailed 

description of multivariate data analysis in metabolomics 

can be found in an article by Worley and Powers (2013).

Information concerning a metabolome may also be 

stored in a database. A database dedicated to the P. aer-

uginosa metabolome was created by Huang et al. (2018). 

The P. aeruginosa metabolome database (PAMDB) provides 

information about > 4370 metabolites and their chemical 

and biological functions, more than 1250 proteins includ-

ing enzymes, and almost 1000 associated pathways. Fur-

thermore, for some compounds, NMR and MS spectra are 

available. The database was created based on information 

available in other databases and in the literature (Huang 

et al. 2018).

Bacterial strain identification 
and differentiation

One way to conduct metabolomic experiments with micro-

organisms is to compare strains originating from differ-

ent sources. Most studies describing strain identification 

use pure strains cultivated in  vitro; however, a collec-

tion of a large set of metabolomic profiles is the first step 

in  the  development of methods enabling identification 

of strains without the need for bacteria isolation and culti-

vation. Such an approach would be a useful diagnostic tool 

because it would reduce the time between material collec-

tion and result delivery. For instance, preliminary research 

has proven that the analysis of volatile organic compounds 

(VOC) in a person’s breath might be useful for identification 

of respiratory tract bacterial infections; however, determina-

tion of the pathogenic strain responsible for the infection is 

still not possible (Maniscalco et al. 2019; Montuschi et al. 

2012; Robroeks et al. 2010).

Fig. 2  Diagram of metabolomic 

experiment
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Bacterial strain  identification based on the profile of 

volatile metabolites would be very useful in lung infection 

diagnoses. Nizio et al. conducted VOC profiling using gas 

chromatography/gas chromatography-time-of-flight mass 

spectroscopy (GC/GC-TOFMS) to differentiate bacteria 

associated with lung infections (P. aeruginosa, Haemophi-

lus influenzae, Streptococcus pneumoniae, Burkholderia 

cenocepacia, Stenotrophomonas maltophilia, and S. mill-

eri). Samples were analyzed in two periods: (1) short-term 

(between 2 and 5 days) and (2) long-term (between 48 and 

50 days). Moreover, bacteria were cultured in two differ-

ent growth phase conditions (stationary and logarithmic). 

The multivariate analysis showed that the VOC profile was 

sufficient for differentiation of bacteria species. However, 

the profiles were affected by sample storage conditions 

and bacterial growth phase (Nizio et al. 2016).

A similar approach for bacterial species identification 

was taken by Lawal et al. (2017). They investigated VOC 

profiles for the following bacterial species: (1) Escherichia 

coli; (2) Klebsiella pneumoniae; (3) P. aeruginosa; and (4) 

Staphylococcus aureus. These bacteria are often the cause of 

lung infections. To better simulate conditions in the respira-

tory tract, bacteria were also cultured in an artificial sputum 

medium. Comparison of VOC profiles was sufficient for 

species identification; however, profiles were considerably 

altered by the cultivation medium type (Lawal et al. 2017).

Moreover, in another article, Lawal et al. showed that 

the presence of the additional pathogen in  the environ-

ment also changed the observed VOC profiles. The GC/

MS method was used to identify and compare metabolites 

in mono and co-cultures of P. aeruginosa ATCC 10,145 

and Enterobacter cloacae DSM 30,054. Among 60 VOCs 

identified, 24 had significantly increased and 13 decreased. 

Among these, under axenic cultures, bacteria-specific VOCs 

metabolites were identified as 2-methyl-1-propanol, 2-phe-

nylethanol, and 3-methyl-1-butanol for E. clonacae while 

methyl 2-ethylhexanoate was characteristic for P. aerugi-

nosa. However, in co-cultures, 2-methylbutyl acetate and 

methyl 2-methylbutyrate were found, both of which exhib-

ited antimicrobial activity (Bail et al. 2009). In the PCA 

score plot, three nonoverlapping groups were observed: (1) 

P. aeruginosa; (2) E. cloacae; and (3) co-culture (Lawal 

et al. 2018).

