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Abstract

Background: Pancreatic adenocarcinomas (PAs) have very poor prognoses even when surgery is possible.

Currently, there are no tissular biomarkers to predict long-term survival in patients with PA. The aims of this

study were to (1) describe the metabolome of pancreatic parenchyma (PP) and PA, (2) determine the impact of

neoadjuvant chemotherapy on PP and PA, and (3) find tissue metabolic biomarkers associated with long-term

survivors, using metabolomics analysis.

Methods: 1H high-resolution magic angle spinning (HRMAS) nuclear magnetic resonance (NMR) spectroscopy

using intact tissues was applied to analyze metabolites in PP tissue samples (n = 17) and intact tumor samples (n =

106), obtained from 106 patients undergoing surgical resection for PA.

Results: An orthogonal partial least square-discriminant analysis (OPLS-DA) showed a clear distinction between

PP and PA. Higher concentrations of myo-inositol and glycerol were shown in PP, whereas higher levels of glucose,

ascorbate, ethanolamine, lactate, and taurine were revealed in PA. Among those metabolites, one of them was

particularly obvious in the distinction between long-term and short-term survivors. A high ethanolamine level

was associated with worse survival. The impact of neoadjuvant chemotherapy was higher on PA than on PP.

Conclusions: This study shows that HRMAS NMR spectroscopy using intact tissue provides important and solid

information in the characterization of PA. Metabolomics profiling can also predict long-term survival: the

assessment of ethanolamine concentration can be clinically relevant as a single metabolic biomarker. This

information can be obtained in 20 min, during surgery, to distinguish long-term from short-term survival.
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Background

Pancreatic adenocarcinomas (PAs) are extremely aggres-

sive cancers and have one of the poorest prognoses among

all cancers [1]. With an estimated 48,960 new cases in

2015 in the USA, pancreatic cancer is the twelfth most

common cancer, representing 3.0% of all the new cancers

diagnosed in the USA [2]. The majority of pancreatic

cancers are pancreatic ductal adenocarcinomas and are

localized in the head of the pancreas [3, 4].

Surgery is the only potentially curative treatment for

PA. Pancreatic surgery is associated with significant

morbidity and mortality. Indeed the mortality rate, even

in highly specialized centers, ranges from 2% to 5%, and

morbidity can be as high as 70%, especially in left

pancreatic resection [5, 6]. The extension of lymphade-

nectomy, with its high morbidity and low evidence-

based data, is actually a matter for debate [7, 8]. In

recent years, a significant shift towards targeted surgical

interventions has been proposed, relying on accurate
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characterization of PA, made possible by preoperative

imaging to help evaluate its resectability [9].

Even though computed tomography (CT) and mag-

netic resonance imaging (MRI) studies now precisely

differentiate resectable or locally advanced versus unre-

sectable PA, there is currently a debate on whether sur-

vival can be predicted in resected patients on the basis

of imaging. Notably, the vascular contacts may be com-

plex to assess, especially after endoprosthesis or after

radio- and/or chemotherapy, where the prognostic value

of imaging is still debated [10]. The main prognostic fac-

tors for survival after cephalic duodeno-pancreatectomy

(CDP) are histological parameters, namely R0 margins,

nodal status, and differentiation [11, 12]. Although tech-

nical breakthroughs have been achieved in the field of

pancreatic surgery, it has nevertheless been shown that

the rate of R0 resection is rarely more than 20% and that

it consistently impacts survival [13, 14]. Nodal extension

depends on the extension of lymphadenectomy, as

shown by the impact of invaded node-to-total exam-

ined node ratio [15]. However, the benefit of extended

lymphadenectomy in PA has not been demonstrated.

Therefore, there is a lack of accurate prognostic fac-

tors, and currently no tissue biomarkers have been

identified to predict long-term survival in patients

with pancreatic cancer.

Gross examination and intraoperative extemporaneous

microscopic examination are reliable for diagnosis, but

cannot predict overall survival.

In recent years, metabolomics, or global metabolite

profiling, has been used to investigate the metabolite

changes associated with pancreatic cancers [16–21].

Metabolomics is the latest stage of the multi-omics

approaches. After genomics, transcriptomics, and proteo-

mics, metabolomics has been generating increasing inter-

est in scientific and medical communities in the past few

years, particularly in oncology [22] and more precisely in

pancreatic cancers. Currently, well-recognized tools for

metabolomics are nuclear magnetic resonance (NMR)

spectroscopy and gas (GC-MS) or liquid chromatography-

mass spectrometry (LC-MS). 1H high-resolution magic

angle spinning (HRMAS) NMR spectroscopy technology

is particularly suitable for the analysis of small samples of

intact tissue. This technique avoids the need for chemical

extraction procedures or for handling the samples, both of

which are required by MS and liquid-state NMR. HRMAS

NMR spectroscopy enables identification and quantifica-

tion of several metabolites from spectra with excellent

resolution and signal-to-noise ratio.

Beyond serum markers [16, 19], better characterization

of pancreatic tissue would be of particular interest in

PA. Consequently, there is a need for accurate tissue

biomarkers that could help surgeons distinguish between

long-term and short-term survivors. The aims of this

study were thus to (1) define the metabolome of pancre-

atic parenchyma (PP, healthy tissue) and PA, (2) deter-

mine the impact of neoadjuvant chemotherapy on

healthy tissue (PP) and PA, and (3) by using metabolo-

mics analysis, find metabolic biomarkers associated with

long-term survival in patients with PA.

