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Abstract: 12 

          Probiotics merit testing as alternatives to conventional antibiotics and are receiving 13 

increased attention for efficacy against multi-drug resistant pathogen infections. This study 14 

hypothesis was that the Gram-positive probiotic, L. rhamnosus GG (LGG) and Gram-negative E. 15 

coli Nissle (ECN) secrete distinct proteins and metabolites to suppress pathogen growth. LGG 16 

and ECN cell free supernatants were tested in a dose-dependent manner for differential growth 17 

suppression of Salmonella Typhimurium, Escherichia coli, and Klebsiella oxytoca that harbor 18 

antimicrobial resistance (AMR). Across supernatant doses, LGG was 6.27% to 20.55% more 19 

effective than ECN at suppressing AMR pathogen growth. Proteomics and metabolomics were 20 

performed to identify pathways that distinguished LGG and ECN for antimicrobial functions. 21 

From the 667 detected metabolites in probiotic cell free supernatants, 304 metabolites had 22 

significantly different relative abundance between LGG and ECN, and only 5 and 6 unique 23 

metabolites were identified for LGG and ECN respectively. LGG and ECN differences involved 24 

amino acid, energy and nucleotide metabolism. Proteomics analysis of ECN and LGG cell free 25 

supernatants identified distinctions in 87 proteins, where many were related to carbohydrate and 26 

energy metabolism. Integration of genome-proteome-metabolome signatures from LGG and 27 

ECN with predictive metabolic modeling supported differential use of substrates by these two 28 

probiotics as drivers of antimicrobial actions. ECN metabolized a range of carbon sources, 29 

largely purines, whereas LGG consumed primarily carbohydrates. Understanding functional 30 

biosynthesis, utilization and secretion of bioactive metabolites and proteins from genetically 31 

distinct probiotics will guide strategic approaches for developing antibiotic alternatives and for 32 

controlling spread of multi-drug resistant pathogens. 33 

 34 

Importance 35 
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          Probiotics are practical alternatives for protection against antimicrobial resistant 36 

pathogens. Bioactive probiotics molecules merit further investigation using high throughput -37 

omic approaches. This study identified functional differences between Gram-positive L. 38 

rhamnosus GG (LGG) and Gram-negative E. coli Nissle (ECN) probiotics that suppressed the 39 

growth of antimicrobial resistant S. Typhimurium, K. oxytoca, and E. coli. Proteomes and 40 

metabolomes of the probiotic cell free supernatants showed metabolic differences between LGG 41 

and ECN for mediating pathogen growth suppression. Metabolites distinguishing LGG versus 42 

ECN growth suppression included carbohydrates, lipids, amino acids, and nucleic acids. The 43 

metabolic flux differences between ECN and LGG, which coincided with observed separations 44 

in the proteomes and metabolomes, was hypothesized to explain the differential suppression of 45 

AMR pathogens. Integrated metabolite and protein signatures produced by each probiotic merit 46 

attention as adjuvant therapeutics for antimicrobial resistant infections. 47 

 48 

Keywords: Antimicrobial resistance, probiotics, cell free, supernatants, growth suppression, 49 

proteome, metabolome 50 

 51 

Introduction 52 

Probiotic microorganisms have been largely explored for their capacities to suppress 53 

pathogen growth. Conventional paradigms consider the broad-acting mechanisms by which 54 

probiotics antagonize pathogens, such as competitive exclusion of pathogens in host tissues, 55 

production of organic acids, and modulation of host immunity [1]. Few studies exist for 56 

comparison of probiotics, although there is evidence that they have species and strain-dependent 57 

differences in AMR pathogen growth suppression [1-6]. According to the World Health 58 
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Organization and Centers for Disease Control, the burden of AMR infections from  59 

Enterobacteriaceae accounts for ~423,000 infections annually and adds ~$1.5 billion to 60 

healthcare costs [7, 8]. Among AMR Enterobacteriaceae, the non-typhoidal Salmonella and most 61 

frequently S. Typhimurium, is a key global cause of diarrheal diseases that accounts for 62 

approximately 1.2 million illnesses each year in the United States alone [9]. A large body of 63 

research has characterized the spread of AMR E. coli isolated from people, livestock, and in 64 

environmental waters, and there are reports of human clinical infections with E. coli susceptible 65 

to last-resort antimicrobial agents, including colistin [10, 11]. Klebsiella species, including K. 66 

pneumoniae and K. oxytoca are also part of the Enterobacteriaceae family. These species are 67 

normally present in environmental samples and notable for causing hospital and community-68 

acquired opportunistic infections in the urinary tract, respiratory tract, and bloodstream [12]. 69 

Klebsiella species readily form biofilms [13] that contributes to innate AMR, and making them 70 

particularly difficult to eradicate [12, 14].  71 

Gram-positive probiotic Lactobacillus rhamnosus GG (LGG)  and the Gram-negative 72 

probiotic Escherichia coli Nissle (ECN) have been well-characterized in their capacities to 73 

antagonize antimicrobial-resistant Enterobacteriaceae [15, 16]. Recent studies illustrate that they 74 

differentially regulate host gut immunity to protect against enteric infections [17], suggesting 75 

that they may also function to antagonize pathogens through distinct mechanisms. Additional 76 

investigations have identified bioactive small molecules, including multiple amino acids, 77 

carbohydrates and lipids, that are produced by LGG and ECN that contribute to their anti-78 

pathogen activities [18-21]. Other investigations have identified proteome and genome markers 79 

in LGG and ECN including genes that regulate the production of lipids, amino acids, and energy 80 

metabolites for anti-cancer, anti-inflammatory, and pathogen-protective capacities [19, 21, 22], 81 
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suggesting that these chemical classes are important small molecule contributors to their 82 

antimicrobial activity.  83 

This study was designed to examine and establish mechanisms by which the cell free 84 

supernatants from Gram-positive and Gram-negative probiotics, namely LGG and ECN, 85 

differentially function to suppress AMR pathogens, E. coli, S. Typhimurium, and K. oxytoca. 86 

This study hypothesis was that differential nutrient metabolism by LGG and ECN leads to 87 

production of distinct antimicrobials that exhibit dose-dependent differences in growth 88 

suppression of antimicrobial resistant pathogens, namely S. Typhimurium, Klebsiella, and E. 89 

coli. The composition of cell free supernatants from Gram-positive and Gram-negative 90 

probiotics, namely LGG and ECN, that suppress E. coli, S. Typhimurium, and K. oxytoca growth 91 

was assessed by an integrated, non-targeted metabolomics, proteomics, and metabolic network 92 

analysis. Metabolic differences between a Gram-positive and Gram-negative probiotic for 93 

antimicrobial functions represents a novel approach with broad-spectrum applications to 94 

environmental, animal and human health. 95 

 96 

Results 97 

Phenotypic and genotypic characterization of three AMR pathogens            98 

E. coli, S. Typhimurium, and K. oxytoca pathogens were screened for phenotypic AMR 99 

against five representative drug classes using Kirby-Bauer disk diffusion (Table 1). All three 100 

pathogens were resistant to the beta-lactam drugs ampicillin and cefazolin. In addition, S. 101 

Typhimurium displayed multidrug resistance by displaying additional resistance to the 102 

aminoglycoside drug gentamicin as well as tetracycline. To further characterize AMR genes by 103 

E. coli, S. Typhimurium, and K. oxytoca, the genomes were BLAST (Basic Local Alignment 104 
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Search Tool)-searched against a routinely curated AMR gene database (Fig. 1). One hundred and 105 

twelve antimicrobial genes spanning 15 functional classes were identified across the three 106 

pathogens (Fig. 1& File S1). Many of the genes encoded multidrug resistance efflux pumps and 107 

efflux pump regulators across the three pathogens and were followed by beta-lactam resistance 108 

genes including class A, B and C beta lactamases and penicillin binding proteins. Gene classes 109 

that distinguished the three pathogens were multi-drug resistance ribosomal target modifiers 110 

detected exclusively in S. Typhimurium, tetracyclines detected only in E. coli, and phenicols, 111 

rifampins and regulator proteins identified exclusively in the K. oxytoca genome.  112 

