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Abstract
Metabolomics is the study of metabolism at the global level. This
rapidly developing new discipline has important potential implica-
tions for pharmacologic science. The concept that metabolic state is
representative of the overall physiologic status of the organism lies at
the heart of metabolomics. Metabolomic studies capture global bio-
chemical events by assaying thousands of small molecules in cells, tis-
sues, organs, or biological fluids—followed by the application of in-
formatic techniques to define metabolomic signatures. Metabolomic
studies can lead to enhanced understanding of disease mechanisms
and to new diagnostic markers as well as enhanced understanding
of mechanisms for drug or xenobiotic effect and increased ability
to predict individual variation in drug response phenotypes (phar-
macometabolomics). This review outlines the conceptual basis for
metabolomics as well as analytical and informatic techniques used to
study the metabolome and to define metabolomic signatures. It also
highlights potential metabolomic applications to pharmacology and
clinical pharmacology.
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INTRODUCTION

The final decades of the twentieth, and the beginning of the twenty-first, centuries
have witnessed a revolution in biomedical research that has made it possible to move
from the study of single genes, single mRNA transcripts, single proteins, or single
metabolites to studies that encompass entire genomes, transcriptomes, proteomes,
and metabolomes (Figure 1). Those changes have occurred in parallel with advances
in molecular pharmacology that resulted in a therapeutic revolution (1), with the de-
velopment of drugs that have made it possible for the first time in human history to
treat or control diseases that range from childhood leukemia to hypertension, from
breast cancer to depression. However, major challenges facing pharmacologic science
include the integration and application of the analytical techniques and data analysis
methods of the new biology. The development of powerful and effective pharma-
cologic agents has also highlighted the necessity for individualizing drug therapy to
select those patients most likely to respond to treatment, to minimize the occurrence
of adverse drug reactions, and to maximize the desired therapeutic effect. Initial efforts
to individualize pharmacologic therapy have focused on genomics, i.e., pharmacoge-
nomics, with a series of notable success stories (2). However, those efforts have also
served to clarify the need to unite well-defined phenotypes with increasingly detailed
genotypic data. Metabolomics promises to contribute significantly to the achieve-
ment of that goal, particularly if we succeed in combining pharmacometabolomics
with pharmacogenomics.

The development of analytical techniques that make it possible to assay and quan-
titate components of the metabolome and to extract useful signatures from those
data promises to increase our understanding of disease pathophysiology, our knowl-
edge of mechanisms responsible for drug effect, and our ability to approach the goal
of individualized drug therapy. In this review, we briefly outline the current status
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Drug response predictors
in the pre- and post–new
biology eras.
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of metabolomics—its conceptual basis, the analytical techniques that are used to
perform metabolomic studies, and the informatic tools that are required to analyze
metabolomic data—with specific examples to illustrate each topic. Special emphasis
will be placed on the way in which this new and rapidly developing discipline might
contribute to pharmacology research, i.e., on pharmacometabolomics.

METABOLICS: AN OVERVIEW

Metabolomics, the study of metabolism at the global, or -omics, level, has the potential
to contribute significantly to biomedical research and, ultimately, to clinical medical
practice. This rapidly developing discipline involves the study of the metabolome,
the total repertoire of small molecules present in cells, tissues, organs, and biological
fluids (3–15). The identities, concentrations, and fluxes of these compounds result
from a complex interplay among gene expression, protein expression, and the envi-
ronment. In contrast to classical biochemical approaches that often focus on single
metabolites, single metabolic reactions and their kinetic properties, and/or defined
sets of linked reactions and cycles (i.e., precursor/product, intermediary metabolism),
metabolomics involves the collection of quantitative data on a broad series of metabo-
lites in an attempt to gain an overall understanding of metabolism and/or metabolic
dynamics associated with conditions of interest, including drug exposure (16). Many
names have been used to refer to this new field, including metabonomics, metabolic
profiling, metabolic fingerprinting, and metanomics, among others (3, 17). How-
ever, metabolomics has been used most often, so that term is applied throughout this
review.

The overall size of the metabolome remains a subject of debate and depends on
the definition of exactly what components should be included and on the analytical
platform used. Numbers that range from a few thousand to tens of thousands of small
molecules have been proposed. As implied earlier, metabolomic information com-
plements data obtained from other fields that comprise the new biology—genomics,
transcriptomics, and proteomics—adding a final piece to a systems approach for the
study of drug action, individual variation in drug response, and disease pathophysiol-
ogy. Ideally, metabolomics will ultimately contribute a detailed map of the regulation
of metabolic pathways, and, therefore, of the interaction of proteins encoded by
the genome with environmental factors, including drug exposure. Therefore, the
metabolome represents a state function for an individual at a particular point in
time or after exposure to a specific environmental stimulus, e.g., a specific drug or
xenobiotic.

Unlike earlier analytical methods, metabolomics utilizes instruments that can si-
multaneously quantitate thousands of small molecules in a biological sample. This
analytical capability must then be joined to sophisticated mathematical tools that can
identify a molecular signal among millions of pieces of data (18). Disease disrupts
metabolism and, as a result, causes changes that are long lasting and can be cap-
tured as metabolic signatures. Initial metabolomic signatures have already been re-
ported for several disease states, including motor neuron disease (19), depression (20),
schizophrenia (21–23), Alzheimer’s disease (24), cardiovascular and coronary artery
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disease (25, 26), hypertension (27), subarachnoid hemorrhage (28), preeclampsia (29),
type 2 diabetes (13, 30, 31), liver cancer (32), ovarian cancer (33), breast cancer (34),
and Huntington’s disease (35). These signatures are made up of tens of metabolites
that are deregulated, with concentrations that are modified in the disease state or af-
ter drug exposure. As a result, analysis of these signatures and their components can
potentially provide information with regard to disease pathophysiology. Metabolic
signatures have also been identified for several drugs where the signatures represent
changes that occur secondary to drug treatment and in which those signatures cap-
ture information from pathways that are targets for, or are affected by, drug therapy
(23, 36–40). In summary, metabolomics promises to have broad implications for both
basic biomedical research and medical practice because it can capture information
with regard to mechanisms of disease and of drug action, making it possible to map
disease risk or drug action to metabolic pathways.