Methods

Patient population

This study included 123 samples obtained from 106

patients retrospectively selected after they had under-

gone PA resection, from May 2000 to March 2011, in

the Department of Visceral Surgery and Transplantation

(University Hospitals of Strasbourg, Hautepierre Hos-

pital, Strasbourg, France). These patients fulfilled the fol-

lowing criteria: (1) histological diagnosis of PA, (2) all

follow-up patients, (3) only patients with tumor-related

deaths, (4) homogeneous adjuvant treatment using the

same chemotherapy (gemcitabine) for all patients (and

no radiotherapy), and (5) samples of pancreatic tissue

collected just after resection and then snap-frozen in

liquid nitrogen before storage.

Among the 106 samples obtained from patients with

PA, there were:

� 44 samples from patients who did not receive any

neoadjuvant chemotherapy

� 62 samples from patients who did

Among the 17 samples obtained from PP (healthy

tissue), there were:

� 9 samples from patients who did not receive any

neoadjuvant chemotherapy

� 8 samples from patients who did

Finally, two groups with extremely different prognoses

(PA samples) were compared:

� Long-term survivors (survival >3 years), 8 samples,

no neoadjuvant chemotherapy

� Short-term survivors (survival <1 year), 9 samples,

no neoadjuvant chemotherapy

For this investigation, the tissue samples were obtained

from the tumor bio-bank of Strasbourg University

Hospitals. A written informed consent was given by all

the included patients.

Tissue sample preparation for HRMAS NMR spectroscopy

All tissue specimens were collected during surgery just

after tumor removal and were snap-frozen in liquid ni-

trogen for –80 °C temperature storage. Then, the sample

preparation was performed at a temperature of –20 °C.
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The amount of tissue used for the HRMAS analysis

ranged from 15 mg to 20 mg. Each tissue sample was

placed in a 30-μL disposable insert. Next, 8 μL of

deuterium oxide with 0.75 weight percent 2,2,3,3-D4-3-

(trimethylsilyl) propionic acid was added in every

biopsy’s insert in order to get a chemical shift reference

for the NMR spectrometer. Finally, inserts were kept at

–80 °C until the HRMAS analysis was performed. The

insert was placed in a 4-mm ZrO2 rotor just before the

HRMAS analysis.

HRMAS NMR data acquisition

All HRMAS NMR spectra were obtained on a Bruker

Avance III 500 spectrometer (installed at Hautepierre

Hospital, Strasbourg) operating at a proton frequency of

500.13 MHz and equipped with a 4 mm triple resonance

gradient HRMAS probe (1H, 13C, and 31P). The temperature

was maintained at 277.15 K throughout the acquisition time

in order to reduce the effects of tissue degradation during

the spectra acquisition. A one-dimensional (1D) proton

spectrum using a Carr-Purcell-Meiboom-Gill (CPMG) pulse

sequence was acquired with an interpulse delay of 285 μs

and an acquisition time of 10 min for each tissue sample

(Bruker GmbH, Germany). The number of loops was set to

328, giving the CPMG pulse train a total length of 93 ms.

The chemical shift was calibrated to the peak of the methyl

proton of L-lactate at 1.33 ppm. In order to confirm reson-

ance assignments in a few representative samples, two-

dimensional (2D) heteronuclear experiments (1H –
13C)

were also recorded immediately after ending the 1D spectra

acquisition. Metabolites were assigned using standard me-

tabolite chemical shift tables available in the literature

(Table 1) [23].

HRMAS NMR data processing and statistical analyses

The HRMAS NMR data processing and the metabolites’

quantification have been previously detailed [24]. Briefly,

the region between 7.50 and 0.70 ppm of each 1D

HRMAS NMR spectrum was automatically bucketed

into integral regions of 0.01 ppm, using AMIX 3.9.14

software (Bruker GmbH, Germany). Once the data set

was obtained, it was then exported and analyzed into

SIMCA P (version 13.0.3, Umetrics AB, Umeå, Sweden).

An orthogonal partial least square-discriminant analysis

(OPLS-DA) was performed to analyze the data. The

following OPLS-DA model was considered: PP versus

PA (both without neoadjuvant chemotherapy). Two

measurements of model quality were reported for

OPLS-DA: R 2Y and Q2. R2Y > 0.7 and Q2 >0.5 can be

considered as a good predictor.

When the population is small, instead of applying

OPLS-DA analysis, network analyses using the “algo-

rithm to determine expected metabolite level alterations”

using mutual information (ADEMA) are justified [25].

This is why ADEMA has been applied to metabolite

quantification values. ADEMA evaluates the changes in

groups of metabolites between the case and the control

instead of analyzing metabolites one by one. ADEMA in-

cludes the metabolic network topology and uses mutual

information to find out if those metabolites are bio-

markers when considered together, and it can predict

the expected change in direction per metabolite when

the metabolic network topology is considered. The net-

work was constructed using the Kyoto Encyclopedia of

Genes and Genomes [26, 27] and Selway’s work [28].

The following groups of metabolites were compared

related to involved metabolic pathways:

� Choline, phosphorylcholine, glycerophosphocholine,

ethanolamine

� Glycerol, glucose

� Glucose, lactate

� Aspartate, threonine

� Glucose, glycine

� Aspartate, taurine

� Aspartate, succinate

� Glucose, ascorbate, glycine, glutamate

� Glutamate, glutamine

� Glutamate, glutamine, glycine

� Glutamate, glycine, creatine

� Tyrosine, phenylalanine

The metabolites were quantified using the PULCON

method, which is a very accurate quantification method

(with a very limited percentage of error [29]).

The repetition time used for this study (2 s) and the

total acquisition time (10 min) are hence a good com-

promise in order to quantify the metabolites by HRMAS

NMR spectroscopy of intact tissue. However, under

these conditions, we cannot see the whole of the metab-

olites, but only the freer parts of them. Furthermore, the

latter are underestimated about 20% in comparison with

studies performing tissue extractions (data not shown).