  113 

Differential AMR pathogen growth suppression by L. rhamnosus GG and E. coli Nissle cell free 114 

supernatants 115 

          LGG and ECN supernatants dose dependently (12% v/v to 25% v/v) decreased AMR S. 116 

Typhimurium, E. coli, and K. oxytoca growth. Fig. 2 shows the minimum inhibitory cell free 117 

supernatant dose-response for each pathogen, defined as the dose of supernatant that enhanced 118 

pathogen growth suppression compared to the vehicle control. Next, the percent growth 119 

inhibition was calculated for each probiotic supernatant relative to the vehicle control. Across all 120 

three AMR pathogens and for each probiotic supernatant concentration, LGG was 6.27% to 121 

20.55% more effective at suppressing pathogen growth when compared to ECN (Fig. 2). Fig.  S1 122 

shows the quantification and comparisons for ECN and LGG growth suppression for each 123 

pathogen at 4h intervals.  124 

          The 12% v/v was the minimum supernatant dose at which both LGG and ECN 125 

supernatants achieved growth suppression of S. Typhimurium (Fig. 2A). LGG suppressed S. 126 

Typhimurium growth between 4.33h-16.00h (p<0.0001), and ECN between 13.33h-16.00h 127 
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(p<0.05) when compared to the vehicle control treatment. Maximal S. Typhimurium growth 128 

suppression was achieved at 5.33h for LGG (41.20%, p<0.0001) and at 13.67h for ECN 129 

(11.48%, p<0.01). LGG supernatant was 6.27% more effective at suppressing S. Typhimurium 130 

growth compared to ECN (p<0.0001, 8.33h). 131 

          The 18% v/v supernatant dose was the lowest dose where LGG and ECN supernatant 132 

suppressed E. coli growth compared to the vehicle control (Fig. 2B). At this dose, LGG 133 

supernatant suppressed E. coli growth 30.40% more than the vehicle control (p<0.0001, 4.67h) 134 

and ECN supernatant was 29.45% more effective than the vehicle control (p<0.0001, 5.00h). 135 

When comparing probiotic supernatants, LGG was 20.55% more effective than ECN at 136 

suppressing E. coli growth (p<0.0001, 16.00h).  137 

          For K. oxytoca, the 12% v/v supernatant was the lowest dose where LGG and ECN 138 

achieved growth suppression versus the vehicle control (Fig. 2C). At this dose, LGG suppressed 139 

K. oxytoca growth between 3.00h-16.00h and achieved a maximal percent growth of 28.85% 140 

suppression at 7.33h (p<0.0001). ECN suppressed K. oxytoca growth earlier than LGG, between 141 

3.00h-16.00h and reached maximal growth suppression of 23.86% at 3.33h (p<0.005). At 142 

maximal growth suppression, LGG was 19.30% more effective than ECN at suppressing K. 143 

oxytoca growth (p<0.0001, 11.00h).  144 

 145 

E. coli Nissle and L. rhamnosus GG cell free supernatants exhibit differences in metabolic 146 

pathways and metabolite production  147 

          Given that LGG supernatant was more effective at suppressing growth of all three AMR 148 

pathogens tested when compared to ECN supernatant (Fig. 2), we next applied a global, non-149 

targeted metabolomics analysis to the probiotic cell free supernatants. A total of 667 metabolites 150 
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were detected in the LGG and ECN supernatant metabolomes, and the major metabolomic 151 

differences between LGG and ECN are depicted in Fig. 3. The complete metabolome is provided 152 

in  File S2. Among the 667 detected metabolites, 412 metabolites were characterized: 155 amino 153 

acids, 28 carbohydrates, 10 energy metabolites, 63 lipids, 61 nucleotides, 44 xenobiotics/other 154 

metabolites, 32 peptides, and 19 cofactors and vitamins. Two-hundred and fifty-five metabolites 155 

were unnamed and reported by their mass to charge ratio (m/z) and retention index (RI). Of the 156 

667 total metabolites detected, 304 were differentially abundant (p<0.05) between LGG and 157 

ECN with only 5 and 6 unique metabolites identified respectively. Fig. 3A shows common, 158 

shared, and unique metabolites among ECN, LGG, and MRS broth. Principal coordinates 159 

analysis for metabolite median-scaled abundances showed a clear separation of ECN versus 160 

LGG metabolomes (Fig. 3B). A complete list of metabolites with statistically different median-161 

scaled abundances is provided in  Table S1. Fig. 3C shows the top 50 metabolites ranked 162 

according to statistical p-value differences between LGG and ECN, where the median-scaled 163 

abundance in fold-difference between ECN versus LGG is depicted. A complete list of 164 

differentially abundant metabolites between LGG versus ECN supernatants are reported in Table 165 

S1.   166 

 Pathway enrichment scores (PES) were calculated to evaluate the contribution of 167 

metabolic pathways to metabolites with significantly different abundances for ECN versus LGG 168 

Fig. 3D. Amino acids accounted for 42.3% of metabolite profile differences between ECN and 169 

LGG. Polyamine metabolism (PES 1.10) contained the metabolite cadaverine (37.46 -fold higher 170 

in ECN versus LGG supernatant, p<1.00E-30), which has been reported to enhance the 171 

effectiveness of carboxypenicillins against P. aeruginosa [23]. Agmatine (11.35-fold higher in 172 

ECN versus LGG supernatant) also has some antiviral activity [24] and antimalarial effects [25] 173 
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as well as antibacterial effects [26, 27]. Methionine, cysteine, S-adenosyl methionine and taurine 174 

metabolism also distinguished ECN versus LGG metabolism with methionine sulfone (0.36-fold 175 

lower in ECN vs LGG, p<0.001) and methionine sulfoxide (0.090-fold lower in ECN vs LGG, 176 

p<1.00E-30). Methionine sulfoxide has been reported to enhance penicillin susceptibility of 177 

highly refractory Gram negative organisms [28] and methionine sulfone was shown to impair 178 

glutamate and methionine metabolism in Salmonella, Klebsiella, and other pathogens [29, 30]. 179 

          Nucleotides accounted for 23.1% of metabolic pathway differences when comparing ECN 180 

to LGG with xanthine, inosine (PES 2.11), uracil (PES 2.80) and guanine metabolism (PES 181 

2.47). Hypoxanthine was 5.17-fold higher in ECN versus LGG supernatant, and whose oxidation 182 

to xanthine has been shown to produce antibacterial reactive species [31]. Carbohydrate 183 

metabolism contributing to metabolite profile differences between ECN and LGG involved 184 

glycolysis and gluconeogenesis (PES 1.21). Glycolytic metabolites included glucose 6-phosphate 185 

(0.060 fold lower in ECN versus LGG, p<1.00E-30), and lactate (0.31 fold lower in ECN versus 186 

LGG, p<1.00E-10), which have shown direct bactericidal effects on Gram-negative bacteria 187 

[32].   188 

          In addition to metabolites that were differentially abundant between ECN and LGG, 189 

metabolome analysis also revealed distinct metabolites from MRS broth that are depleted or 190 

accumulated only in LGG or ECN supernatant respectively, (File S3).  191 

 192 

Distinct proteome compositions for E. coli Nissle and L. rhamnosus GG supernatants: 193 