THE METABOLOMICS PROCESS

A typical metabolomics study is depicted schematically in Figure 2 (16). Samples
of interest (e.g., plasma, cerebral spinal fluid, or tissue biopsies) are collected. Small
molecules are extracted from the sample and are analyzed using techniques that sep-
arate and quantitate the molecules of interest. Those analytical techniques include,
among others, liquid and gas chromatography, mass and nuclear magnetic resonance
(NMR) spectroscopy, and liquid chromatography with electrochemical detection (see
subsequent detailed discussion). Combinations of these techniques can also be used
to augment separations and/or to expand the analyte information collected. These
datasets must then be collected and curated, a process that can take significant time.
After curation, the data are analyzed by one or more software packages designed
for use with large datasets. A database is then generated for the same patient before
and after drug therapy or for diseased patients and control subjects. These databases
include levels of detectable metabolites and the identity or a description of the prop-
erties of the metabolites, i.e., oxidation reduction potential, mass/charge ratio, etc.
Software tools can then be used to (a) identify disease signatures (e.g., compounds that
highlight a disease state), (b) predict class (e.g., pre- or postdrug exposure, disease or
control), (c) identify unrecognized groups in the data (e.g., drug response subgroups),
(d ) identify interactions among variables, and (e) map variables to known biochemical
pathways. A critical metabolomics concept is that a biomarker that predicts disease or

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Figure 2
Typical metabolomics experiment flow diagram. (a) Samples are collected and (b) individual
metabolites are quantitatively analyzed using one or more high–data density analytical
instruments. (c) The datasets are curated and (d ) analyzed using a series of high–data density
informatics approaches. The informatics outputs shown here include class prediction
(SIMCA-P, Umetrics), principal components analysis of a computationally modeled dataset
(SIMCA-P, Umetrics), 2D cluster analysis (GeneLinker Platinum, Improved Outcomes
Software), metabolic analysis (http://www.biotech.icmb.utexas.edu), and cluster analysis
(from Piroutte, Infometrix). Adapted from Reference 16.

656 Kaddurah-Daouk · Kristal ·Weinshilboum

A
nn

u.
 R

ev
. P

ha
rm

ac
ol

. T
ox

ic
ol

. 2
00

8.
48

:6
53

-6
83

. D
ow

nl
oa

de
d 

fr
om

 a
rj

ou
rn

al
s.

an
nu

al
re

vi
ew

s.
or

g
by

 K
ar

ol
in

sk
a 

In
st

itu
te

 o
n 

06
/0

3/
08

. F
or

 p
er

so
na

l u
se

 o
nl

y.



ANRV333-PA48-23 ARI 4 December 2007 13:44

a  Sample collection

Objectively defining
class identity

0

0 20 40 60 80 100

0.2

0.4

0.6

0.8

Retention time (min)
R

es
p

o
n

se
 (

µ
A

)

b  Sample analysis c  Database curation

Mechanistic insight
Drug development
Toxicology
Classification
Prediction
Functional genomics
Sub-threshold studies
Others

Observed vs.
predicted values 

Computational modeling
of metabolic serotypes 

Modeling metabolic
interactions 

Following biochemical
pathways

d  Bioinformatics

Predicted

A
ct

u
al

AL8
AL7
AL5
AL1
AL4
AL3
AL2
AL6
DR8
DR6
DR5
DR7
DR1
DR4
DR2
DR3

00.20.40.60.81.0

3 SDSD3 SD

2 SDSD

2 SDSD

2 SD

2 SD

www.annualreviews.org • Metabolomics 657

A
nn

u.
 R

ev
. P

ha
rm

ac
ol

. T
ox

ic
ol

. 2
00

8.
48

:6
53

-6
83

. D
ow

nl
oa

de
d 

fr
om

 a
rj

ou
rn

al
s.

an
nu

al
re

vi
ew

s.
or

g
by

 K
ar

ol
in

sk
a 

In
st

itu
te

 o
n 

06
/0

3/
08

. F
or

 p
er

so
na

l u
se

 o
nl

y.



ANRV333-PA48-23 ARI 4 December 2007 13:44

helps to monitor drug therapy is most often not a single molecule, but rather a pattern
of several molecules. That concept determines the need for quantitative precision and
the careful avoidance of artifacts during this type of research. Although this can be a
difficult analytical task in the early stages of metabolite pattern detection, if the rele-
vant metabolomic species can be defined and identified, appropriate techniques can
then be used to develop rapid targeted assays suitable for more routine application,
both in the research laboratory and/or in a clinical setting.

The choice of metabolomic analytical instrumentation and software is often goal
specific because each type of instrument has, as discussed subsequently, specific
strengths and limitations. For example, liquid chromatography (LC) followed by
coulometric array detection is ideal for mapping neurotransmitter pathways (17, 41,
42). Gas chromatography (GC) in conjunction with mass spectrometry (MS) is of-
ten used in the analysis of lipid subsets (lipidomics) (43). Liquid chromatography
together with mass spectroscopy (LC-MS) is often used to obtain the largest possi-
ble biochemical profile, and NMR has been used successfully to perform toxicology
studies (44, 45). In a similar fashion, different software packages include specific tools
designed to address questions distinct to each study. Because of the importance of
analytical platforms for metabolomic studies, the following section briefly reviews, in
turn, each of the major metabolomic analytical methods.

METABOLOMICS ANALYTICAL METHODS

Metabolomics involves the study of the repertoire of small molecules, or metabolites
present in a cell, tissue, organ, or biological fluid. Small molecule in this setting refers
to endogenous molecules involved in, or resulting from, primary and intermediary
metabolism, as well as exogenous compounds, such as drugs and other xenobiotics.
Representative endogenous small molecules include well-known and well-studied
compounds, such as glucose, cholesterol, ATP, biogenic amine neurotransmitters,
and lipid signaling molecules. By choosing appropriate separation and detection tech-
nologies, these molecules can be analyzed on the basis of their individual properties. A
wide variety of methods have been used to separate and quantitate components of the
metabolome, and no single analytical platform can capture all metabolomic informa-
tion in a sample. At one level, an analytical platform may be described in the context
of its instrumentation. Therefore, GC-MS, LC-MS, and NMR-based metabolomics
platforms are suited for mapping global biochemical changes in nontargeted ways;
and LC-electrochemistry array metabolomics platforms (LCECA) are excellent for
mapping neurotransmitter pathways and pathways involved in oxidative stress (for
targeted and untargeted studies). At another level, an analytical platform may be de-
scribed in the context of the analytical goal. Lipidomics platforms are designed for
mapping lipid biochemical pathways. Recent work has described approaches for the
analysis of specific subsets of compounds, for example, thiol-containing metabolites
(46), acylcarnitines, amino acids, and carbohydrates, among others. Affinity-based
techniques promise to broaden this type of approach further in the future. Most
or all of these analytical platforms are already familiar to investigators involved in
pharmacology and toxicology research. The difference in metabolomics lies not in
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the platforms, but rather in the specific way in which these analytical tools are ap-
plied, the samples they are used to analyze and the approaches taken to control the
experiments and to analyze the data.