This method is widely used in the literature.

Metabolite quantification was performed using an

external reference standard of lactate (3 μmol),

scanned under the same analytical conditions as the

tissue samples. Spectra were normalized according to

sample weight. Peaks of interest were automatically

defined by an in-house program using MATLAB 7.0

(MathWorks, Natick, MA, USA). Peak integration

was then compared to the one obtained with the lac-

tate reference and was corrected according to the

number of protons. Only well-defined peaks with no

overlapping in the 1D CPMG spectra were selected

for quantification (Tables 2, 3, 4, and 5). Quantifica-

tion results were expressed as nanomoles per milli-

gram of tissue.
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Continuous variables are expressed as mean ± standard

deviation (SD). The Mann-Whitney U test was performed

to compare the metabolites’ concentrations of (1) PP and

PA (both without neoadjuvant chemotherapy), (2) PP

without and PP with neoadjuvant chemotherapy, (3) PA

without and PA with neoadjuvant chemotherapy, and (4)

long-term and short-term survival in patients with PA

(Tables 2, 3, 4, and 5). The Mann-Whitney U tests were

performed using R software [30].

Receiver operating characteristic (ROC) curves and

Kaplan-Meier curves were used to perform a survival

analysis and therefore to evaluate the clinical utility of

metabolite quantification in the long-term survival

characterization (R software [30]).

Results

All the spectra obtained from the 123 analyzed speci-

mens were of high quality without any obvious evi-

dence of tissue necrosis. A total of 31 metabolites

were identified within the range of 7.50–0.70 ppm

from the spectra obtained from all pancreatic tissue

samples (Table 1). Among the 31 identified metabo-

lites, only 18 metabolites were quantified: only well-

defined peaks with no overlapping in the 1D CPMG

spectra were selected for quantification.

The representative 1D HRMAS NMR CPMG spectra

of PP (healthy tissue) and PA samples (both without

neoadjuvant chemotherapy) are shown in Figs. 1a and

2a. Some discriminant metabolites were highlighted

using the Mann-Whitney U test. Choline (p = 0.0014),

ethanolamine (p = 0.0226), glycerol (p = 0.0037), glycine

(p = 0.0005), lactate (p = 0.0006), and taurine (p = 0.0021)

were statistically significant between PP and PA (both

without any neoadjuvant chemotherapy) (Table 2). Meta-

bolomic profiles of PP and PA were clearly separated by a

bi-component OPLS-DA (R2Y = 0.82; Q2 = 0.69) (Fig. 3).

A higher concentration of myo-inositol and glycerol was

shown in PP tissue samples. By contrast, a higher level of

glucose, ascorbate, ethanolamine, lactate, and taurine was

revealed in PA tissue samples.

Table 1 NMR resonance assignments of the metabolites

identified in samples of pancreatic intact tissues

Metabolite Group 1H chemical
shift (ppm)

13C chemical
shift (ppm)

1 Leucine δCH3 0.95 23.43

δ'CH3 0.95 24.75

2 Lactate CH3 1.33 22.69

CH 4.13 71.22

3 Glycine CH2 3.56 44.05

4 Glycerol CH2-OH (d 2X) 3.55 65.03

CH2-OH (u 2X) 3.64 65.07

CH-OH 3.77 74.69

5 Glutamine αCH 3.77 57.23

γCH2 2.44 33.52

6 Serine γCH2 3.97 62.90

7 Taurine CH2-NH3+ 3.27 50.01

CH2-SO3
- 3.43 37.93

8 Valine γ'CH3 1.04 20.44

αCH-NH2 3.60 63.05

9 Arginine γCH2 1.65 25.90

βCH2 1.92 30.13

δCH2 3.22 43.23

10 β-Glucose C6H(d) 3.89 63.48

C1H 4.65 98.70

11 α-Glucose CH2 3.83 62.08

C1H 5.22 94.94

12 Lysine δCH2 1.73 29.17

βCH2 1.90 32.48

γCH2 1.91 30.25

13 Glutamic acid βCH2 2.08 29.67

γCH2 2.35 35.96

14 Alanine βCH3 1.48 18.87

15 Myo-Inositol (CH)2 3.54 73.81

(CH)2 3.63 75.11

CH 4.05 74.79

16 Ornithine αCH-NH2 3.77 57.05

δCH2-NH2 3.05 41.83

β-CH2 1.93 30.28

γ-CH2 1.74 25.52

17 3-Hydroxybutyric acid CH3 1.20 24.30

18 Creatine CH2 3.93 56.23

19 Choline N+-(CH3)3 3.23 56.48

20 Fatty acids (a) (1)CH2 1.30 32.16

21 Fatty acids (b) CH2 2.80 28.50

22 Fatty acids (c) (1)CH2 2.26 36.60

23 Succinic acid (CH2)2 2.39 34.00

24 Ascorbate CH-O 4.52 80.87

25 Ethanolamine CH2-NH2 3.13 43.90

26 Phosphorylcholine CH2-O 4.11 63.60

N+-(CH3)3 3.22 56.57

27 Threonine βCH 4.25 68.50

28 Glycerophosphocholine N+-(CH3)3 3.21 56.56

Table 1 NMR resonance assignments of the metabolites

identified in samples of pancreatic intact tissues (Continued)

βCH2 3.72 68.49

αCH2 4.33 62.16

CH2OH 3.93 73.32

CH2-HPO4(d) 3.89 69.22

29 Tyrosine meta CH ortho CH
βCH2(d)

6.88 7.18 3.02 118.44 133.30 39.40

30 Phenylalanine ortho CH para CH
meta CH

7.31 7.36 7.42 131.91 132.28 131.59

31 Aspartic acid βCH2(d) βCH2(u) 2.63 2.81 40.20 40.82

Each peak in the 2D spectra represents a correlation 1H –
13C. Metabolites were

assigned using standard metabolite chemical shift tables available in the literature
[23]. The groups in bold text were used to perform the metabolites’ quantification
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Impact of neoadjuvant chemotherapy on PP and PA