          The non-targeted proteome of ECN and LGG cell-free supernatants was explored for 194 

mechanistic contributions to AMR pathogen growth suppression (Fig. 4). The complete probiotic 195 

cell free supernatant proteome, protein accession numbers, and gene-ontology terms are provided 196 
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in File S4 for 130 total proteins. Forty-nine of these proteins were from animal origin as arising 197 

from culture media-broth and were excluded from downstream analysis. Of the remaining 198 

proteins, 67 had ECN origin and 14 proteins had LGG origin specificity and only one protein, 199 

glyceraldehyde 3- phosphate dehydrogenase, was identified in both ECN and LGG supernatants 200 

(Fig. 4A).  201 

     The LGG supernatant proteome is classified in Fig. 4B. Notably, the glycolysis enzyme 202 

glyceraldehyde 3-phopshate dehydrogenase represented 1.47% of the LGG supernatant 203 

proteome, Other proteins identified included the CHAP (cysteine and histidine-dependent 204 

aminohydrase/proteases) and at hydrolase domain protein (2.73%). The remaining 3 proteins 205 

detected in LGG supernatant were uncharacterized. In the ECN supernatant-proteome, proteins 206 

involved in carbohydrate metabolism (14 proteins) and amino acid metabolism (8 proteins) were 207 

identified (Fig. 4C). Among carbohydrate metabolism proteins, the glycolysis enzyme 208 

glyceraldehyde 3-phosphate (1.93% abundance) was the most elevated, whereas contributions 209 

from enolase (1.81%), another glycolytic protein, were also observed. Major contributors to 210 

amino acid metabolism included the aspartate metabolism enzyme aspartate ammonia lyase (3.59 211 

% of total proteome abundance) and glutamine-binding periplasmic protein (3.28% abundance) 212 

that is responsible for glutamine transport. 213 

 214 

Metabolic modeling predicts metabolites and proteins contributing to pathogen growth 215 

suppression using E. coli Nissle and L. rhamnosus supernatants 216 

          Under the assumption that depletion and accumulation of metabolites identified in the cell 217 

free supernatants were caused by metabolite consumption and production by the probiotics, 218 

metabolic modeling was used to explore the differential dependencies of ECN and LGG on 219 
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metabolites and associated metabolic enzymes for ATP production (i.e. growth promotion). Fig. 220 

5 shows the simulated flux distributions for LGG and ECN, which reflect their differential use of 221 

carbon sources. Flux distributions were simulated by performing parsimonious flux balance 222 

analysis (pFBA) on draft metabolic models for the two probiotics (reconstructed using KBase) 223 

constrained by the relative metabolite consumption and production observed in the metabolomics 224 

data. Of the 667 metabolites detected in the supernatant metabolome, 204 metabolites were 225 

present in at least one of the reconstructed models.  226 

The ECN supernatant-metabolite profiles revealed the capacity for ECN to metabolize a 227 

range of carbon sources, such as sugar, nucleoside, amino acid, glycerophospholipid, whereas 228 

LGG consumes primarily carbohydrates. Both organisms rely on the lower part of glycolysis for 229 

ATP generation, which was supported by the presence of these enzymes in the proteome data 230 

(Fig. 4).  Under the microaerobic conditions under which the probiotic cultures were maintained, 231 

LGG relies primarily on lactate production, and was confirmed by the significantly increased 232 

lactate detected in LGG supernatant versus ECN (0.31, p<1.00E-13). The heterofermentive 233 

probiotic ECN-pFBA predicted that ECN can use lactate, ethanol, and succinate that are 234 

produced as terminal electron acceptor for anaerobic respiration and ATP generation by ATP 235 

synthase which produced fluxes in 99.79% of the ECN flux samples. Consistent with this flux 236 

analysis finding is that the ECN supernatant metabolome had a significantly higher succinate 237 

abundance (8.98, p<1.00E-30). 238 

          Given the metabolite consumption, biosynthesis profiles and the simulated flux 239 

distributions, shadow price  (File S5) was performed to represent the increase/decrease in the 240 

objective function value (i.e. probiotics growth) per unit of increase in resource available 241 

reflected in a constraint (i.e. the required consumption/production of metabolites). Based on this 242 
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rationale, the growth-promoting/competing role of each metabolite that was detected in the 243 

metabolome and is present in the models was analyzed.  244 

Discussion 245 

The differential efficacy of cell free supernatants from two distinct probiotics were 246 

investigated for AMR pathogen growth suppression. The gram-positive probiotic LGG 247 

suppressed growth of three AMR pathogens, S. Typhimurium, E. coli, and K. oxytoca with lower 248 

doses and exposure time when compared to the Gram-negative probiotic ECN. These pathogens 249 

collectively contained and expressed resistance to multiple antimicrobial drug classes, 250 

emphasizing the need to identify targeted solutions for suppressing growth. To evaluate and 251 

compare the small molecule contributors to the differential antimicrobial activity of ECN versus 252 

LGG cell-free supernatant, a global, non-targeted metabolomics and proteomics analysis was 253 

applied. The proteomes and metabolomes of each probiotic supernatant was integrated with the 254 

genomes to develop predictive metabolic models. This integrated multi-omic systems modeling 255 

approach predicted major metabolic differences influencing the composition of ECN and LGG 256 

supernatants, namely differential regulation of carbohydrate, energy, nucleotide, and amino acid 257 

pathways (Fig. 6).  258 

 Carbohydrate metabolism represents a collection of pathways necessary for the 259 

generation of ATP through central metabolism to form biosynthetic precursors required for 260 

various cellular processes [33]. Utilization of these carbon sources (including amino acid and 261 

fatty acid catabolism) differs between Gram-negative and Gram-positive bacteria accounting for 262 

the differences in the metabolome and proteome of these probiotics (Fig. 6). The metabolic 263 

predictive model showed the diversity of metabolic pathways by which ECN was predicted to 264 

utilize glycolytic metabolites when compared to LGG, which exhibited more restricted funneling 265 
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into glycolytic processes. ECN was predicted to expend more energy than LGG to funnel 266 

glycolytic metabolites into the synthesis of fatty acids, sugars, and nucleotides, whereas LGG 267 

primarily relies on glycolytic metabolites to produce ATP during fermentation reactions (Fig. 5). 268 

Although diverse glycolytic metabolite shunting observed in ECN provided substrates for other 269 

key areas of metabolism, the decreased production of  fructose 1,6 diphosphate, glucose 6-270 

phosphate, phosphoenolpyruvate and lactate compared to LGG, may have contributed to the 271 

lower bacteriostatic and bactericidal activities of ECN supernatant against Gram-negative 272 

bacteria [32].  273 

The presence of type I glyceraldehyde 3- phosphate dehydrogenase in the LGG proteome 274 

but not the ECN proteome may additionally contribute to the differential antimicrobial activity of 275 

LGG versus ECN supernatant. Interestingly, it was shown that some of the proteins in the 276 

glycolytic pathway were localized on the cell wall in some Gram-positive bacteria [34] with the 277 

capacity to produce ATP on the cell’s surface [35]. Glyceraldehyde 3- phosphate dehydrogenase 278 

(GAPDH), which was present in the LGG but not ECN proteome, is one of these proteins (Fig. 279 

4B). Previous evaluations of the LGG proteome have shown that GAPDH is not strictly 280 

cytosolic, but like with other Gram-positive species, it is secreted into the extracellular 281 

environment [36]. In addition to increasing the glycolytic capacity of LGG, GAPDH has been 282 

increasingly explored in prokaryotic as well as eukaryotic species to produce antimicrobial 283 

peptides that suppress the growth of various Gram-negative pathogens [36]. While probiotic 284 

secreted GAPDH has been implicated in host adhesion as well as immunomodulation [37], it has 285 

not yet been screened for production of antimicrobial peptide products in probiotic bacteria, and 286 

warrants further attention as a LGG mediator of pathogen growth suppression. This hypothesis is 287 

consistent with results from integrated metabolic modeling, whereby proteomic and metabolomic 288 
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observations support differences in LGG and ECN for carbohydrate metabolism. Notably, LGG 289 

carbohydrate metabolism simultaneously increased bacteriostatic organic acid production, and 290 