The logistics of metabolomic analysis require significant planning, and the scope
of results obtained is generally linked to the instrument used to collect the data.
Analytical aspects of metabolomics can be divided into four functions: sample acqui-
sition, sample storage, sample extraction, and metabolome analysis. Although each is
important, we focus only on the final two: sample extraction and the analytical step.
In practice, these two activities are inseparably linked. Perhaps one way to illustrate
the issues involved is by contrasting this field with mRNA microarray analysis. Ex-
traction procedure(s) used to isolate RNA prior to microarray analysis are thought to
be essentially universal, i.e., all RNAs are extracted more or less equally. In contrast,
different metabolomic extraction procedures can reveal orthogonal or overlapping
metabolomes, depending on the choice of reagents (e.g., hexane for highly lipophilic
versus acidified acetonitrile for more hydrophilic species). Some sample extraction
procedures have been developed that are highly specific for given subsets of com-
pounds, whereas others are more general. Liquid-liquid and solid phase extractions
have the advantage that they can be tailored, for example, to remove specific con-
founding species and/or to focus on subsets of compounds (see the Web sites of specific
vendors for descriptions of applications using tools such as solid phase extraction).
Obviously, the extraction procedure must be matched to the analytical subset of in-
terest. Second, although many microarray platforms exist, each can measure most or
all RNA species. A custom array is limited by choice, but theoretically is unlimited in
scope. In contrast, as discussed subsequently, analytical platforms for metabolite anal-
ysis are more limited, and they differ in at least six operating parameters other than
cost: universality, specificity, sensitivity, quantitative precision, their ability to provide
structural information, and throughput capacity. There are at least four major ana-
lytical platforms with proven utility for metabolomic applications: NMR, GC-MS,
LC-MS, and LCECA (14–16). Each of these platforms has specific advantages and
disadvantages. In subsequent paragraphs, each of these key platforms is described.
Their strengths, limitations, and examples of their application in metabolomics are
also summarized briefly, followed by comments with respect to ways to obtain more
detailed information with regard to these platforms.

NMR Spectroscopy

There are numerous reasons for employing NMR as a primary tool for structure-
based metabolomic investigations, many of which are the same as those that have
attracted structural biologists to NMR for the structural and dynamic analysis of
proteins and nucleic acids. Modern NMR makes it possible to perform rigorous struc-
tural analysis of many metabolites in crude extracts, cell suspensions, intact tissues,
or whole organisms. Structural determination of known metabolites using various
one-dimensional (1D) and 2D NMR methods is straightforward, whereas de novo
structural analysis of unanticipated or even unknown metabolites is also feasible. The
latter can bypass the need for authentic standards (often a major barrier to structure
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determination) and is unparalleled by other molecular structural techniques, such
as MS or infrared spectroscopy. In addition to popular high-sample-throughput ap-
plications, NMR is particularly powerful for metabolite structural determinations,
including the atomic positions of isotopic labels (e.g., 13C, 15N, or 2H) in different
isotopomers generated during stable isotope tracer studies (34, 47–49). These latter
applications provide detailed maps of biochemical pathways or networks, which can
also serve as crucial inputs for in silico quantitative flux analysis (50, 51). As a result,
metabolic pathways can now be systematically mapped by NMR with unprecedented
speed.

In summary, NMR offers essentially universal detection, excellent quantitative
precision, and the potential for high throughput (>100 samples/day is attainable).
Because a single compound can give multiple peaks, statistical approaches have been
developed that enable the deconvolution of this type of complexity. The major dis-
advantage of NMR is its relatively poor sensitivity (approximately 1 nmol solute is
required). Another disadvantage is high initial cost because NMR instruments can
cost well over one million dollars, but FT-ICR MS instruments can be equally ex-
pensive. NMR has been particularly successful when applied to toxicology studies.

MS-Based Platforms

MS represents a universal, sensitive tool that can be used to characterize, identify,
and quantify a large number of compounds in a biological sample where metabolite
concentrations might cover a broad range (52–56). With carefully chosen upstream
sample handling, MS can be used to measure low abundance signals, such as those
from signaling molecules or hormones. That is particularly true for targeted analy-
ses. Metabolomics requires proper separation of the compounds to be assayed, and
chemical separation techniques such as GC and LC or capillary electrophoresis can
all be joined to MS detection. In the case of molecules for which authentic biochem-
ical standards exist, metabolites can be identified and quantified by the use of these
combined separation techniques as a result of two orthogonal parameters, compound
separation time and molecular mass. MS also makes it possible to monitor the pres-
ence of molecules that are detected reproducibly but are as yet unidentified. Those
compounds might include unknown drug metabolites, byproducts of gut flora, or
oxidative damage products. Structural identification can also be attempted, but is not
always straight-forward. Structural identification is aided by a combination of three
factors: high mass accuracy, ion fragmentation capability, and software designed to
recognize the rules by which nature assembles compounds (57). The availability of
these three factors, alone and in combination, has greatly aided efforts to assign
compounds their most likely elemental composition, and, in many cases, key sub-
structures. Subsequent paragraphs specifically highlight the relative advantages and
special features of GC-MS and LC-MS platforms.

GC-MS offers structural information (excellent when the compounds are already
present in existing libraries), reasonable quantitative precision, and high through-
put (once again >100 samples/day is possible). Mid-level instrumentation costs fall
between $100–$300,000. Sensitivity is at least 2 orders of magnitude higher than is
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the case for NMR. One limitation of GC-MS is its inability to study molecules that
cannot be readily volatilized. Another is the relatively low mass accuracy of these in-
struments (often unit resolution) unless magnetic sector machines are used, but that
is done at the expense of a higher initial cost and reduced throughput. It is also worth
noting that GCxGC MS provides an additional orthogonal degree of separation, and
has particular utility where changes are anticipated in related metabolites as occurs
in studies of a series of related compounds.

The greatest advantage of LC-MS for application to metabolomic studies in phar-
macology and toxicology is its flexibility. Different combinations of mobile phase and
columns make it possible to tailor separations to the compounds of interest, including
chiral compounds when appropriate conditions are used. As a result, most compounds
can be analyzed by LC-MS. Instruments exist that enable low, medium, or high mass
accuracy, and linear ion traps can enable MSn, providing fragmentation profiles spe-
cific for given molecules. This technique makes it possible to trade off sensitivity
for throughput (with typical metabolomic throughputs ranging from 20–100 sam-
ples/day). The cost of LC-MS instruments ranges from approximately $100,000 for
a basic single quadruple MS to well over one million dollars for an FT-MS. The
combination of high mass accuracy, MSn fragmentation, and appropriate software
makes it possible for MS instruments to determine the exact molecular composition
of many compounds of interest. One limitation of LC-MS is relative difficulty in ob-
taining consistent quantitative precision. In the context of pharmacometabolomics,
LC-MS is well suited to broad survey studies. Defined fragmentation patterns have
been shown to be useful for following drug metabolites, which can also be done with
labeled drugs. LC-MS can also be used for stable isotope/flux experiments. The flex-
ibility of LC-MS can be applied to advantage when investigators have specific subsets
of metabolites in mind. Another useful feature of MS is the ability to target specific
classes of compounds by examining loss of a fragment of the molecule in a collision
cell. Triple-Quad mass spectrometers can be used in that way to conduct semitargeted
analyses.