Seventeen samples from PP (healthy tissue) were in-

cluded in this model: 8 samples received a neoadjuvant

chemotherapy, while the 9 others did not (Fig. 1). No

discriminant metabolites were found using the Mann-

Whitney U test (Table 3). The network analysis showed

that a decreased level of succinate, aspartate, taurine,

phosphorylcholine, glucose, tyrosine, lactate, and glu-

tamine was predicted in PP samples from patients with

neoadjuvant chemotherapy. Moreover, a higher level of

Table 2 Comparison between PP and PA (both without

neoadjuvant chemotherapy)

Metabolite No neoadjuvant
chemotherapy

Mean (nmol/mg) p value

Ascorbate PP 0.3488 ± 0.2191 0.4454

PA 0.3988 ± 0.2221

Aspartic acid PP 0.7577 ± 0.3284 0.2926

PA 0.6229 ± 0.2255

Choline PP 1.5580 ± 0.5921 0.0014

PA 0.8849 ± 0.3887

Creatine PP 1.7371 ± 0.9568 0.5047

PA 1.3561 ± 0.5057

Ethanolamine PP 0.9314 ± 0.4502 0.0226

PA 0.6188 ± 0.2620

Glutamate PP 2.9830 ± 0.8698 0.1114

PA 2.4650 ± 0.7699

Glycerol PP 8.1840 ± 7.3988 0.0037

PA 2.2750 ± 1.1994

Glycine PP 6.0920 ± 5.0908 0.0005

PA 2.2663 ± 0.8577

Glycerophosphocholine PP 2.4215 ± 2.6084 0.3516

PA 1.0319 ± 0.5029

Lactate PP 11.0040 ± 2.4733 0.0006

PA 16.1370 ± 4.7272

Phosphorylcholine PP 1.1696 ± 0.6396 0.5201

PA 0.9764 ± 0.5008

Taurine PP 2.9660 ± 1.9594 0.0021

PA 4.4630 ± 1.4063

Threonine PP 1.1202 ± 0.2821 0.6512

PA 1.1931 ± 0.4230

Glutamine PP 0.6855 ± 0.2518 0.6859

PA 0.6394 ± 0.2272

Succinic acid PP 0.3068 ± 0.2121 0.1786

PA 0.1762 ± 0.0763

Glucose PP 1.2247 ± 0.6158 0.7937

PA 1.3141 ± 1.1020

Tyrosine PP 0.0521 ± 0.0443 0.0583

PA 0.0741 ± 0.0472

Phenylalanine PP 0.1449 ± 0.0771 0.0866

PA 0.0741 ± 0.0811

Results of the Mann-Whitney U test. Metabolite differences between PP and PA,

both without neoadjuvant chemotherapy (univariate analysis, nonparametric test)

p <0.05 are in boldface

Table 3 Impact of neoadjuvant chemotherapy on healthy tissue

(PP)

Metabolite Neoadjuvant
chemotherapy

Mean (nmol/mg) p value

Ascorbate No 0.3488 ± 0.2191 0.6730

Yes 0.3592 ± 0.1671

Aspartic acid No 0.7577 ± 0.3284 0.9626

Yes 0.6730 ± 0.1776

Choline No 1.5580 ± 0.5921 0.7430

Yes 1.7649 ± 0.7624

Creatine No 1.7371 ± 0.9568 0.5414

Yes 1.7760 ± 0.6579

Ethanolamine No 0.9314 ± 0.4502 0.6058

Yes 1.1115 ± 0.5408

Glutamate No 2.9830 ± 0.8698 0.8148

Yes 2.3800 ± 0.4264

Glycerol No 8.1840 ± 7.3988 0.6730

Yes 8.2990 ± 7.2904

Glycine No 6.0920 ± 5.0908 0.5414

Yes 6.5590 ± 5.7401

Glycerophosphocholine No 2.4215 ± 2.6084 0.9626

Yes 2.2208 ± 2.1689

Lactate No 11.0040 ± 2.4733 0.3704

Yes 9.6770 ± 2.1588

Phosphorylcholine No 1.1690 ± 0.6396 0.8148

Yes 0.9469 ± 0.3644

Taurine No 2.9660 ± 1.9594 0.9626

Yes 2.7060 ± 1.3103

Threonine No 1.1202 ± 0.2821 0.6730

Yes 1.1678 ± 0.2801

Glutamine No 0.6855 ± 0.2518 0.5414

Yes 0.5633 ± 0.1466

Succinic acid No 0.3069 ± 0.2121 0.8884

Yes 0.2595 ± 0.1406

Glucose No 1.2247 ± 0.6158 0.4807

Yes 1.0736 ± 0.7355

Tyrosine No 0.0520 ± 0.0442 0.6058

Yes 0.0552 ± 0.0599

Phenylalanine No 0.1449 ± 0.0771 0.8148

Yes 0.1495 ± 0.0880

Results of the Mann-Whitney U test. Metabolite differences between PP

without neoadjuvant chemotherapy and PP with neoadjuvant chemotherapy

(univariate analysis, nonparametric test)
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threonine and glycine was predicted in PP tissue samples

from patients with neoadjuvant chemotherapy. The

other metabolites were predicted to be equivalent be-

tween the two groups (Fig. 4).

Among the 106 samples of PA, 62 received neoadju-

vant chemotherapy, while the 44 others did not (Fig. 2).