LGG secreted GAPDH produced uncharacterized antimicrobial proteins contributing to pathogen 291 

growth suppression. (Fig. 4C).  292 

Twenty-six of the 37 metabolites predicted to be consumed by ECN were involved in 293 

purine metabolism (File S3). Escherichia coli has been shown to utilize purines, including 294 

guanine, as nitrogen sources and convert exogenous purines (bases or nucleosides) to 295 

nucleotides, which are converted to nucleobases [38]. The purine nucleobases are then converted 296 

to the corresponding purine mononucleotides by the exo-enzymes hypoxanthine and guanine 297 

phosphoribosyltransferase, which salvage guanine, hypoxanthine, and xanthine, three 298 

metabolites shown to have antimicrobial activity [39]. Given the lack of nucleotide metabolism 299 

proteins in the ECN supernatant, improved recovery and prediction of bioactive proteins secreted 300 

into probiotic supernatants is an area for future investigation. 301 

          While the collective supernatant metabolomes and proteomes did share metabolites, the 302 

supernatant metabolome were unique to function in ECN or LGG. For ECN, exclusive 303 

metabolites included N-acetylcitrulline, a metabolite of urea cycle, arginine and proline 304 

metabolism [40], dihomo-linoleate (20:2n6) a product of polyunsaturated fatty acid metabolism 305 

shown to have antioxidant properties [41], nicotinamide ribose [42], and 3-hydroshikimate a 306 

product of the shikimate pathway whose enzymes are targets for the design of potential 307 

antimicrobial agents [43]. In E. coli, arginine metabolism distinguished probiotic E. coli strains 308 

from commensal and pathogenic E. coli strains, whereas E. coli Nissle was shown to produce 309 

higher levels of citrulline, citrulline derivatives, and an overall greater diversity of arginine-310 

derived metabolites [20]. The unique production of N-acetylcitrulline and other arginine 311 
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metabolites, including the proteins and enzymes regulating ECN arginine metabolism thus 312 

represents another research mechanistic dimension to optimize the antimicrobial activity of ECN. 313 

LGG supernatant exclusive metabolites included cysteine s-sulfate that is produced by the 314 

reaction of inorganic sulfite and cystine and a very potent N-methyl-D-aspartate-receptor 315 

(NMDA-R) agonist [44], N1-methyladenosine, which plays a role in environmental stress, 316 

ribosome biogenesis and antibiotic resistance [45], and nicotinamide adenine dinucleotide 317 

(NAD+), a cofactor that is central to metabolism involved in redox reactions. Three unknown 318 

metabolites were uniquely detected in LGG. Collectively, the roles for unknown/unnamed 319 

metabolites in LGG warrant additional evaluation for metabolic functional relevance to the 320 

probiotic, and how production can be increased for antimicrobial applications. Further 321 

investigation and quantitation of these metabolites is warranted to characterize these compounds, 322 

as they could be contributing to the enhanced growth suppressing effect of LGG supernatant 323 

observed when compared to ECN supernatant. 324 

 This proteomic, metabolomic and metabolic flux analysis of two diverse probiotic cell 325 

free supernatants highlighted the role for carbohydrate, amino acid, and nucleotide metabolism 326 

as strategies for suppressing AMR pathogen growth. Our findings herein contributed novel 327 

mechanistic insights to the metabolic pathway synergy inferred from in vivo studies that utilize 328 

and test ECN and LGG in combination and with prebiotics that enhanced probiotic functions [18, 329 

46, 47]. Targeted quantification and stochiometric evaluation of antimicrobials in cell free 330 

supernatants are needed for confirming minimum inhibitory concentrations that suppress 331 

pathogen growth, and for impacts on host gastrointestinal and mucosal immune functions. 332 

Optimization of Gram-positive and Gram-negative probiotics for antimicrobial therapies to AMR 333 
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pathogens requires attention to several environmental and host conditions that allow pathogens to 334 

spread and prior to concerns for outbreak infections that may affect animal and human health.  335 

 336 

Materials and Methods  337 

Antimicrobial resistant pathogen isolation:  338 

          The Salmonella enterica serovar Typhimurium isolate used in this study was collected 339 

from  human intestinal tract  in 2010, Washington State University , and was provided as a 340 

generous gift from Dr. Sangeeta Rao at Colorado State University . The AMR E. coli and K. 341 

oxytoca isolates were collected from environmental water samples in Northern Colorado using 342 

published methods  [10]. Briefly, water samples were collected with sterile Pyrex wide-mouth 343 

storage bottles, immediately placed on ice, and kept in a light-sensitive container until analysis, 344 

which occurred approximately 1h following sample collection. Water samples were diluted onto 345 

CHROMagar-ESBL (extended-spectrum beta-lactamase) and CHROMagar-KPC (Klebsiella 346 

pneumoniae carbapenemase) (DRG Diagnostics, Springfield, NJ) media to identify and isolate 347 

individual colonies. Isolated colonies were incubated in tryptic soy broth (TSB) at 37°C for 348 

~18h, and colony identities were made to the species-level using matrix-assisted laser 349 

desorption-ionization time-of-flight analysis (MALDI) on a VITEK-MS machine (Biomerieux, 350 

Durham, NC). 351 

 352 

Antimicrobial resistance profile determination for Salmonella Typhimurium, E. coli, and K. 353 

oxytoca  354 

          The AMR profiles of Salmonella Typhimurium, E. coli, and K. oxytoca were established 355 

using Kirby-Bauer Disc Diffusion methods established by the Clinical & Laboratory Standards 356 
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Institute (CLSI) [48]. Briefly, overnight incubations of each isolate cultured in sterile TSB were 357 

diluted to a concentration of 1.5x108 cells/mL using a 0.5 McFarland Standard. The resultant 358 

dilutants were spread onto Mueller-Hinton agar (Hardy Diagnostics, Santa Maria, CA) and the 359 

following antimicrobial discs were applied: Meropenem (MEM-10), Linezolid (LZD-30), 360 

Vancomycin (VA-30), Cefazolin (CZ-30), Ciprofloxacin (CIP-5), Gentamicin (CN-10). 361 

Ampicillin (AMP-10), Penicillin (P-10), Tobramycin (NN-10), Tetracycline (TE-30), and 362 

Amikacin (AK-30). After 18h incubation at 37°C, the zone of inhibition was measured and 363 

reported as the radius from the center of the disc to the edge of the inhibition zone (mm). Kirby-364 

Bauer Disc Diffusion assays were performed in triplicate for each pathogen, and the zone of 365 

inhibition was averaged across assays. These averaged antimicrobial disc inhibition zones were 366 

compared to CLSI standards for each isolate to make the determinations of “Susceptible”, 367 

“Intermediate”, and “Resistant”.  368 

 369 

Whole genome sequencing: 370 

          DNA was extracted from each isolate using a DNeasy PowerSoil Kit (Qiagen, Valencia, 371 

CA) following manufacturer protocols. Extracted DNA was semi-quantified and quality-checked 372 

using a NanoDrop 2000 (Thermo Scientific, Lafayette, CO). To confirm sample sterility, sterile 373 

TSB broth and DNA extraction media from the DNeasy kit were used as negative controls 374 

during extraction and quantitation. Following extraction and quantitation, all samples were 375 

stored at -20°C until further analysis. 376 

          Extracted DNA samples were sequenced at the South Dakota State University Animal 377 

Disease Research and Diagnostic Laboratory by Dr. Joy Scaria and Dr. Linto Antony using 378 

previously described methods [49]. Briefly, samples were processed using a Nextera XT DNA 379 
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Sample Prep Kit (Illumina Inc., San Diego, CA), were subsequently pooled in equimolar 380 

amounts, and sequenced on an Illumina Miseq platform (Illumina Inc., San Diego, CA). A 2x250 381 

paired-end approach with V2 chemistry was used to sequence samples. The genome of each 382 

sample was assembled using Geneious Prime Version 2019.2.1 (Biomatters Ltd., Auckland, New 383 