A similar experiment conducted by Neerincx et al. also 

used two strains of bacteria (and co-culture): (1) P. aerugi-

nosa strain ATCC 27,853 and (2) Aspergillus fumigatus 

strain AZN 8196 to compare VOCs in samples using the 

GC/MS method. They identified and examined 104 com-

pounds. The PLS score plot was constructed for three-time 

points (16, 24, and 48 h). The analysis allowed identification 

of the combinations of VOCs associated with each group 

(P. aeruginosa, A. fumigatus, and co-culture). For each time 

point, specific VOC biomarker combinations were found, 

and individual VOCs, which were present at all-time points 

(for example, 8-nonen-2-one in A. fumigatus and 2-nonanone 

in co-culture), were also assigned. What is more, the loca-

tion of the groups on the PLS score plot changed over time; 

after 48 h, the metabolic profile of the co-cultures shifted 

towards P. aeruginosa (Neerincx et al. 2016). These results 

imply that the use of VOC profiling as a diagnostic tool may 

require a cultivation model that more accurately reproduces 

the conditions in the respiratory tract.

Palama et al. compared the bacteria responsible for uri-

nary tract infections using the footprint approach. Using 

NMR, they measured the extracellular metabolites of 48 

strains belonging to six species (E. coli, P. aeruginosa, 

Proteus mirabilis, Enterococcus faecalis, S. aureus, and 

S. saprophyticus). Analysis of samples collected at differ-

ent growth stages identified 43 metabolites. Unsupervised 

multivariate data analysis showed significant discrimination 

between the studied samples. Furthermore, the PCA score 

plot showed non-overlapping groups, which originated from 

different microorganisms. This experiment demonstrated 

that metabolic profiling could be a rapid method for identi-

fying bacterial species (Palama et al. 2016).

Kozlowska et al. recovered 15 P. aeruginosa isolates 

from sputum samples and described several culture proper-

ties, such as mucoid, pigmentation, diversity, culture pH, 

and others. These properties were compared with informa-

tion about the subjects (age, sex, body mass index [BMI], 

diabetes). Analysis of the media using 1H NMR was per-

formed. Statistical methods (PCA and OPLS-DA) were 

used to identify groups of isolates. The score plot showed 

four different clusters of various strains of P. aeruginosa. 

Additionally, each cluster was related to the pH of culture. 

Furthermore, the analysis of variance (ANOVA) test was 

used to find the relationship between PCA and clinical data. 

These experiments suggest that P. aeruginosa isolates have 

a range of growth strategies. Moreover, cluster member-

ship was correlated with predicting patient lung function. 

Thus, NMR-based metabolomic profiling may be used as 

a prognostic tool in the diagnostics of P. aeruginosa infec-

tions (Kozlowska et al. 2013).

Identification of metabolic patterns 
determined by genome structure

Adaptation of bacteria metabolism is crucial for microor-

ganism survivability in different environments. In particu-

lar, pathogens change their metabolism to use available 

resources in a host organism in the most efficient way and 

to evade the host immune system (Behrends et al. 2013). 

Identification of critical metabolic pathways necessary for 

pathogen survival may open new possibilities in therapy 

development. It may lead to a breakthrough in the treatment 
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of chronic infections, such as those observed in the case of 

cystic fibrosis patients.

Metabolic adaptation in the case of long-term infection 

is considered to be mainly the result of genomic changes. 

The comparison of closely related strains isolated from 

patients at different stages of infection development seems 

to be the best experimental approach for investigating these 

kinds of metabolomic alterations. Beherends et al. investi-

gated the adaptation of P. aeruginosa strains to lung infec-

tions among CF patients. Exometabolomic, morphology, 

growth rate, and clinical data for 179 clinical isolates were 

analyzed. The isolates were recovered from 18 individual CF 

patients for 20 years. Metabolic experiments relied on NMR 

spectroscopy and allowed 29 metabolites to be identified. 

Despite the limited set of analyzed metabolites, significant 

changes in metabolic pathways could be identified. Strains 

isolated from patients suffering from long-term infection 

showed an improvement in amino acid uptake with a high 

biosynthetic cost. NMR was used to conduct exo-metabo-

lomic analyses. This method provides a non-targeted and 

universal profile of all small-molecule metabolites present 

in cells. In total, 29 metabolites were identified, but not 

all of these were seen in all the samples. Nine metabolites 

have an association with length of infection, but most of 

the metabolites had no change. The exceptions were acetate, 

valine, serine, lysine, phenylalanine, tryptophan, trehalose, 

and tyrosine. Linear modelling for each metabolite against 

the variable ‘patient’ and ‘length of infection’ was used, 

and ‘sunburst’ plots for visual examination of the data were 

applied. This method allowed the comparison of the differ-

ences between patients and changes during infection to be 

followed. It also enabled the metabolomic profiling to iden-

tify the changing responses to long-term infection (Behrends 

et al. 2013).