Some discriminant metabolites were highlighted using

the Mann-Whitney U test. Aspartate (p = 0.0017) was

statistically significant between PA samples from patients

who received neoadjuvant chemotherapy and those who

Table 4 Impact of neoadjuvant chemotherapy on pancreatic

adenocarcinoma (PA)

Metabolite Neoadjuvant
chemotherapy

Mean (nmol/mg) p value

Ascorbate No 0.3988 ± 0.2221 0.6648

Yes 0.4062 ± 0.2227

Aspartic acid No 0.6229 ± 0.2255 0.0017

Yes 0.9658 ± 0.6074

Choline No 0.8849 ± 0.3887 0.6600

Yes 0.9539 ± 0.4702

Creatine No 1.3561 ± 0.5057 0.4285

Yes 1.4464 ± 0.5971

Ethanolamine No 0.6148 ± 0.2620 0.1958

Yes 0.7511 ± 0.4177

Glutamate No 2.4650 ± 0.7699 0.0908

Yes 2.8070 ± 0.9767

Glycerol No 2.7550 ± 1.1994 0.1339

Yes 3.5300 ± 2.6914

Glycine No 2.2663 ± 0.8577 0.1265

Yes 2.9025 ± 1.8798

Glycerophosphocholine No 1.0319 ± 0.5029 0.7421

Yes 1.0810 ± 0.7982

Lactate No 16.1370 ± 4.7272 0.7969

Yes 15.9030 ± 5.3324

Phosphorylcholine No 0.9764 ± 0.5008 0.9092

Yes 0.9518 ± 0.4822

Taurine No 4.4630 ± 1.4062 0.8886

Yes 4.3490 ± 1.3425

Threonine No 1.1931 ± 0.4229 0.6273

Yes 1.2957 ± 0.6961

Glutamine No 0.6394 ± 0.2272 0.5864

Yes 0.6870 ± 0.2668

Succinic acid No 0.1762 ± 0.0763 0.4400

Yes 0.1866 ± 0.0739

Glucose No 1.3141 ± 1.1020 0.0813

Yes 2.3227 ± 2.7375

Tyrosine No 0.0730 ± 0.0493 0.3140

Yes 0.1097 ± 0.1479

Phenylalanine No 0.1789 ± 0.0811 0.1622

Yes 0.1097 ± 0.1958

Results of the Mann-Whitney U test. Metabolite differences between PA

without neoadjuvant chemotherapy and PA with neoadjuvant chemotherapy

(univariate analysis, nonparametric test)

Table 5 Metabolite differences according to survival rate

Metabolite No neoadjuvant
chemotherapy

Mean (nmol/mg) p value

Ascorbate LongSurv 0.3988 ± 0.2221 0.5414

ShortSurv 0.4062 ± 0.2227

Aspartic acid LongSurv 0.6229 ± 0.2255 0.7430

ShortSurv 0.9658 ± 0.6074

Choline LongSurv 0.8849 ± 0.3887 0.0150

ShortSurv 0.9539 ± 0.4702

Creatine LongSurv 1.3561 ± 0.5057 0.2766

ShortSurv 1.4464 ± 0.5971

Ethanolamine LongSurv 0.6148 ± 0.2620 0.0078

ShortSurv 0.7511 ± 0.4177

Glutamate LongSurv 2.4650 ± 0.7699 0.2766

ShortSurv 2.8070 ± 0.9767

Glycerol LongSurv 2.7550 ± 1.1994 0.6730

ShortSurv 3.5300 ± 2.6914

Glycine LongSurv 2.2663 ± 0.8577 0.2359

ShortSurv 2.9025 ± 1.8798

Glycerophosphocholine LongSurv 1.0319 ± 0.5029 0.7430

ShortSurv 1.0810 ± 0.7982

Lactate LongSurv 16.1370 ± 4.7272 0.0360

ShortSurv 15.9030 ± 5.3324

Phosphorylcholine LongSurv 0.9764 ± 0.5008 0.6730

ShortSurv 0.9518 ± 0.4822

Taurine LongSurv 4.4630 ± 1.4062 0.4807

ShortSurv 4.3490 ± 1.3425

Threonine LongSurv 1.1931 ± 0.4229 0.3213

ShortSurv 1.2957 ± 0.6961

Glutamine LongSurv 0.6394 ± 0.2272 0.1672

ShortSurv 0.6870 ± 0.2668

Succinic acid LongSurv 0.1762 ± 0.0763 0.0747

ShortSurv 0.1866 ± 0.0739

Glucose LongSurv 1.3141 ± 1.1020 0.4807

ShortSurv 2.3227 ± 2.7375

Tyrosine LongSurv 0.0730 ± 0.0493 0.0592

ShortSurv 0.1097 ± 0.1479

Phenylalanine LongSurv 0.1789 ± 0.0811 0.0055

ShortSurv 0.1097 ± 0.1958

Results of the Mann-Whitney U test (univariate analysis, nonparametric test).

No neoadjuvant chemotherapy. LongSurv long-term survivors, ShortSurv

short-term survivors
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Fig. 1 HRMAS NMR spectra of pancreatic healthy tissue (PP). a PP without neoadjuvant chemotherapy (n = 9), b PP with neoadjuvant

chemotherapy (n = 8). The spectra metabolic contents are directly comparable because the intensity of each spectrum was normalized with

respect to the weight of the analyzed sample. For display purposes, the amplitudes of the choline peak at 3.23 ppm, the glycine peak at

3.56 ppm, and the lactate peak at 1.33 ppm were graphically shortened. Metabolite assignments are given in Table 1

Fig. 2 HRMAS NMR spectra of pancreatic adenocarcinoma (PA). a PA without neoadjuvant chemotherapy (n = 44), b PA with neoadjuvant

chemotherapy (n = 62). The spectra metabolic contents are directly comparable because the intensity of each spectrum was normalized with

respect to the weight of the analyzed sample. For display purposes, the amplitude of the lactate peak at 1.33 ppm was graphically shortened.