Zealand) using reference genomes for E. coli, S. Typhimurium, and K. oxytoca made publicly 384 

available via the National Center for Biotechnology Information. Each assembled genome was 385 

processed through the basic local alignment search tool (BLAST) through the MEGARes 386 

Database [50] for AMR genes. Positive gene identifies were defined as having 85% sequence 387 

similarity over 50% of the sequence when compared to the database sequence. 388 

 389 

Probiotic cultures and cell-free supernatant preparation: 390 

          The E. coli Nissle 1917 and L. rhamnosus GG ATCC 53103 isolates used for the 391 

experiments herein were provided by Dr. Lijuan Yuan at the Virginia Polytechnic Institute and 392 

State University. Cell-free supernatant was prepared as described previously [51]. 393 

Approximately 1X107 colony forming units (CFU) of each probiotic isolate was propagated in 394 

deMan Rogasa Sharpe (MRS) broth (Beckton, Dickinson and Company, Difco Laboratories, 395 

Franklin Lakes, NJ) for 24h at 37°C. The resultant cultures were centrifuged at 4000xg for 10 396 

minutes, and the supernatant was decanted from the resultant cellular pellet. The supernatant was 397 

then centrifuged and decanted again using the same conditions as the initial round and titrated to 398 

a pH of 4.50 using a 1 mol*L-1 solution of NaOH (Sigma Aldrich, St. Louis, MO) with a pH 399 

meter (Corning Pinnacle 530, Cole-Parmer, Vernon Hills, IL). All titrated supernatant was 400 

filtered through a 0.22 µM-pore filter (Pall Corporation LifeSciences, Port Washington, NY) 401 

before being stored at -80°C prior to use. Three independently prepared (biological replicates) of 402 
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supernatant were prepared and used in the subsequent analyses described herein. 403 

 404 

Pathogen growth assays and probiotic cell-free supernatant treatments 405 

           S. Typhimurium, E. coli, and K. oxytoca isolates were thawed and grown in the presence 406 

of probiotic cell-free supernatant as described previously [51]. Frozen -80°C stocks of each 407 

pathogen were thawed and grown to early/mid exponential phase using a Cytation3 plate reader 408 

(BioTek Instruments Inc., Winooski, VT) and approximately 2x105 CFU/mL of pathogen was 409 

inoculated into 180 µL of sterile Luria Bertani (LB) broth in a 96-well plate. The following 410 

concentrations of cell-free supernatant from LGG and ECN were added to wells inoculated with 411 

pathogen: 25% v/v (60 µL), 22% v/v (50 µL), 18% v/v (40 µL) and 12% v/v (25 µL). These 412 

supernatant concentrations were guided by previous dose-dependent treatments to S. enterica 413 

serovar Typhimurium strain 14028s [51]. Equivalent concentrations of sterile MRS, pH 4.50, and 414 

sterile LB, pH 4.50, were used as a vehicle control and negative control respectively for each 415 

cell-free supernatant treatment. Pathogen growth in the presence of cell-free supernatant was 416 

measured every 20 minutes for 18h on a Cytation3 plate-reader using optical density read at a 417 

wavelength of 600 nm (OD600). To quantify growth suppression at each timepoint, percent 418 

growth suppression was calculated by comparing pathogen growth in the presence of a 419 

supernatant treatment versus the vehicle control using the following equation: 420 

          Percent Growth Suppression = ((OD600CFS – OD600Vehicle) / (OD600Vehicle)) * 100 421 

For each pathogen, the growth suppression assay was repeated a minimum of 3 times, and each 422 

assay contained a minimum of three technical replicates of each probiotic supernatant 423 

concentration. A repeated measures two-way analysis of variance was used to compare treatment 424 

optical densities at each time point and p-values were adjusted using a Tukey post-test to control 425 
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for multiple comparisons. A p-value of p<0.05 was defined as statistically significant. Each 426 

supernatant concentration was compared between LGG and ECN for each pathogen (e.g. 25% 427 

LGG vs ECN CFS for S. Typhimurium, E. coli, or K. oxytoca). 428 

 429 

Probiotic Cell Free Supernatant Metabolomics: 430 

          To establish the small molecule profiles of L. rhamnosus GG and E. coli Nissle cell-free 431 

supernatants, the global, non-targeted metabolome of each was determined by Metabolon Inc © 432 

(Durham, NC) using previously described methods [51]. Three replicates each of LGG and ECN 433 

supernatant, representing three independent supernatant collections, and three replicates of sterile 434 

MRS broth were sent to Metabolon on dry ice and stored in liquid nitrogen. Prior to extraction, 435 

the protein content of each sample was removed using an 80% ice-cold (-80°C) methanol 436 

aqueous solution coupled with vigorous shaking for two minutes and subsequent centrifugation 437 

at 680xg for 3 minutes. The resultant samples were each divided into five parts for analysis using 438 

ultra-high-performance liquid-chromatography tandem mass-spectrometry (UPLC-MS/MS) and 439 

consisted of: two aliquots for reverse phase UPLC-MS/MS analysis with positive ion mode 440 

electrospray ionization (ESI), one aliquot for reverse phase UPLC-MS/MS analysis with 441 

negative ion mode ESI, one aliquot for hydrophilic interaction (HILIC)/UPLC-MS/MS with 442 

negative ion mode ESI, and one backup aliquot. Each aliquot was evaporated using a TurboVap 443 

® solvent evaporation system (Zymark, Hopkinton, MA) to remove organic solvent and stored 444 

under nitrogen before subsequent analysis. 445 

          For UPLC processing, each sample was injected into a Waters ACQUITY UPLC column 446 

using solvents optimized for the five aliquot run analyses described above. For the reverse phase 447 

UPLC-MS/MS with positive ion mode ESI analysis, one aliquot of each sample was gradient-448 
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eluted using a C18 column (Waters UPLC BEH C18-2.1x100mm, 1.7µm) with a water and 449 

methanol mobile phase containing 0.05% v/v perfluoropentanoic acid and 0.1% v/v formic acid. 450 

A second aliquot for analysis using UPLC-MS/MS with positive ion mode ESI was gradient-451 

eluted using the afore-mentioned C18 column with a mobile phase of methanol, acetonitrile, 452 

water, 0.05% v/v perfluoropentanoic acid, and 0.01% formic acid. For the reverse phase UPLC-453 

MS/MS analysis with negative ion mode ESI, an aliquot of each sample was gradient-eluted 454 

using a separate C18 column with a mobile phase of methanol, water, and 6.5mM of ammonium 455 

bicarbonate at a pH of 8.0. HILIC-UPLC-MS/MS with negative ion mode ESI for each sample 456 

was performed on a HILIC column (Waters UPLC BEH Amide 2.1x150 mm, 1.7µm) with a 457 

mobile gradient of water, acetonitrile, and 10mM of ammonium format at a pH of 10.8. 458 

          Following gradient elution, all samples were subjected to MS/MS processing using a 459 

Thermo Scientific Q-Exactive high resolution/accurate mass spectrometer operating with an 460 

Orbitrap mass analyzer at 35,000 mass resolution and coupled with heated electrospray 461 

ionization source. Mass spectral scans utilized dynamic exclusion with both MS and data-462 

dependent MSn scans to detect peaks, and the scan range covered approximately 70-1000 m/z. 463 