A more detailed characterization of metabolome pro-

files was obtained using the GC/MS technique. However, 

the set of strains examined in this approach was relatively 

small. This approach was used by Klockgether et al. to 

compare several P. aeruginosa strains: (1) the reference 

strain (PAO1); and two strains isolated from CF patients: 

(2) TBCF10839 and (3) TBCF121838. GC/MS metabolomic 

analysis identified 80 intracellular compounds in the expo-

nential growth phase. The concentrations of 21 compounds 

differed more than threefold between strains. In the case of 

trehalose, the level observed in strain TBCF10839 was 100 

times higher than the one found in TBCF121838. The num-

ber of observed compounds in  the stationary phase was 

similar. Moreover, this is one of the most detailed compari-

sons of P. aeruginosa strains that has ever been carried out. 

Apart from endo-metabolomic analysis, the experiments 

included several parameters: (1) genomic sequencing and 

comparison; (2) proteomic and transcriptome analysis; (3) 

exopolysaccharide phosphorylation pattern determination; 

and (4) phenotypic examination (Klockgether et al. 2013).

Han et  al. tested polymyxin-resistant and -suscepti-

ble strains to check bacterial metabolic and lipid profile 

responses. In this experiment, three strains of P. aeruginosa 

(wild-type and two pmrB mutant strains) were investigated 

using LC/MS analysis together with DNA sequencing and 

genomic analysis. Various extraction methods were used for 

the lipidome analysis. The PCA graph showed that metab-

olites were grouped depending on the extraction method, 

and there was a difference between the wild-type strain and 

pmrB mutants. The metabolomic analysis allowed identi-

fication of 578 metabolites. The PCA score plot revealed 

the sample grouping for each strain. These studies show that 

mutations in the P. aeruginosa genome causing resistance 

(or lack thereof) to antibiotics are reflected in the bacterial 

metabolomic profile (Han et al. 2018).

Possible metabolic adaptations to oxidative stress were 

analyzed by Thippakorn et al. two P. aeruginosa strains, 

PAO1 and a hyperpigmented strain HP, were compared. 

Metabolites were identified using the GC/MS technique. 

The comparison of exo-metabolome revealed differences 

in the level of antimicrobial compounds (lower in the case of 

the HP strain) and antioxidant compounds (lower in the case 

of PAO1). Adaptation to oxidative stress was also observed 

at the enzyme expression level; the HP stain had a sig-

nificantly higher expression of malate synthase and isoci-

trate lyase. These enzymes produce substrates required for 

the synthesis of DHN-melanin (antioxidant dye). Surpris-

ingly, the expression of antioxidant enzymes in the HP strain 

was reduced in comparison to the PAO1 strain (Thippakorn 

et al. 2018).

Identification of metabolic changes 
in response to external factors

Metabolic changes resulting from factors other than gene 

mutations may also play an important role in bacterial adap-

tation and survival. In the case of P. aeruginosa, several 

factors affecting metabolome were investigated: (1) growth 

medium composition; (2) growth conditions; (3) the pres-

ence of specific chemical compounds (including antibiot-

ics); (4) other microorganisms; and (5) phage infection. 

Research focusing on these factors is crucial for the under-

standing of bacterial ecology and biochemistry. It may help 

to understand the mechanisms underlying phenomena, such 

as biofilm formation and antibiotic resistance (a considerable 

problem in the treatment of infections) or the mechanism 

of phage infection (possible alternative for conventional 

antibiotic therapy). Observation of metabolomic changes 

in response to a specific antibiotic compound may also help 
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in the discovery of the metabolic pathways responsible for 

microbial resistance (Han et al. 2019).

To identify metabolic response to environmental condi-

tions, two P. aeruginosa strains, PAO1 and clinical isolate 

TBCF10839 (responsible for CF infections), were analyzed 

by Frimmersdorf et al. Exo- and endo-metabolomes from 

different culture conditions were compared. GC/MS analy-

sis showed the presence of at least 243 compounds. One-

hundred forty-four of these compounds could be identified 

when compared with metabolite libraries. Sixty metabo-

lites were found in all culture conditions, and an additional 

64 were present in most of the resulting profiles. Only 65 

compounds were characteristic for specific growth condi-

tions, and the observed changes were usually dependent on 

the selected medium. Moreover, not all carbon sources were 

used, which was the case even in the stationary phase (Frim-

mersdorf et al. 2010).