Metabolite assignments are given in Table 1
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Fig. 3 OPLS-DA comparing pancreatic adenocarcinoma (PA) with pancreatic healthy tissue (PP). A two-class model including 53 samples without

neoadjuvant chemotherapy: 9 samples of PP and 44 of PA. A clear distinction between the different classes of tissues is shown in this model

(R2Y = 0.79; Q2 = 0.62)

Fig. 4 Impact of neoadjuvant chemotherapy on healthy tissue (PP). PP with neoadjuvant chemotherapy-related samples (n = 8) were compared

to PP samples with no neoadjuvant chemotherapy (n = 9). Metabolic network analysis according to ADEMA results. The red, green, and blue

arrows, respectively, indicate the metabolites that are predicted to increase, decrease, or remain stable in the population who received

neoadjuvant chemotherapy
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did not (Table 4). As shown in Fig. 5, the network

analysis revealed a decreased level of lactate, which

was predicted in PA samples from patients with neo-

adjuvant chemotherapy. Moreover, higher levels of

ethanolamine, tyrosine, phenylalanine, aspartate, glu-

cose, glycerol, succinate, glycine, glutamate, glutamine,

and creatine were predicted in PA tissue samples

from patients with neoadjuvant chemotherapy. The

other metabolites were predicted to be equivalent be-

tween the two groups.

For some of these analyses, the Mann-Whitney U test

did not yield any significant differences, whereas ADEMA

reports some changes for those metabolites. Thus,

ADEMA appears more effective, as it compares different

groups of metabolites, uses mutual information, and does

not require a large population of samples.

Long-term versus short-term survival in patients with PA

Patients’ characteristics are described in Table 6. The

representative 1D HRMAS NMR CPMG spectra of

long-term and short-term survivors are shown, respect-

ively, in Fig. 6a and b. Seventeen samples were studied: 8

long-term survivors and 9 short-term survivors (both with-

out any neoadjuvant chemotherapy). Some discriminant

metabolites were highlighted using the Mann-Whitney

U test. Choline (p = 0.0150), ethanolamine (p = 0.0078),

lactate (p = 0.0360), and phenylalanine (p = 0.0055) were

statistically significant between long-term and short-

term survival in patients with PA (Table 5).

The network analysis showed higher levels of glucose,

ascorbate, and taurine; this was predicted in long-term

survivors. Moreover, decreased levels of choline, etha-

nolamine, glycerophosphocholine, phenylalanine, tyro-

sine, aspartate, threonine, succinate, glycerol, lactate,

glycine, glutamate, glutamine, and creatine were pre-

dicted in long-term survivors. Phosphorylcholine was

predicted to be equivalent between the two groups

(Fig. 7).

Survival analysis

Statistical significant differences were highlighted when

we focused on the comparison between long-term and

short-term survival patients. Only the use of ethanolamine

as a single screening test showed a higher accuracy in dis-

tinguishing long-term from short-term survivors. As

shown in Fig. 8, samples with a decreased level of ethanol-

amine had a high probability of being assigned to long-

term survivors. All the patients showing a low level of

ethanolamine were long-term survival patients. The area

under the curve (AUC) was 0.861 ± 0.101. The optimal

ethanolamine threshold was 0.740 nmol/mg when distin-

guishing long-term from short-term survivors. With this

threshold point, sensitivity and specificity were, respect-

ively, 77.80% and 75.00% (Fig. 8a). The predictive positive

Fig. 5 Impact of neoadjuvant chemotherapy on pancreatic adenocarcinoma (PA). PA with neoadjuvant chemotherapy-related samples (n = 62)

were compared to PA without neoadjuvant chemotherapy (n = 44). Metabolic network analysis according to ADEMA results. The red, green, and

blue arrows, respectively, indicate the metabolites that are predicted to increase, decrease, or remain stable in PA with neoadjuvant

chemotherapy-related samples

Battini et al. BMC Medicine  (2017) 15:56 Page 9 of 16



value was 47.00% and the negative predictive value was

52.90%. A Kaplan-Meier analysis showed that the overall

survival probabilities were significantly higher in patients

with low tumor ethanolamine concentrations compared

to those with high tumor ethanolamine concentrations

(Fig. 8b).

Discussion
To the best of our knowledge, this is the first study that

has evaluated the metabolome of intact tissues for PP

and PA.

Preoperative assessment of resectability of PA is not yet

an adequate way of predicting survival. However, given the

morbidity and mortality of CDP, a better evaluation of the

balance between risks and benefits is a complex quest. In-

deed, serum markers such as carcinoembryonic antigen

(CEA) or carbohydrate antigen (CA 19-9) are poorly cor-

related to long-term results and should not be used for

contraindicating the only potentially curative treatment of

this often fatal disease. Up to now only histological param-

eters have enabled surgeons to retrospectively evaluate the

potential benefit of CDP, but these parameters are available

only after surgery. Moreover, none of these parameters is

really specific for predicting the necessity of pancreatic

resection. In order to evaluate the benefit of pancreatic

resection, long-surviving patients were compared to short-

term survivors. Of note, among the long-term survivors,

two of them showed an infra-millimetric margin, and three

had histological invasion of the portal vein (Table 6). Thus,

the use of currently described predictive factors should not

lead to contraindicating resection in patients who can

otherwise tolerate surgery [31]. The use of a more specific

marker tightly linked to the pathophysiology of pancreatic

cancer would be of particular interest.