Raw data from MS/MS scans were peak-identified and processed for quality control using 464 

proprietary Metabolon .NET systems that compared data to known sources of artifacts and 465 

background noise inherent to each UPLC-MS/MS run type. Peak identification was made by 466 

comparing peaks to an internal database of ~3,300 purified chemical standards using retention 467 

indices, m/z ratios (within +/- 10 ppm of the purified internal standards), and MS/MS forward 468 

and reverse match scores. Peaks that did not match a purified internal standard but had a 469 

retention index and m/z that was not artifact or background noise were reported as “unknown” in 470 

subsequent analyses. 471 
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 472 

Metabolite normalization, statistical analysis, and visualization: 473 

          The raw abundances for detected metabolite were normalized using area under the curve 474 

analysis, where the raw abundance of each metabolite was divided by the median raw abundance 475 

of the metabolite across the dataset. One-way analysis of variance was used to compare the 476 

median-scaled abundance of each metabolite across sample types, where statistical significance 477 

was defined as a p <0.05. To account for false positive detections, q-values were calculated for 478 

each metabolite, and metabolites with a q>0.1 were excluded from downstream analysis. 479 

Pathway enrichment scores (PES) were calculated to evaluate the contribution of different 480 

metabolic pathways to overall metabolite profile differences between treatments using the 481 

following formula, where “k” indicates the number of significant metabolites in the metabolic 482 

pathway, “m” indicates the total number of metabolites in the metabolic pathway, “n” indicates 483 

the number of significant metabolites in the entire data set, and “N” indicates the total number of 484 

metabolites in the data set. 485 

                                                        𝑃𝐸𝑆 = (𝑘)/(𝑚) (𝑛)/(𝑁)⁄  486 

Median-scaled abundances were additionally used to calculate metabolite fold differences by 487 

dividing the average median-scaled abundance of a metabolite in one sample by its average 488 

median scaled abundance in a second sample type (e.g. average metabolite abundance in ECN 489 

supernatant versus average metabolite abundance in LGG supernatant). Metabolite visualization 490 

was performed using Metaboanalyst ® (version 4.0) with R version 3.6.1, using the raw 491 

abundance of each metabolite generated by Metabolon [52, 53] (R-script File S6). A principal 492 

coordinates analysis plot was generated using metabolite median-scaled abundances. A heat map 493 

with hierarchical clustering analysis was generated using Euclidean and Ward differential 494 
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clustering algorithms, where red boxes indicate metabolites that were elevated in ECN compared 495 

to LGG, and blue boxes indicate metabolites that were decreased in ECN versus LGG The heat 496 

map visualizes the fifty metabolites with the largest statistical differences when comparing ECN 497 

versus LGG. 498 

 499 

Probiotic cell free supernatant proteomics: 500 

          Non-targeted proteomes of each probiotic supernatant and sterile growth media (MRS) 501 

were generated by the Colorado State University Proteomics and Metabolomics Facility using 502 

LC-MS/MS. Proteins were isolated from supernatant in a 1:4 v/v suspension of ice-cold (-80°C) 503 

methanol. The resultant protein pellets were washed in 100% ice-cold (-80°C) acetone and 504 

centrifuged at 15,000xg for 10 minutes. Following two rounds of acetone washing, samples were 505 

air-dried and reconstituted in 2M urea and bath sonicated for five minutes. To collect insoluble 506 

material, sonicated samples were centrifuged at 4000xg for two minutes. To quantitate samples, 507 

aliquots were diluted 1:2 and 1:5 in 2M urea solvent and their total protein concentration was 508 

measured using a Pierce Bicinchoninic Acid Protein Assay (Thermo Scientific, Waltham, MA) 509 

following manufacturer’s instructions. Approximately 50 µg of each sample was subjected to 510 

trypsin digestion using the methods described by Schauer et al. 2013 [54]. Briefly, 50 µg of each 511 

sample was reconstituted in a solution containing 8M urea, 0.2% v/v ProteaseMax ™ surfactant 512 

trypsin enhancer (Promega, Madison, WI), 5mM dithiothreitol, and 5mM iodoacetic acid. 513 

Purified trypsin (Pierce MS-Grade, Thermo Scientific, Waltham, MA) was added at a 1:28 ratio 514 

to the sample proteins, and the slurry was incubated at 37°C for 3h, after which trypsin was 515 

deactivated using 5% trifluoroacetic acid. Desalting occurred using Pierce C18 spin columns 516 

following manufacturer instructions (Thermo Scientific, Waltham, MA). The eluates were dried 517 
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in a vacuum evaporator and reconstituted in 5% v/v acetonitrile and 0.1% v/v formic acid. Total 518 

peptide quantification was determined for each sample resuspension on a NanoDrop (Thermo 519 

Scientific, Waltham, MA) at a wavelength of 205nm and normalized using an extinction 520 

coefficient of 31 [55]. 521 

           Reverse phase chromatography was performed using water with 0.1% formic acid and 522 

acetonitrile with 0.1% formic acid. A total of 0.75µg of peptides was purified and concentrated 523 

using an on-line enrichment column (Waters Symmetry Trap C18 100Å, 5µm, 180 µm ID x 524 

20mm column). Subsequent separation was performed using a reverse-phase C18 nanospray 525 

column (Waters, Peptide BEH C18; 1.7µm, 75µm x 150nm column) at 45°C and samples were 526 

eluted using a 30-minute mobile phase gradient of 3-8% formic acid over 3 minutes, followed by 527 

8%-35% of a acetonitrile with 0.1% formic acid solution over 27 minutes, at a flow rate of 350 528 

nL/min. A Nanospray Flex ion source (Thermo Scientific, Waltham, MA) introduced eluate 529 

directly into the mass spectrometer (Orbitrap Velos Pro™, Thermo Scientific, Waltham, MA). 530 

Spectra were collected using positive ion mode over a range of 400-2,000 m/z, and MS/MS was 531 

performed on ions assigned a charge state of 2+ or 3+ using a dynamic exclusion limit of 2 532 

MS/MS spectra of a given m/z value for 30 s (exclusion duration of 90 s). Fourier-533 

Transformation mode (60,000 resolution) was applied for MS detection, and ion trap mode was 534 

applied for the subsequent MS/MS with 35% normalized collision energy. Compound lists of the 535 

resulting spectra were generated using Xcalibur 3.0 software (Thermo Scientific) with a S/N 536 

threshold of 1.5 and 1 scan/group.    537 

 538 

Proteome identification and normalization: 539 

          MS/MS spectra for each sample were extracted, charge state deconvoluted and deisotoped 540 
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by ProteoWizard MsConvert (version 3.0). All spectra were then screened for protein identities 541 

using Mascot (Matrix Science, London, UK, version 2.6.0) with a fragment ion mass tolerance of 542 

0.80 Daltons and a parent ion tolerance of 20 ppm. Carboxymethylation of cysteine was 543 

specified in Mascot as a fixed modification. Deamidation of asparagine and glutamine, 544 

methylation of lysine and arginine, hydroxylation of proline, oxidation of methionine, 545 

dimethylation of lysine and arginine and acetylation of the n-terminus were specified in Mascot 546 

as variable modifications. The following reverse concatenated Uniprot reference proteomes were 547 

used for the search: Uniprot_Yeast_rev_022119, Uniprot_Sus_scrofa_rev_022119, 548 

Uniprot_Bovine_rev_022119. LGG supernatant samples were additionally screened with the 549 

Uniprot_Lactobacillus_rhamnosus_GG_rev_021819 database and ECN supernatant samples 550 

were also screened with the Uniprot_Escherichia_coli_Nissle_rev_021819 database. Identified 551 

spectra were further combined using the probabilistic protein identification algorithms [56] 552 

utilized by Scaffold (version 4.8.4, Proteome Software Inc., Portland, OR) [57]. The peptide 553 

probability threshold was set (90%) such that a peptide false discovery rate of 0.0% was 554 

achieved based on hits to the reverse database [58]. Protein identifications were accepted if they 555 

could be established at greater than 95.0% probability as assigned by the Protein Prophet 556 

algorithm [67] and contained at least two identified peptides. Proteins that contained similar 557 

peptides and could not be differentiated based on MS/MS analysis alone were grouped to satisfy 558 

the principles of parsimony. For each identified protein, raw abundances were used to derive the 559 

normalized abundance factor (NSAF) within each sample, a method used to estimate the protein 560 

content within a single sample or gel band.  NSAF is calculated using the number of spectra 561 