LCECA Platforms

LCECA detection metabolomics platforms generally contain 16 coulometric elec-
trodes in an array (58–61), allowing differential detection and quantification of small
molecules on the basis of their oxidation-reduction potentials (Figure 3). These com-
pounds represent a subset of the metabolome that includes molecules amenable to
detection by oxidation-reduction. For example, this platform is ideal for application
to studies of the tryptophan and tyrosine pathways that lead to monoamine neuro-
transmitters because many metabolites within these pathways can be measured quan-
titatively with LCECA. The robust nature of this platform, its reproducibility and
its sensitivity have been well described in a series of peer-reviewed publications (58–
62). Preliminary experiments described later in this review demonstrate the power
and promise of the electrochemistry-based platform for metabolomics analysis for
defining signatures for central nervous system (CNS) disorders and drugs that are
used to treat those diseases. Examples of studies performed with an LCECA platform
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Figure 3
Metabolic profiling using high-performance liquid chromatography (HPLC) and
coulometric electrochemical array detection (LCECA). (a) LCECA detection separates in
two dimensions: hydrophobicity and oxidation potential. Samples are injected into an HPLC
column where they are fractionated by hydrophobicity. The eluent from the column flows
through porous electrodes representing 16 different electrical potentials—the coulometric
array. These electrodes detect redox-active metabolites and measure their oxidation
potentials. (b) Each electrode generates one chromatogram. Therefore, the output consists of
16 parallel chromatograms corresponding to 16 different oxidation potentials. The height of
a peak in one of the output chromatograms indicates the concentration of a metabolite with
a particular hydrophobicity and oxidation potential. As indicated schematically in the figure,
this method is able to use oxidation potential to separate peaks that overlap after separation
by hydrophobicity. With kind permission from Springer Science and Business Media (19).
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where it was used for targeted analysis include analyses of the serotonin system in
Alzheimer’s disease (63), kynurenic acid (a tryptophan metabolite) in mammalian
cerebral spinal fluid and brain (64), the kynurenine pathway in Huntington’s disease
(41), and alterations in dopamine and serotonin metabolism in Parkinson’s disease
(65).

In LCECA, the detector is a powdered graphite electrode that detects only elec-
trochemically active compounds—specifically those that can react under 900 mV.
Higher voltages can be used for short times, but they damage the electrodes and de-
grade performance. The LCECA system is extremely sensitive, perhaps 2–3 orders of
magnitude better than GC-MS, and it displays strong run-to-run precision over long
periods of time. The initial cost is also low, at slightly under $100,000. Disadvantages
include the lack of structural information and low throughput (12 samples/day in the
most commonly used metabolomic configurations). For pharmacometabolomic stud-
ies, the specific nature of the molecules that can be detected can either be a significant
plus or a minus. The system can, as mentioned previously, detect molecules such as
tyrosine and tryptophan metabolites, as well as antioxidants and oxidative damage
products, but it is “blind” to molecules such as glucose, ketoglutarate, and most fatty
acids. When the molecule of interest is one that can be detected, the specificity of
this platform is an advantage because of noise reduction. The sensitivity of LCECA
and its ability to target key metabolic pathways that are sensitive to changes in the
environment is a great advantage, as is the ability of the system to detect changes in
redox potential and low levels of oxidant damage, each of which can be a hallmark of
drug effect.

Selecting a Platform

In an ideal setting, one platform would be able to accurately measure all compounds of
interest. In another ideal setting, a researcher would be able to examine the preceding
descriptions of platforms and make straight-forward, logical choices about the best
platform for use in his or her studies. A simple analogy would be the investigator
who sees a procedure of interest in a journal article and then follows that protocol in
their own laboratory. Unfortunately, metabolomics does not lend itself well to this
model. Instruments are expensive, and many of them require considerable skill to use.
Even an apparently standard analysis may be difficult to adapt to a slightly different
instrument, and many metabolomic analyses are currently being performed in ways
that involve at least one propriety reagent, piece of equipment, or software for data
reduction.

This complexity highlights at least two additional factors that must be considered:
instrument and sample availability. One approach, taken by some pharmaceutical and
biotechnology companies that specialize in metabolomic analysis, is the use of mul-
tiple instruments and/or multiple extraction regimens. This approach strengthens
the data obtained by playing to the strengths of individual instruments. For exam-
ple, one could obtain data for glucose and energy metabolism using NMR, assay
lipids with a GC platform, and measure neurotransmitters with an LCECA platform.
However, the majority of laboratories, especially in academic settings, lack access to
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multi-instrument platforms. Therefore, it is often necessary to consider the practical
limitations of available, adaptable, or obtainable instrumentation prior to beginning
an analysis. If the available instrumentation is not appropriate, then one might need
to establish collaborative interactions or explore metabolomic service facilities. A
similar issue is sample availability. In many cases biological specimens are limiting—
sometimes severely so—and multiple uses of these samples must also be taken into
account (e.g., clinical chemistry, proteomics, microarrays, specialized hormone as-
says). As a result, it is often critical to also consider the logistics of analysis from
the standpoint of what instrument would give the most information while requir-
ing the least sample? What information is most critical? Is the targeted analysis of a
few metabolites the most important goal? The trade-off is often between number of
metabolites, sensitivity, and precision of the measurements. These decisions must be
made before analyses are begun—ideally before the samples are collected.

Owing to space limitations, this review only addresses analytical platforms in a
simplified fashion. Many books have been written on NMR and MS, and annual MS
meetings include thousands of abstracts on improvements in technique. Therefore,
readers interested in pursuing metabolomic analyses should turn to primary sources
for more detailed information. The following references provide a starting point
(3, 14–16). Major additional sources of information include (a) Pubmed and related
sources; (b) Web sites, e.g., http://www.metabolomicssociety.org; (c) instrument
manufacturers (instruments are changing rapidly, and instrument manufacturers can
provide up-to-date data); (d ) analytical meetings; and (e) investigators active in the
field.