HRMAS NMR provides new insights into the relation-

ships between metabolic pathways and pancreatic cancers.

This method allows for the identification of cell membranes

and phospholipid metabolism, cellular energy production

via neoglucogenesis, the tricarboxylic acid (TCA) cycle, and

oxidative stress. The majority of PAs have KRAS mutation

(90% with activating mutations in this oncogene) [32–34].

Our results about PP’s metabolome show a higher

level of lactate, glucose, phosphorylcholine, taurine, as-

partate, lactate, glutamine, and succinate in patients who

received neoadjuvant chemotherapy (gemcitabine). Mu-

tations in TCA cycle enzymes are known to promote

cancer development and growth. For example, mutations

in succinate dehydrogenase (SDH), fumarate hydratase

(FH), and isocitrate dehydrogenase 1 and 2 (IDH1,

IDH2) can be cited [35, 36]. Moreover, these mutations

Table 6 Patients’ characteristics

Age Gender Tumor size (mm) CEA CA 19-9 T N LNR Margin (mm) Differ Vasc invas G

LongS 1 70 F 50 8 52.3 3 1 1/57 2 W No IIB

LongS 2 70 M 25 2.1 202.56 3 0 0/21 1 M-P No IIA

LongS 3 63 M 35 2 200 4 0 0/16 3 M Vein III

LongS 4 66 F 50 1.1 1007 3 1 8/65 0 W-M Vein IIB

LongS 5 59 M 40 NA NA 4 1 4/39 3 W-M No III

LongS 6 76 M 40 1.8 43.2 3 1 3/25 2 P Vein IIB

LongS 7 67 F 60 3.6 1626 3 1 4/43 3 M No IIB

LongS 8 69 F 25 1.4 220.4 3 0 0/16 3 M No IIA

ShortS 1 47 M 40 NA 112 3 1 6/64 2 P No IIB

ShortS 2 65 M 30 144 97.4 3 1 5/83 2 P No IIB

ShortS 3 78 F 30 3.6 250 3 1 NA 2 M No IIB

ShortS 4 72 F 35 2 13 3 1 NA 0 M-P No IIB

ShortS 5 82 F 25 NA 178 3 0 0/18 0 W Vein IIA

ShortS 6 49 F 30 2.3 451.5 3 1 6/42 1 P Vein IIB

ShortS 7 62 M 70 4.5 293.7 4 1 1/36 0 W Vein III

ShortS 8 60 M 40 4.2 916 3 1 18/33 0 Coll Vein IIB

ShortS 9 61 F 30 4.7 246.4 3 1 2/38 0 M Vein IIB

Seventeen samples from 17 patients with PA: 8 patients were classified as long-term survival patients (>3 years), while the 9 others had a short-term survival

(<1 year). There was no significant difference in terms of T stage (p = 0.453), N+ status (p = 0.2), differentiation (p = 0.481), CA 19-9 (p = 0.236), or CEA (p = 0.322).

There was a significantly larger resection margin in long-term survivors (2.13 mm vs 0.78 mm; p = 0.018). LongS long-term survival patients, ShortS short-term

survival patients, CEA carcinoembryonic antigen, NA not available, CA 19-9 carbohydrate antigen 19-9. T and N describing the tumor/node/metastasis: T tumor, N

lymph nodes; LNR lymph node ratio, Differ differentiation, W well-differentiated, P poorly differentiated, M moderately differentiated, Coll colloid, Vasc invas

vascular invasion, G grading
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have been associated with distinct cancer subsets and

different patient prognoses [37, 38]. Mutations in TCA

cycle enzymes have also been associated with measur-

able changes in the levels of metabolites. Nevertheless,

these mutations have not been a major feature of PA.

Reprogrammed cellular metabolism has increasingly be-

come an obvious field of research for PA. Research has

also focused on the alterations that involve the TCA

cycle and mutant KRAS-induced tumor cell dependen-

cies for glucose, glutamine, and extracellular protein.

Fig. 6 HRMAS NMR spectra of long-term and short-term survivors. a PA with long-term survival (n = 8), b PA with short-term survival (n = 9). The

spectra metabolic contents are directly comparable because the intensity of each spectrum was normalized with respect to the weight of the

analyzed sample. For display purposes, the amplitudes of the choline peak at 3.23 ppm, the fatty acids peak at 1.30 ppm, and the lactate peak at

1.33 ppm were graphically shortened. Metabolite assignments are given in Table 1

Fig. 7 Metabolic network analysis enables pancreatic adenocarcinoma (PA) prognostication. Long-term survival-related samples (n = 8) were

compared to short-term survival samples (n = 9) according to ADEMA results. No neoadjuvant chemotherapy was used. The red, green, and blue

arrows, respectively, indicate the metabolites that are predicted to increase, decrease, or remain stable in long-term survivors
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Our results about PA’s metabolome show a higher

level of lactate in patients who did not receive any neo-

adjuvant chemotherapy. Elevated expression of lactate

dehydrogenase A (LDHA) is highlighted in breast and

colorectal cancers [39, 40] and has been recently identi-

fied in pancreatic cancers [41]. Some studies have already

shown the different steps where LDHA is involved (tumor

initiation, maintenance, and progression) [42, 43]. Given

the elevated glycolysis in PA, leading to increased lactate

production, the ability to utilize lactate could provide an

additional advantage to PA cells [1]. Indeed, the inhibition

of glycolysis through suppressing LDHA expression by

RNA interference decreased the growth of PA cells [44].