(SpC) identifying a protein divided by the protein length (L), referred to as Spectral Abundant 562 
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Factor (SAF) and then normalized over the total sum of spectral counts/length in a given 563 

analysis.   564 

 565 

Metabolic modeling of E. coli Nissle and L. rhamnosus GG: 566 

          Draft metabolic models for ECN and LGG were reconstructed using apps in DoE KBase 567 

[59] iML1515, a published metabolic model for E. coli K-12 MG1655 [60], was used as a 568 

reference model for ECN. A model for L. casei ATCC 344 [61] was used as a reference model 569 

for LGG. The genomes for the four organisms were accessed through the KBase interface for 570 

NCBI genomes. The KBase application ‘Compare Two Proteomes’ was used to find orthologs 571 

between the strain, and the application ‘Propagate Model to New Genome’ was then used to 572 

translate the model for E. coli K-12 to ECN and the model for L. casei ATCC 344 to LGG, 573 

respectively, provided with the ortholog comparisons, and it also performed gap-filling to ensure 574 

biomass production. Further gap-filling was performed manually to include pathways for the 575 

consumption and production of the metabolites detected in the supernatant metabolome. To 576 

simulate flux distributions consistent with the supernatant metabolome data for ECN and LGG, 577 

an optimization problem was constructed to solve parsimonious flux balance analysis (pFBA) 578 

[62] for both models simultaneously. Within the models, variables controlled for included 579 

metabolite availability in the MRS media and uptake/export of a metabolite by ECN or LGG 580 

based on the relative abundance from the metabolome data.  Ten thousand flux distributions 581 

were simulated under randomly sampled maximum substrate uptake (which were not measured 582 

during the experiments) using pFBA maximization of biomass production in the models as the 583 

objective function [63]. File S7 provides the complete mathematical formulation used to 584 

construct this modeling analysis. The shadow price for each metabolite was retrieved from the 585 
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solution of the optimization problem. All simulations were performed in MATLAB R2017b 586 

using the COBRA toolbox [64] and the optimization solvers GUROBI [65] and IBM CPLEX 587 

[66]. 588 

  589 

Data availability: 590 

          The whole genome sequences used in this study are fully accessible for download at the 591 

National Center of Biotechnology Information (NCBI) Sequence Read Archive (SRA) via the 592 

following link (Accession Number: PRJNA530250): 593 

https://www.ncbi.nlm.nih.gov/bioproject/PRJNA530250 594 

          The complete raw data and R script for metabolomics analysis, Metaboanalyst 595 

visualization, as well as raw proteome data are provided as supplemental data files. The files for 596 

the metabolic modeling analysis are available at https://github.com/chan-597 

csu/modelEcnLggExoMetabolomes' 598 
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AMR: Antimicrobial Resistance 618 

BLAST: Basic Local Alignment Search Tool 619 

CFS: Cell-Free Supernatant 620 

CFU: Colony Forming Unit 621 

CLSI: Clinical and Laboratory Standards Institute 622 

ECN: Escherichia coli Nissle  623 

ESI: Electrospray Ionization 624 

GAPDH: Glyceraldehyde-3-Phosphate Dehydrogenase 625 

HILIC: Hydrophilic Interaction Liquid Chromatography 626 

LB: Luria Bertani 627 

LC-MS/MS: Liquid Chromatography-Tandem Mass Spectrometry 628 

LGG: Lactobacillus rhamnosus GG 629 

m/z: Mass to Charge Ratio 630 

MALDI: Matrix-Assisted Laser Desorption/Ionization 631 

MRS: deMan Rogasa Sharpe 632 
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NAD+: Nicotinamide Adenine Dinucleotide (oxidized) 633 

OD600: Optical Density, 600-nanometer wavelength  634 

PES: Pathway Enrichment Score 635 

pFBA: Parsimonious Flux-Based Analysis 636 

RI: Retention Index 637 

TCA: Tricarboxylic Acid Cycle 638 

TSB: Tryptic Soy Broth 639 

UPLC-MS/MS: Ultra-High-Performance Liquid Chromatography-Tandem Mass Spectrometry 640 
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Figure Legends: 814 

 815 

Figure 1. AMR genes identified in the pathogen isolate genomes E. coli, S. Typhimurium, and K. 816 

oxytoca. Green boxes indicate gene presence while tan boxes indicate gene absence. 817 

Approximately 112 antimicrobial resistance genes spanning 15 functional classes were identified 818 

across the three pathogens. 819 

 820 

Figure 2. AMR pathogen growth suppression by ECN and LGG probiotic cell free supernatants. 821 

Figures depict the growth curves of S. Typhimurium, E. coli and K. oxytoca recorded over 18 822 

hours under the minimum inhibitory dose (supernatant volume/total volume *100) of probiotic 823 

cell free supernatant. Bacterial abundance is reported through optical density readings at a 824 

wavelength of 600 nm (OD600). The minimum supernatant doses at which both L. rhamnosus 825 

GG (LGG) and E. coli Nissle (ECN) supernatants achieved growth suppression for S. 826 

Typhimurium, E. coli and K. oxytoca were the 12%, 18% and 12% respectively. Maximal 827 

Salmonella growth suppression was achieved at 5.33h for L. rhamnosus GG (41.20% p<0.0001) 828 

(Dashed line- L) and at 13.67h for E. coli Nissle (11.48%, p <0.01) (Dashed line- E).  For 829 
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pathogenic E. coli maximum growth suppression for LGG supernatant was 30.40% and occurred 830 

at 4.67h (p<0.0001). For the E. coli Nissle supernatant, maximal pathogenic growth suppression 831 

occurred at 5.00h at 29.45% (p<0.0001). L. rhamnosus GG suppressed K. oxytoca growth 832 

between 3.00h-16.00h and achieved a maximal percent growth of 28.85% suppression at 7.33h 833 

(p<0.0001). E. coli Nissle suppressed K. oxytoca growth between 3.00h-16.00h and reached 834 

maximal growth suppression of 23.86% at 3.33h (p = 0.0035). Dashed lines indicate maximum 835 

growth suppression observed for LGG (black) or ECN (blue).  836 

 837 

Figure 3. Global, non-targeted metabolomes of L. rhamnosus GG and E. coli Nissle cell-free 838 

supernatant. A. Principal component analysis of L. rhamnosus GG (LGG) and E. coli Nissle 839 

(ECN) supernatant and vehicle control media. Each circle represents a biological replicate. B. 840 

Venn diagram illustrating metabolite presence versus absence differences in ECN versus LGG 841 

along with metabolites not present in the vehicle control (MRS broth) when compared to 842 

probiotic supernatants. C. Heat map of 50 metabolites ranked according to magnitude of fold-843 

differences between ECN and LGG. D. Pathway enrichment scores for metabolic pathways that 844 

contributed to significantly different metabolites when comparing ECN versus LGG.  845 

 846 

Figure 4. Non-targeted proteome of E. coli Nissle and L. rhamnosus GG cell free supernatants. 847 