The problem of great clinical importance is the develop-

ment of antibiotic resistance. Metabolomics was used by 

Han et al. to understand the molecular mechanisms underly-

ing P. aeruginosa-related polymyxin resistance. Polymyxins 

are cyclic peptides used as the last-line therapeutic option 

for treatment of difficult-to-treat Gram-negative patho-

gens. The metabolic response of two P. aeruginosa strains 

(polymyxin susceptible PAK and resistant PAKpmrB6) to 

the presence of polymyxin B (4 mg/dm3) was compared. 

The metabolites were analyzed with LC/MS techniques. 

Four-hundred twenty-seven hydrophobic and 871 hydro-

philic metabolites were identified. Most significant changes 

in the metabolic profile of both strains were observed after 

1 h of incubation with polymyxin B. Polymyxin induced 

osmotic stress in  both analyzed strains as indicated by 

the  increased level of trehalose-6-phosphate. Moreover, 

the PAK showed a significant decrease in lipopolysaccha-

ride and peptidoglycan synthesis. These results may be used 

in the development of a new generation of polypeptide anti-

biotics (Han et al. 2019).

A very interesting scientific question is the influence of 

bacteriophage infection of the bacterial metabolome. Inves-

tigation of mechanisms associated with phage infection 

may result in the development of new strategies in treat-

ing bacterial infection. The influence of phage infection on 

the metabolome of P. aeruginosa was investigated by De 

Smet et al. (2016). They used the PAO1 reference strain and 

infected it during the exponential growth state with six dif-

ferent bacteriophages. Metabolites were detected and quanti-

fied with injection-time-of-flight MS. This approach allowed 

for the  identification of 518 metabolites. Metabolomic 

profiles of infected distinguished phages relying solely on 

resources available in host cells and could actively modulate 

host biosynthesis pathways. Phage infection had a signifi-

cant influence on the concentration of 24.5% of the detected 

metabolites. However, only 2.4% of observed alterations 

were common to all investigated phages. These metabolites 

were part of the nucleotide and sugar synthetic pathways. 

Amino acid metabolism is also affected by phage infection. 

However, the observed changes are not common and differ 

between individual bacteriophages. Some of the observed 

metabolic differences could be explained by the presence 

of enzymes encoded by auxiliary metabolic genes (AMG). 

However, the authors speculate that non-enzymatic proteins 

encoded by AMGs may be of equal importance. The data 

obtained in this project is available in the open database 

(https ://www.biw.kuleu ven.be/LoGTd b/phage Biosy stems /

Home.aspx).

Combined analyses of metabolome and the expression 

profile were carried out in the case of infection of P. aer-

uginosa PAK with PAK_P3 bacteriophage. Metabolite 

detection was done according to the protocol developed by 

De Smet et al. (2016). In this case, the pyridine metabo-

lism was severely affected by phage infection. Moreover, 

the authors found that RNA-based regulation plays a cen-

tral role in the PAK_P3 lifecycle since antisense transcripts 

are mainly produced during the early stage of infection, and 

viral small non-coding RNAs are expressed at the end of 

infection (Chevallereau et al. 2016).

In another study concerning phage infection, Zhao et al. 

investigated the changes in P. aeruginosa metabolism and 

gene expression after infection with the PaP1 phage. For 

metabolite detection, 1H NMR was used. The authors were 

able to identify and quantify 48 metabolites. In the case of 

12 compounds, the observed level was significantly altered. 

Most changes were observed in  the case of metabolites 

involved in  energy metabolism and amino acid synthe-

sis. Moreover, levels of  NAD+ and betaine had consider-

ably decreased. The authors conclude that the majority 

of observed changes were the result of the regulation of 

the host gene expression by the phage. Furthermore, they 

suggest that the alteration of the betaine synthesis pathway 

may be a potential target for therapy due to the importance 

of this compound for P. aeruginosa during infection (Zhao 

et al. 2017).

One of the most critical features of P. aeruginosa is 

its ability to form a biofilm. Gjersing et al. proved that 

the  metabolome of P.  aeruginosa planktonic cells dif-

fers from that of biofilm cells. They decided to compare 

the metabolomic profile of the reference strain, PAO1, 

with two different models of growth: (1) planktonic and 

(2) biofilm. For these two different types of growth, intra- 

and extracellular profile of the metabolites were examined. 