METABOLOMIC INFORMATICS TOOLS

The sheer size of the datasets obtained during metabolomic studies, as with any
-omics field, places limits on the utility of classical statistics, in particular the univari-
ate and other standard statistics most familiar to biologists. The art of informatics,
and in metabolomics it is still largely an art as opposed to a science, rests on the
ability to make the experimental design and the specific approaches taken match the
critical questions addressed by the study. Broadly speaking, the questions relevant
for pharmacometabolomic studies fall into one or more of the following groups:
(a) What happens to drug X in the context of condition Y?; (b) How does condition
Y alter the metabolism of drug X?; (c) Is drug X present?; (d ) How does drug X
alter the metabolism of compound Z or a family of compounds Z′?; (e) Can we use
metabolomics to make early, accurate predictions about whether drug X does (or will
do) action A?; and ( f ) Is drug X doing anything detectable?, and the closely related
statement, Tell me everything it does. Questions a, b, c, and d may be approached
using the analytical tools of metabolomics, but the informatic analysis essentially re-
duces to a problem with few variables, which are likely to be highly related. These
studies are appropriately addressed with classical statistical methods such as ANOVA
or t-tests with appropriate Bonferroni/false discovery rate corrections (66–68).

Question e covers all aspects of predictive pharmacology, including issues of effi-
cacy, safety, pharmacogenomics/pharmacometabolomics, etc. As a general rule, the
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informatics approaches required are conceptually well defined, and they fall exclu-
sively, or almost exclusively, in the realm of supervised analysis. In supervised analysis,
the investigator starts with one or more previously defined classes, and a series of
prior examples (termed a training set) that fall into each of these classes. One then
learns to recognize the training set using a series of mathematical approaches. As a
result, supervised techniques uncover the features (variables) that best discriminate
between those groups. Broadly speaking, supervised approaches involve tools that use
projection methods to define planes of maximal separation [SIMCA (soft indepen-
dent modeling of class analogy); PLS-DA (partial least squares projection to latent
structures discriminant analysis); O-PLS (orthogonal partial least squares) (69–71);
modified clustering/distance algorithms, e.g., kNN (k-nearest neighbor analysis); and
machine learning tools, e.g., genetic algorithms, genetic programs, artificial neural
networks]. Other supervised methods have also been applied to molecular fingerprint-
ing data, including ANOVA (72), partial least squares (PLS) (73), and discriminant
function analysis (DFA) (74). Each of these techniques has strengths and limitations
(e.g., severe overfitting concerns) that are beyond the scope of this brief overview.
However, essentially all use of supervised analysis requires eventual confirmation
with a test set—a series of examples independent of those used in the analysis of the
training set.

Question f covers situations that are orthogonal to the understood or predicted
aspects of drug effect. One example might include concerns over whether a drug
targeted elsewhere also alters cardiac or hepatic metabolism. Another example might
include an attempt to determine which of a series of drugs has more off-target effects.
Alternative examples include a search for potential subsets of patients who do and
do not respond to drug therapy or a search for potential interactions. Note that the
latter two examples, given sufficient background information, might also be covered
under question e. In the case where little is known, metabolomic analysis offers the
possibility of a high potential payoff.

At the data analysis level, the primary limitation to the analysis of data from hu-
man subjects lies in the sheer complexity of the data. Therefore, the tools of most
interest are those that simplify the data in some way. In general, the algorithms
of interest conduct what is referred to as unsupervised analysis. Unsupervised al-
gorithms identify patterns in the data without bias and are typically driven by the
largest changes (variance) in the dataset (75, 76). Examples of unsupervised meth-
ods that have been used routinely in analyzing molecular fingerprinting data are
hierarchical clustering (77), principal component analysis (PCA) (77, 78), and self-
organizing maps (77, 79). These methods are generally very sensitive to subtleties
of experimental design (59); outliers; and the way in which data has been collected,
scaled, normalized, or winsorized (a tool for reducing outlier effects) (61). These
methods are also sensitive to the specifics of the informatics analysis. These sen-
sitivities are such that, in some cases, apparently diametrically opposed results can
occur. Thus, exploratory analyses are primarily used in one of three ways: (a) to
look for very large and unexpected results that are stable across most or all condi-
tions tested; (b) to generate hypotheses for testing in the course of future studies,
i.e., to explore the dataset; and (c) to provide the best test possible for the absence
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of an effect, bearing in mind the fact that absence of evidence is not evidence of
absence.

Finally, the confines of this review preclude an in depth discussion of methods
for the analysis of metabolomic data. Although excellent texts exist (80, 81), readers
might be best served by following up this topic either with local experts in informatics
(including those conducting studies outside of metabolomics, such as investigators
involved in microarray analysis) and/or with the authors of relevant publications.

METABOLOMIC SIGNATURES AND DISEASE

Disease states perturb biochemical networks, resulting in new metabolomic signa-
tures. Several early metabolomic analyses of neurologic disease focused on motor
neuron disease (MND) in which the electrochemistry-based metabolomic platform
(LCECA) described above made it possible to map metabolic patterns that differ-
entiated patients from matched healthy controls. This example of the application of
metabolomics to disease pathophysiology is presented because it also introduces the
concept of signatures for drug response—a topic presented in greater detail below.

MNDs are a heterogeneous group of disorders that include amyotrophic lat-
eral sclerosis (ALS), upper motor neuron (UMN) disease, and lower motor neuron
(LMN) disease—all of which result in the death of motor neurons. It is unclear if
these diseases are related or whether similar pathways are deregulated during the
disease process. Metabolomic analysis of plasma from 30 healthy controls and of 28
patients with MND (19) using an LCECA platform resulted in the identification of
50 metabolites that were elevated in MND patients (Figure 4) and more than 70 that
were decreased (P < 0.05). Included among the elevated compounds were 12 that
were associated with riluzole therapy (Figure 4). Riluzole is a drug that is used to
treat these patients that inhibits glutamate release and is an antagonist at MNDA and
kainate-type glutamate receptors. This study was one of the first to define a metabolic
signature for a drug that reflected its pharmacodynamics because these metabolites
were not related to metabolism of the drug itself, but rather its effects on biochemical
pathways (19). It was possible to separate MND patients from controls on the basis of
their metabolomics signatures, as well as patients on and off drug therapy (19) (Figure
5). In a subsequent study of 19 subjects with MND who were not taking riluzole and
33 healthy control subjects, six compounds were found to be significantly elevated in
MND, whereas the number of compounds with decreased concentrations was similar
to that observed in the initial study (19). These MND data also revealed a distinctive
signature of highly correlated metabolites in a set of four patients with slow disease
progression, three of whom had LMN disease (Figures 4 and 5, indicated with an as-
terisk). These observations resulted in the initiation of much larger studies in patients
with MND that are ongoing (a project initiated by the National ALS Association that
includes Metabolon Inc., MGH Neurology, Duke Medical Center, and University of
Pittsburgh), in which signatures are being defined in the plasma and CSF of these pa-
tients using GC-MS and LC-MS platforms to define the nature of the compounds that
differentiate MND patients from healthy control subjects and to define subsignatures
for each class. The chemical identity of these metabolites may highlight pathways
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Figure 4
The heat map of metabolomic data for MND patients and controls. The figure shows
metabolites with significantly higher concentrations in plasma samples from MND patients
than in control subjects. Each row represents a metabolite, and each column represents a
healthy control or a patient, with each colored square representing the relative concentration
of a single metabolite in a single subject. Compounds are on the basis of decreasing association
with MND. Significant association measures at P = 0.05 are indicated by black dots to the
right. Association measures for actual data are indicated by red dots. The metabolites that are
elevated in MND define three subgroups that consist of patients not taking riluzole, patients
taking riluzole, and four patients (indicated by an asterisk) with a distinctive signature. Three
of these distinctive patients had LMN disease. With kind permission from Springer Science
and Business Media (19).