A. Venn diagram shows the number of proteins identified in E. coli Nissle (ECN) supernatant, L. 848 

rhamnosus LGG supernatant, and sterile MRS broth. Percent relative abundances of proteins 849 

found in cell free supernatants of B. L. rhamnosus GG supernatant and C. E. coli Nissle 850 

supernatant. 851 

 852 
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Figure 5.  Predicted metabolism of (A) E. coli Nissle (ECN) and (B) L. rhamnosus GG (LGG) 853 

by parsimonious Flux Balance Analysis (pFBA) under the constraints of relative consumption 854 

and production of metabolites inferred from the metabolomics dataset. The flux values shown are 855 

the average values of 10,000 simulations, normalized by the biomass production, in the unit of 856 

mmol / gram cell dry weight. The color of each reaction changes with the magnitude of the 857 

average flux as shown in the color bar. The entire dataset is available as  File S5. 858 

 859 

Figure 6. Protein and metabolite profile summary of LGG and ECN probiotic cell free 860 

supernatants with distinct efficacy for growth suppression of three AMR pathogens. Metabolic 861 

models predicted that utilization of distinct carbon sources was the mechanism for observed 862 

differences between the metabolome and proteome of ECN and LGG cell free supernatants.  863 

Abbreviations: Antimicrobial Resistance (AMR), cyclic guanosine monophosphate (cGMP), 864 

Escherichia coli Nissle (ECN), G+ (Gram-positive), G- (Gram-negative), Lactobacillus 865 

rhamnosus GG (LGG), trimethylamine N-oxide (TMAO). 866 
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Table 1. Kirby-Bauer disk diffusion for antimicrobial resistant pathogens 

 

Antimicrobial Agent 

S. Typhimurium E. coli K. oxytoca 

Zone Diameter (mm), (Designation) 

Amikacin (AK-30) 26.9 ±2.3, (S) 24.3±2.3, (S) 31.3±2.1, (S) 

Ampicillin (AMP-10) 6.0 ± 0.0, (R) 6.0 ± 0.0, (R) 0.0±0.0, (R) 

Cefazolin (CZ-30) 6.0 ± 0.0, (R) 7.8±4.5, (R) 14.2±9.6, (R) 

Ciprofloxacin (CIP-5) 26.3±3.8, (S) 25.8±5.3, (S) 22.9±4.4, (I) 

Gentamicin (CN-10) 7.1±3.2, (R) 20.2±2.7, (S) 18.5±3.3, (S) 

Linezolid (LZD-30) 6.0 ± 0.0, (NA) 6.2±0.4, (NA) 1.8±2.6, (NA) 

Meropenem (MEM-10) 32.6 ± 0.79, (S) 34.3±1.0, (S) 40.2±2.5, (S) 

Penicillin (P-10) 6.0 ± 0.0, (NA) 8.5±2.5, (NA) 0.8±3.4, (NA) 

Tobramycin (NN-10) 17.4 ±3.9, (S) 23.7±1.2, (S) 31.0±2.4, (S) 

Tetracycline (TE-30) 9.6 ±7.0, (R) 17.2±4.0, (I) 28.5±3.1, (S) 

Vancomycin (VA-30) 6.3 ±0.76, (NA) 6.7±0.8, (NA) 0±0.0, (NA) 

Values represented mean ± standard deviation of the zone of inhibition diameter measured in 

millimeters. Designations are defined as Susceptible “S”, Intermediate “I” or Resistant “R” based 

on standards defined by the Clinical Laboratory and Standards Institute (CLSI) for 

Enterobacteriaceae species. 

“NA” indicates cutoff value for “S”, “I”, or “R” not defined by the CLSI. 

 867 

 868 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 23, 2020. ; https://doi.org/10.1101/2020.12.21.423897doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.21.423897


Bacterial Isolate

S. Typhimurium E. coli K. oxytoca
Aminocoumarins

Aminoglycosides

Bacitracins

Beta Lactams

Cationic 

Antimicrobial 

Peptides

Efflux Pumps and 

Regulators

Elfamycins

Fluoroquinolones

Glycopeptides

Multidrug Resistance
Phenicols

Regulator Proteins
Rifampins

Sulfonamides
Tetracyclines

Figure 1
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 

The copyright holder for this preprintthis version posted December 23, 2020. ; https://doi.org/10.1101/2020.12.21.423897doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.21.423897


Figure 1. AMR genes identified in the pathogen isolate genomes E. coli, S. Typhimurium, and 

K. oxytoca. Green boxes indicate gene presence while tan boxes indicate gene absence. 

Approximately 112 antimicrobial resistance genes spanning 15 functional classes were 

identified across the three pathogens
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Figure 2. AMR Pathogen growth suppression by ECN and LGG probiotic cell free supernatants. 

The minimum inhibitory supernatant dose (percent by volume supernatant in well plate) for each 

pathogen by the probiotic cell free supernatant. The minimum supernatant doses at which both L. 

rhamnosus GG (LGG) and E. coli Nissle (ECN) supernatants achieved growth suppression for S. 

Typhimurium, E. coli and K. oxytoca were the 12%, 18% and 22% respectively. Maximal 

Salmonella growth suppression was achieved at 5.33h for L. rhamnosus GG (41.20% p<0.0001) 

(Dashed line- L) and at 13.67h for E. coli Nissle (11.48%, p <0.01) (Dashed line- E). For 

pathogenic E. coli maximum growth suppression for LGG supernatant was 30.40% and occurred 

at 4.67h (p<0.0001). For the E. coli Nissle supernatant, maximal pathogenic growth suppression 

occurred at 5.00h at 29.45%. L. rhamnosus GG suppressed K. oxytoca growth between 3.00h-

16.00h and achieved a maximal percent growth of 28.85% suppression at 7.33h (p<0.0001). E. 

coli Nissle suppressed K. oxytoca growth between 3.00h-16.00h and reached maximal growth 

suppression of 23.86% at 3.33h (p<0.005). Dashed lines indicate maximum growth suppression 

observed for LGG (black) or ECN (blue).
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Figure 3. Global, non-targeted metabolomes of L. rhamnosus GG (LGG) and E. coli Nissle cell-

free supernatant ECN. A. Principal component analysis of LGG and ECN supernatant and vehicle 

control media. Each circle represents a biological replicate. B. Venn diagram illustrating 

metabolite presence versus absence differences in ECN versus LGG along with metabolites not 

present in the vehicle control (MRS broth) when compared to probiotic supernatants. C. Heat 

map of 50 metabolites ranked according to magnitude of fold-differences between ECN and 

LGG. D. Pathway enrichment scores for metabolic pathways that contributed to significantly 

different metabolites when comparing ECN versus LGG.  
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Figure 4. Non-targeted proteome of E. coli Nissle (ECN) and L. rhamnosus GG (LGG) cell 

free supernatants. A. Venn diagram shows the number of proteins identified in ECN 

supernatant, LGG supernatant, and sterile MRS broth. Percent relative abundances of 

proteins found in cell free supernatants of B. ECN supernatant and C. LGG supernatant. 

*Categories of proteins other than those related to metabolism.
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Figure 5.  Metabolism of (A) E.coli Nissle (ECN) and (B) L. rhamnosus GG (LGG) predicted 

by parsimonious Flux Balance Analysis (pFBA) under the constraints of relative consumption 

and production of extracellular metabolites inferred from the metabolomics data. The flux 

values shown are the average values of 10,000 simulations, normalized by the biomass 

production, in the unit of mmol / (gram cell dry weight). The color of each reaction changes 

with the magnitude of the average flux as shown in the color bar. The entire dataset of the 

shadow price analysis is available as Supplementary File 6. Pathways of mentioned in text are 

highlighted (Dashed boxes).
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Figure 6. Differential use of carbon sources resulted in proteome and metabolome 

distinctions and differential enrichments of metabolic pathways for E.coli Nissle (ECN) and  

L. rhamnosus GG (LGG). Carbon sources used for the generation of ATP through central 

metabolism form biosynthetic precursors required for various cellular processes. Significantly 

abundant metabolites with reported bacteriostatic or bactericidal effects are highlighted that 

vary between the two probiotics, and which may explain the differences in the degree of 

growth suppression of antimicrobial resistant pathogens. 
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