The 1H NMR and high resolution-magic angle spinning 

nuclear magnetic resonance (1H HRMAS NMR) methods 

were used. For both growth models, the recorded spectra 

showed different signal profiles, which showed separa-

tion between studied groups on the PCA score plot. This 

study demonstrates that the supernatants of biofilm and 

https://www.biw.kuleuven.be/LoGTdb/phageBiosystems/Home.aspx
https://www.biw.kuleuven.be/LoGTdb/phageBiosystems/Home.aspx
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batch planktonic cultures could be readily distinguished by 

PCA (for  both1H NMR and 1H HRMAS NMR). The results 

showed that the levels of metabolites in the planktonic cul-

ture were higher than in biofilm types of growth. The reason 

for this could have been the culture method. The planktonic 

culture was a standard batch fermentation without medium 

replacement. In biofilm culture, the medium was continu-

ously replaced, thus metabolites produced by bacteria could 

not accumulate (Gjersing et al. 2007).

A fundamental phenomenon observed in  bacteria is 

quorum sensing (QS). QS is a cell-to-cell communication 

mechanism, which is a biochemical mechanism that allows 

different bacterial groups to coordinate gene expression in a 

variety of environments and to also control bacterial metabo-

lism. The functions controlled by QS are varied and depend 

on the needs of bacteria (Lee and Zhang 2015; Reading and 

Sperandio 2006). Such communication between cells plays 

an essential role in the creation of biofilms and infection ini-

tiation (de Kievit 2009). P. aeruginosa is one of the bacteria 

in which functioning QS plays a vital role. Reports showed 

that QS could be responsible for the central metabolism of 

this pathogen (Goo et al. 2015).

Righi et al. used 1HRMAS and 1H NMR spectroscopy to 

determine changes in the metabolome in live bacterial cells 

in response to 2-aminoacetophenone (2-AA) (Righi et al. 

2018). 2-AA is considered to be a volatile quorum-sensing 

molecule associated with the expression of virulence factors 

in P. aeruginosa and promoting the development of chronic 

infection (Kesarwani et al. 2011). To understand the impact 

of 2-AA on the metabolome, a clinically isolated P. aerugi-

nosa strain, UCBPP-PA14, was cultured with and without 

2-AA. NMR analysis used whole cells without any metabo-

lite extraction. This rapid detection method was previously 

optimized for UCBPP-PA14 strain and prove to be accurate 

for P. aeruginosa metabolomic analysis. Twenty-four metab-

olites, such as osmolytes, amino acids, and phospholipids, 

were identified. The combined use of 1D and 2D spectra 

provided complete and unambiguous metabolite identifica-

tion in the samples with the conclusion that 2-AA affects 

the metabolic profile of cells. Changes observed in metabo-

lome suggest that 2-AA may induce changes in the capsular 

polysaccharides composition and trigger cellular osmopro-

tectant mechanisms (Righi et al. 2013).

Chen et al. conducted an experiment in which they stud-

ied the QS inhibitor, resveratrol. The P. aeruginosa reference 

strain, PAO1, was cultured with and without resveratrol (con-

trol group). 1H NMR was then used to compare intracellular 

metabolites, which allowed 40 compounds to be identified. 

The PCA and PLS methods separated samples from the con-

trol cultures and resveratrol-treated cells. A reduced level of 

betaine and increased concentration of ethanolamine suggest 

the presence of oxidative stress in resveratrol-treated bacteria. 

Accumulation of succinate and branched-chain amino acids 

implies the disruption of the TCA cycle and protein synthesis 

(Chen et al. 2017).

Another experiment by Devenport et  al. compared 

the  influence of N-acyl homoserine lactone (AHL) on 

the intracellular metabolite content of two P. aeruginosa 

strains. The studies were performed using the 1H NMR, 

LC–MS, and GC–MS methods. One of the  strains was 

the wild-type while the second was double mutant Δ lasI 

rhlI, which did not allow the production of AHL signalling 

compounds. MS analysis allowed fatty acids in the samples 

to be identified. Observation of metabolic profiles in the time 

intervals (from 1 to 10 h) enabled the visualization of how 

the metabolite concentrations changed. In  the mutant’s 

supernatant, no AHL was detected. Furthermore, the mutant 

strain produced more acetate and used alanine faster than 

the wild-type strain. Moreover, PCA analysis clearly showed 

the strain grouping. The results showed that QS molecules 

influence fatty acid metabolism (Davenport et al. 2015).

Identification of new metabolites

Metabolomic analysis may be a very useful tool in the iden-

tification of novel compounds produced by microorganisms. 