related to disease pathophysiology and/or response to drug therapy. Metabolomic
signatures for patients with MND are also being compared with signatures for other
CNS disorders to define the sensitivity and specificity of these signatures as poten-
tial diagnostic biomarkers. They are also being reevaluated as the disease process
progresses in an attempt to define biomarkers for disease progression. Additionally,
metabolic profiling for patients with ALS, UMN, and LMN might provide further
insights about how closely related these motor neuron disease are and could help
define common and unique pathways implicated in disease pathogenesis.

This single example illustrates the fact that it requires significant effort to define
biomarkers that are predictive and disease-specific. In this case, it was important to
compare central and peripheral effects to define a set of metabolites that might be
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Control

MND (no riluzole)

MND and riluzole

*

Figure 5
PLS-DA distinguished subgroups of MND patients and controls. Models using projections
into three dimensions provided statistically significant separations between subgroups
(P < 0.01 by permutation test—random assignment of samples to subgroups). Red are control
subjects; purple are MND patients on riluzole; blue are MND patients not on riluzole; and
black are atypical MND patients, three of whom had LMN disease (indicated by an asterisk).
With kind permission from Springer Science and Business Media (19).

disease-specific. A great deal of work will still be required to determine the significance
of these observations, to identity the structures of the molecules that underlie these
signatures, and to confirm these preliminary findings in adequately powered clinical
studies. The possible contributing effects of confounding factors such as life style,
other disease conditions, and effects of other medications have to be dealt with and
factored out of metabolic signatures. However, examples of this type support the
hypotheses that a disease can result in a new biochemical state that is long lasting and
can be captured as a metabolic signature. Subclasses of disease based on metabolomic
signatures are also starting to emerge, and these early examples are setting the stage
for studies of other neurological and neuropsychiatric disorders, such as Parkinson’s,
Huntington’s, depression, schizophrenia, substance abuse, and dementia. The next
section focuses on the application of metabolomics to characterize drug-response
signatures.

METABOLOMIC SIGNATURES AND DRUG-RESPONSE
PHENOTYPES

A major potential application of metabolomics involves the definition of pathways
that contribute to drug response phenotypes. That type of study could provide in-
formation with regard to the pharmacokinetic and pharmacodynamic properties of a
drug, as well as insight into mechanisms responsible for individual variation in drug
response. The global mapping of signatures pre- and post drug treatment is already
teaching us that metabolomic signatures can highlight biochemical pathways that may
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be targets for drugs (9, 44, 45, 82–87). That information can confirm what is already
known with regard to drug effect. However, we also often observe new pathways that
have not previously been identified as therapeutic targets. The mapping of signatures
in good and poor responders could also identify pathways of importance for variation
in response to therapy. A series of recent examples are used to illustrate the potential
of metabolomics to inform research related to drug response. The examples high-
lighted subsequently utilized different metabolomic analytical platforms and applied
them to study samples from both humans and experimental animals, but, in all cases,
the purpose was to take a global approach to help define drug mechanisms and/or
mechanisms responsible for drug side effects. Examples described in subsequent para-
graphs include metabolomic studies of atypical antipsychotic agents in patients with
schizophrenia, of HMG-CoA reductase inhibitors in hyperlipidemic patients, of the
antidiabetic drug rosiglitazone in both humans and mice, and of the antineoplastic
agent cisplatin, as well as a series of potentially hepatotoxic compounds in rodents.
As a group, these studies provide an outline of the nature and breadth of data that
metabolomics could potentially provide to help inform pharmacologic research.

Schizophrenia is a debilitating psychiatric disease characterized by psychosis, neg-
ative symptoms and neurocognitive deficits (88). Theories of the pathophysiology of
schizophrenia have centered on neurotransmitters and their receptors, and drugs
used to treat this disease have largely targeted the dopamine, serotonin, and gluta-
mate neurotransmitter systems (89–91). Although those drugs are effective, there are
large individual variations in response to treatment and development of side effects
(92–95). Phospholipids, compounds that play a critical role in the structure and func-
tion of membranes, seem to be impaired in schizophrenia (96). In addition, there
has been growing concern with regard to the potential for antipsychotic drugs, es-
pecially clozapine and olanzapine, to cause adverse metabolic effects, such as weight
gain, hyperglycemia, and hypertriglyceridemia (97). However, not all patients develop
metabolic side effects, and mechanisms responsible for this individual variation are
poorly understood. Furthermore, it is not known if these side effects are correlated
with drug efficacy, and some antipsychotics, e.g., aripiprazole, have fewer of these
side effects than do other drugs (98).

Metabolomics has recently been applied in an attempt to better define pathways
modified by antipsychotic drugs. One study (23) used a specialized lipidomics plat-
form that measures more than 300 polar and nonpolar lipid metabolites across 7 lipid
classes to evaluate global lipid changes in schizophrenia after treatment with three
commonly prescribed atypical antipsychotics, olanzapine, risperidone, and aripipra-
zole. Lipidomics is a branch of metabolomics that specifically focuses on a range of
polar and nonpolar lipid metabolites, making a comprehensive assessment of lipid
biochemistry possible (36, 99, 100). In this particular study, lipid profiles were ob-
tained for 50 patients with schizophrenia before and after 2–3 weeks of treatment
with olanzapine (N = 20), risperidone (N = 14), or aripiprazole (N = 16) (23). At
baseline, and prior to drug treatment, major changes were noted in two phospholipid
classes, phosphotidylethanolamine (PE) and phosphotidylcholine (PC) (23), suggest-
ing that phospholipids that play a key role in proper membrane structure and function
seem to be impaired in patients with schizophrenia. Detailed perturbations within
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the omega 3 and omega 6 subclasses in PE and PC were also mapped as well as shifts
between saturated and ploy unsaturated fatty acids (23). Effects of three antipsychotic
drugs, olanzapine, risperidone, and aripiprazole, on lipid biochemical pathways were
then evaluated by comparing metabolic profiles at baseline to post treatment (23;
Figures 6, 7, and 8).

It was of interest that each of the three drugs studied had a unique signature (23;
Figure 6) suggesting that these drugs while they have few effects in similar they also
have many effects that are unique for each. Phosphatidylethanolamine concentrations
that were decreased at baseline in patients with schizophrenia were elevated after
treatment with all three drugs. However, olanzapine and risperidone affected a much
broader range of lipid classes than did aripiprazole, with approximately 50 lipids
that were increased after exposure to these drugs, but not after aripiprazole therapy
(23; Figure 6). On balance, aripiprazole induced minimal changes in the lipidome
(Figure 6), consistent with its limited metabolic side effects.

Figure 7 shows metabolites that were down regulated in patients with schizophre-
nia as compared to controls and the effects of the three drugs on reverting some of
these baseline defects (for full analysis see 23). Figure 8 shows key changes that were
noted after treating with olanzapine (green represents down regulated and red rep-
resents upregulated) and compares which of these changes were also seen with the
other drugs.

There were also increased concentrations of triacylglycerols and decreased free
fatty acid concentrations after both olanzapine and risperidone, but not after arip-
iprazole therapy (23; Figure 6). All of these changes suggest peripheral effects that
might be related to the metabolic side effects that have been reported for this class
of drugs and highlights lipases in the liver as possibly targets for these drugs. Finally,
a principal component analysis identified baseline lipid alterations that seemed to
correlate with acute treatment response (Figure 9). These results raised the pos-
sibility that a more definitive long-term randomized study of these drugs in which
global lipid changes would be correlated with clinical outcomes might yield biomark-
ers related to response and development of side effects. This study of atypical an-
tipsychotic drugs illustrates the way in which metabolomics might contribute to
our understanding of drug response phenotypes and how it provides tools to ana-
lyze pathways implicated in variation to response for this class of drugs. The next
example involves the statins, a major class of drugs used to treat cardiovascular
disease.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Figure 6
Heat map showing differences in individual lipid metabolites in the plasma of patients with
schizophrenia posttreatment as compared with pretreatment with olanzapine (top panel ),
risperidone (middle panel ), and aripiprazole (bottom panel ). Fatty acid metabolites are shown as
they appear in each distinct lipid class. The percent increase in any lipid upon treatment with
drug is shown in red squares and decrease in green squares as described in Reference 23. The
brightness of each color corresponds to the magnitude of the difference in quartiles. The
brighter the square the larger the difference. Reprinted by permission from Macmillan
Publishers Ltd, Mol. Psychiatry, Apr 17 [Epub ahead of print], copyright 2007.
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Figure 7
Lipidomic analysis of defects in patients with schizophrenia and effect of three antipsychotic
drugs. The heat map shows the most significantly down regulated lipid metabolites in plasma
of patients with schizophrenia as compared with controls and the effect of the three drugs in
reversing some of these differences. Quantitative data (expressed in nanomole per milliliter
sample) were used to calculate the percent increase (red squares) or decrease (green squares) in
lipids in unmedicated patients with schizophrenia pretreatment as compared with control
subjects (baseline). For full analysis of metabolites that are both up- and downregulated at
baseline, see Reference 23. The significance of differences was analyzed by unpaired t-test.
Similar quantitative data were used to calculate the percent increase (red squares) or decrease
( green squares) of lipids in patients post treatment as compared with pretreatment (23).
Significance of differences was analyzed by paired t-test. The four brightness levels
correspond to percentage differences between the groups of 0%–25% (darkest), 25%–50%
(next brightest), 50%–75% (next brightest), and >75% (brightest). Differences not meeting the P
< 0.05 value are shown in black. Modified from Reference 23.

In the case of the statin study, a lipidomics platform and gene expression as-
says were used by Laaksonen et al. (101) to map the effects on muscle pathways of
two HMG-CoA reductase inhibitors, atorvastatin, and simvastatin. Myopathy is a
rare side effect of statins that appears especially when these drugs are used at high
doses. This group of investigators observed that multiple skeletal muscle metabolic
and signaling pathways, including proinflammatory pathways, seemed to be targets
for high doses of simvastatin, but not atorvastatin. A parallel analysis of the ef-
fect of these drugs on blood lipid profiles was performed in an attempt to define
biomarkers for statin-induced metabolic alterations in muscle that might make it
possible to identify patients who should be treated with a lower dose of drug to pre-
vent myopathy. Atorvastatin and simvastatin treatment resulted in specific plasma
lipidome signatures, suggesting that lipidomic analysis might help to make it pos-
sible to select specific lipid-lowering agents for use by individual patients. Ongoing
studies conducted by the NIH-Metabolomics Research Network for Drug Response
Phenotype are defining global lipid changes in good and poor responders—based
on changes in LDL levels—to simvastin treatment. Initial findings have demon-
strated that far more lipid classes are changed in responders than in nonresponders
(R. Kaddurah-Daouk, S. Watkins, M. Wiest, R. Baillie, R. Weinshilboum, and
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Figure 8
Lipidomic analysis of effect on olanzapine on patients with schizophrenia and a comparison to
effects seen by other drugs. The heat maps show the most significantly modified lipid
metabolites in plasma of patients treated with these drugs. The top panel shows metabolites
down regulated by olanzapine, but not by the other two drugs. The bottom panel shows
metabolites upregulated by olanzapine, but only a subset of those metabolites were also
modified by the other two drugs. Quantitative data (expressed in nanomole per milliliter
sample) were used to calculate the percent increase (red squares) or decrease ( green squares) of
metabolites in schizophrenic patients post treatment as compared with pretreatment. The
significance of differences was analyzed by paired t-test. The four brightness levels correspond
to percentage differences between the groups of 0%–25% (darkest), 25%–50% (next brightest),
50%–75% (next brightest), and >75% (brightest). Differences not meeting the P < 0.05 value
are shown in black. Modified from Reference 23. Permission from Macmillan Publishers Ltd.,
Mol. Psychiatry, Apr 17 [epub ahead of print], copyright 2007.

R. Krauss, unpublished data). Metabolomics tools could define pathways implicated
in statin drug response phenotypes, which includes both therapeutic benefit and side
effects.