Identification of new compounds produced by microorgan-

isms is one of the fundamental goals of present-day micro-

biology. Microbiologically produced substances may be 

significant for medicine (new drugs), industry, and environ-

mental protection (natural biodegradable detergents) (Janek 

et al. 2010).

Nguyen et al. identified new lipopeptides produced by 

Pseudomonas strains using LC/MS-based metabolomic 

analysis. In these studies, the authors investigated 260 strains 

of Pseudomonas isolated from different locations. Massive 

extracellular metabolomic analysis based on the C/MS tech-

nique allowed identification of common and strain-specific 

compounds. For the identification of potentially novel com-

pounds, data obtained from LC–MS/MS was processed 

with Global Natural Products Social Molecular Network-

ing. Further structural analysis of strain-specific compounds 

based on NMR spectroscopy has led to the identification 

of new lipopeptides and enabled evolutionary comparisons 

between them. Four new compounds produced by Pseu-

domonas strains were identified, poaemides and banana-

mides (Nguyen et al. 2017).

Conclusions

Pseudomonas aeruginosa is a very flexible and variable 

microorganism, which allows it to adapt to various life con-

ditions. Chronic infection in patients with cystic fibrosis are 

often incurable and represent a severe problem. The adapta-

tion of P. aeruginosa to the environment is a scientifically 
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exciting problem and may be significant for therapeutic rea-

sons. Therefore metabolomic analysis used for comparison 

of P. aeruginosa strains, causing infections among people 

suffering from cystic fibrosis can be very beneficial.

The presented research shows the diversity of the carried 

out experiments. Each of them: (1) comparing metabolome 

of isolates from patients suffering from cystic fibrosis with 

healthy people (2) characterization of compounds that make 

up the metabolome (3) identification of changes in metabo-

lites during co-culture and quorum sensing; introduces a 

lot of new information on the functioning and dependence 

of this organism. The  initial research showed that there 

are metabolome differences between strains isolated from 

the patients (Kozlowska et al. 2013). Observed changes 

included improved amino-acid uptake and reduced acetate 

production in  strains responsible for chronic infection. 

However, the research also revealed great diversity between 

strains isolated even from one patient, thus it is hard to find 

any general pattern for P. aeruginosa adaptation strategy 

(Behrends et al. 2013). Moreover, it seems likely that metab-

olome is influenced more by the environment (medium type) 

than the strain genome (Frimmersdorf et al. 2010). Further 

research may give a better understanding of P. aeruginosa 

adaptation, however it must include a much bigger set of 

tested strains including environmental isolates.

Bacteriophages are considered an alternative for anti-

biotic therapy, especially in cases of antibiotic-resistant 

strain treatment. At present, the use of bacteriophages is 

an experimental therapy for individual cases. However, it is 

possible that in the future, human-designed bacteriophages 

will become more universal and more effective infection 

treatment method. The research on bacterial metabolomic 

changes during bacteriophage infection provides the foun-

dations for the  development of synthetic therapeutic 

bacteriophages.

The development of new diagnostic tools may signifi-

cantly improve the therapy for P. aeruginosa infections. 

The most important information for the physician is the type 

of bacteria causing disease and its susceptibility to antibiot-

ics. This type of information is critical at the beginning of 

therapy when a suitable and efficacious antibiotic has to be 

selected. The time required for data acquisition is crucial, 

especially in the case of life-threatening infections. Moreo-

ver, diagnostic tools are also critical in the assessment of 

therapy effectiveness. In the case of treatment effectiveness 

assessments, VOC analysis seems to be promising due to its 

noninvasive character and speed. However, the initial trials 

described in the literature were done on small groups of 

patients, and further tests are required.

In summary, complete identification and characterization 

of P. aeruginosa strain based on analytical multiplatform 

metabolic profiling is necessary. For some applications, a 

single method may be sufficient (treatment monitoring). 

The use of metabolomic analytical tools for diagnostics will 

be possible only after the development of an extensive data-

base containing metabolic profiles of different P. aeruginosa 

strains. Moreover, appropriate analytical software must be 

used for data interpretation.

Metabolomic studies of P. aeruginosa has provided new 

interesting information about the life of this microorgan-

ism. There is still much to be done before we obtain the full 

scope of P. aeruginosa capabilities. Yet there is no doubt 

that the effort must be taken, since it may help us resolve 

the health threats associated with P. aeruginosa infections.
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