In a third example involving human subjects, van Doorn et al. (37) applied
1H-NMR spectroscopy to profile blood plasma and urine samples from patients with
type 2 diabetes before and after treatment with rosiglitazone, a drug that activates
PPARγ nuclear receptors. Metabolic profiles were compared with those of healthy
volunteers. Rosiglitazone treatment led to reductions in urinary hippurate and aro-
matic amino acid concentrations; increases in plasma branched-chain amino acid,
alanine, glutamine, and glutamate concentrations; and significant changes in plasma
lipids in diabetic patients. No drug effects were noted in the healthy control sub-
jects. This study demonstrated, once again, the potential of metabolomics to define
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Figure 9
Lipidomic analysis of data for schizophrenic patients treated with atypical antipsychotic drugs.
Principle component analysis for clinical global impressions (CGI) scale changes in
schizophrenic patients after treatment. Logistic regression was used to identify pretreatment
lipid metabolites that were related to response (responders, those who had a CGI change
scores of 1–2; nonresponders, those who had scores of 3–6). Principle component analysis was
then applied to these metabolites, and separation of the groups was visualized with a scatter
plot of the first (PC1) versus the second (PC2) principal component. Red squares are subjects
who responded to drug treatment with a CGI change score of 1–2. Blue circles are subjects
who do not respond to drug treatment and who had a CGI change score of 3–6. Reprinted by
permission from Macmillan Publishers Ltd, Mol. Psychiatry. Apr 17 [Epub ahead of print],
copyright 2007.

global biochemical effects of drugs, information that—especially when wedded to
genomic, transcriptomic and proteomic data—might help understand drug mecha-
nisms. In a related study performed with mice, Watkins et al. (36) used a targeted
lipidomics platform to study the effects of rosiglitazone in a genetic mouse model of
diabetes in which the antidiabetic action of this drug was accompanied by excessive
weight gain. They observed significant tissue-specific effects of drug treatment on
lipid metabolism. A cross-species comparison in which metabolic signatures of drugs
in animal models, such as this genetic mouse model, and in humans could provide
information with regard to the potential relevance of specific animal models in drug
discovery, as well as additional insight into the mechanism(s) of drug action.

Another example of the application of metabolomics to study drug mechanisms
in experimental animals is the work of Portilla et al. (39). Those investigators used
1H-NMR spectroscopy to study the response of mice to a single injection of the
antineoplastic agent cisplatin. Nephrotoxicity is a side effect when cisplatin is used
in the clinic. They observed marked changes in the urinary metabolic profile af-
ter drug exposure that preceded changes in common biomarkers of nephrotoxicity,
such as blood urea nitrogen or serum creatinine. PCA demonstrated the presence
of glucose, amino acids, and trichloroacetic acid cycle metabolites in the urine 48 h
after cisplatin administration. These metabolic alterations preceded changes in serum
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creatinine levels. Biochemical studies confirmed the presence of glucosuria, but also
demonstrated the accumulation of nonesterified fatty acids and triglycerides in serum,
urine, and kidney tissue, in spite of increased levels of plasma insulin. Most of these
metabolic alterations were ameliorated by the administration of a PPARα ligand.
Although it remains unclear as to which of these metabolic changes, if any, might be
related to nephrotoxicity, this work may represent a step toward defining predictive
biomarkers for this adverse drug reaction.

The final example involves the use of experimental animals to perform a study
of drug-induced hepatotoxicity. Hepatotoxicity is a common and potentially serious
adverse response to drug exposure. For example, acetaminophen (paracetamol) can
cause potentially life-threatening drug-induced hepatotoxicity (102, 103). In a recent
metabolomic study, male Sprague-Dawley rats were treated with three hepatotoxins,
galactosamine, allyl alcohol, and acetaminophen, and both pre- and postdrug exposure
urine samples were subjected to NMR analysis (38). A model was then developed that
used predrug metabolomic data to predict both acetaminophen glucuronide conjugate
to parent drug ratio and postacetaminophen hepatotoxicity (class 1, no or minimal
hepatic necrosis, to class 3, moderate necrosis). The major predrug compounds in
the urine that were associated with postacetaminophen hepatotoxicity were taurine,
trimethylamine-N-oxide (TMAO), and betaine. A higher predrug urinary taurine
level was associated with more class 1 than class 3 hepatic histology, whereas higher
combined predrug concentrations of TMAO and betaine were associated with more
class 3 than class 1 histology (38).

These examples of pharmacometabolomics, studies conducted with both humans
and experimental animals, studies that used several different analytical platforms, all
serve to demonstrate the potential of metabolomics to enhance our understanding of
drug mechanisms or adverse drug reactions. Metabolomics also could, when united
with other high-throughput, data-intense techniques (Figure 1), help us move toward
the goal of individualized drug therapy.

METABOLOMICS AND INDIVIDUALIZED DRUG THERAPY

Metabolomics, as illustrated in the preceding paragraphs, has the potential to con-
tribute significantly to our understanding of mechanisms of drug action. However, it
also provides comprehensive and accurate biochemical phenotypes for drug response
well beyond those previously available, so an additional application of metabolomics
in pharmacology would involve individualized drug therapy (104–109). The range
of types of data available to help us move toward individualized approaches that will
make it possible to understand and predict variation in drug response is depicted
schematically in Figure 1. That figure shows the genome at one end of the spec-
trum, with the metabolome at the other, followed by clinical response. Our ability
to systematically query the human genome has grown exponentially—culminating in
a recent series of successful genome-wide association studies in which over 500,000
single nucleotide polymorphisms (SNPs) were assayed across the genome in every
DNA sample studied—using DNA from thousands of individual subjects in each
study (110–112). Genomics and metabolomics can identify genes and metabolites,
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respectively, that might lie in pathways outside of our current knowledge of drug
pharmacokinetics and pharmacodynamics. The union of genome-wide genotyping
techniques with metabolome-wide data that can provide sophisticated biochemical
phenotypes based on the assay of thousands of small molecules opens the way for
major advances in our ability to define biological mechanisms responsible for differ-
ences among patients in risk for the occurrence of variation in drug efficacy, as well
as adverse drug reactions.

CONCLUSIONS

Metabolomics, the study of the complete repertoire of small molecules in cells, tissues,
organs, and biological fluids, represents a major and rapidly evolving component of
the new biology. The development of a series of analytical platforms, NMR, GC-MS,
LC-MS, and LCECA, all capable of accurately measuring hundreds or thousands of
small molecules in biological samples, promises to substantially advance our under-
standing of disease pathophysiology and to make it possible to discover biomarkers
for disease risk. However, few areas of biomedical research stand to benefit more from
the application of metabolomics than do pharmacology and toxicology. There can be
little doubt that the addition of pharmacometabolomic analyses to genomic, transcrip-
tomic and proteomic assays will greatly enhance our understanding of mechanisms
of drug effect, of adverse drug reactions, and of the biology underlying individual
variation in drug response phenotypes.
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