Our study may provide new targets to treat PA. When pa-

tients who received neoadjuvant chemotherapy and pa-

tients who did not were compared, neoadjuvant

chemotherapy seemed to have an inhibiting effect on

LDHA expression. A higher level of lactate in patients who

did not receive any neoadjuvant chemotherapy showed

that survival of PA was highly dependent on LDHA activity

in a hypoxic environment. Then, this higher level of lactate

could be linked to improved responses to neoadjuvant

chemotherapy. Indeed, lactate might be a predictive

marker for assessing the response of tumor cells to neoad-

juvant chemotherapy. Finally, lactate could be correlated

with tumor neoadjuvant chemotherapy in predicting re-

sponses to this therapy. Elevated levels of lactate are prog-

nostic biomarkers for poor survival in several cancers. Our

findings suggest that lactate could be an important marker

for screening the efficiency of cancer treatments.

A decreased level of glucose has also been shown in PA

without neoadjuvant chemotherapy. As described in the

work of Koong et al. [45] and Guillaumont et al. [46],

areas within PA tumors are hypoxic, and this has

implications for the cellular metabolism. Hypoxia pro-

motes tumor growth by particularly stimulating glycolysis.

When PP and PA, both without chemotherapy, were

compared, some discriminant metabolites were highlighted,

particularly lactate and taurine. Our study shows a higher

level of lactate and taurine in patients with PA. These re-

sults are consistent with the work of Wang et al. [47]. The

work of Nishiumi et al. has also underlined elevated levels

of lactate in the patients’ serum [48]. As described in the

work of Wang et al., higher levels of taurine have also been

reported in the literature, for several types of cancer. As

previously explained, this increased lactate level in PA could

come from hypoxia. Our study is in accordance with other

studies that have found higher levels of taurine in different

types of cancer, probably due to apoptosis [49, 50]. Even so,

further studies will be needed to understand the complex

biology of that particular type of cancer. If confirmed by

other studies, this could deepen our knowledge of pancre-

atic cancer pathogenesis and might also lead to the identifi-

cation of new targets for diagnosis, early detection,

imaging, or even future therapeutic options.

Our results about PA’s metabolome in short-term sur-

vivors are in accordance with other studies that found a

higher level of choline in several cancers. The role of

choline kinase α (Chk-α) in malignant transformation

and progression in several cancers has been well de-

scribed in the literature. Increased levels and activity of

Chk-α have been observed in human breast [51], colo-

rectal [52], lung [52, 53], prostate [52], ovarian [54], and

more recently in endometrial [55] and pancreatic

cancers [56].

The altered choline metabolism we observed is

possibly due to an overexpression of Chk-α. Increased

levels of choline could be due to an increase in the

Fig. 8 Ethanolamine concentration as a single metabolic biomarker predicting the overall survival in patients with PA. a ROC and b Kaplan-Meier

curves obtained from the analysis of ethanolamine concentrations for the diagnosis of long-term survival in patients with PA. The AUC was 0.861

± 0.101, the threshold value was 0.740 nmol/mg, and sensitivity and specificity were, respectively, equal to 77.80% and 75.00%. The Kaplan-Meier

curve shows differences between long-term and short-term survival patients. The p value was 0.005 (for the log-rank test)
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membrane activity, particularly due to enhanced cellular

proliferation. This activity is increased in inflammatory

or tumoral conditions. In the most malignant cases, this

membrane activity is much higher still. Increased levels

of choline are also due to malignant transformation, and

particularly due to an overexpression of Chk-α. Hypoxia

may also affect choline phosphorylation through effects

on Chk-α and transporters [57]; in turn, choline phos-

phorylation may be affected by hypoxia through effects

on Chk-α and transporters. In some studies, particularly

in prostate cancer [58], increased levels in choline have

been described, leading to the development of 18F-fluor-

ocholine positron emission tomography (PET) imaging

in order to detect the increased uptake and the phos-

phorylation of the tracer. Consequently, our results are

in agreement with observations in the literature and

could represent the biological substrate and justification

to the use of 18F-fluorocholine PET imaging in pancreatic

cancers [59–61]. Metabolic targets in choline phospho-

lipid metabolism may provide new therapeutic options for

PAs that have severely limited options. Moreover, a de-

creased amount of succinate was shown by the network

analysis in long-term survivors compared to short-term

survivors, suggesting a decreased activity of the TCA

cycle. PAs from long-term survivors also show decreased

levels of threonine, aspartate, glycerol, glutamate, and glu-

tamine compared to those from short-term survivors.

Glutamine has been particularly studied for its role in can-

cer metabolism because it appears to be required for the

growth of many types of tumors [62]. Decreased levels of

creatine and lactate were shown in long-term survival pa-

tients too. Other studies showed the relationship between

lower levels of creatine, lactate, and choline and overall

survival [63]. Understanding the different metabolic links

within pancreatic cancer is a promising approach to iden-

tifying novel prognostic markers (long-term survival) and

therapeutic programs in patient care [1].

Short-term survivors showed higher levels of choline,

glycerophosphocholine, ethanolamine, and fatty acids, as

depicted in Fig. 6b (respectively, numbers 19, 25 and 21,

22). Fatty acids are a major factor in the growth of

tumor cells. Some explorations have begun in order to

study the PA metabolism and more precisely the role of

individual complex fatty acids. Indeed, as detailed in the

work of Guo et al. [64] and Zadra et al. [65], fatty acids

can be both pro-tumorigenic and anti-tumorigenic, as

described for various cancers, making their biology diffi-

cult to explain. Reducing the levels of certain fatty acids

seems to be important for PA. But, we have to determine

first which fatty acids are cytotoxic for tumor cells and

which fatty acids provide the tumor with metabolic

substrates [1]. Focusing on ethanolamine, the survival

analysis showed that survival was longer for patients

with lower tumoral ethanolamine concentrations. The

assessment of ethanolamine concentration can be clinic-

ally relevant as a single metabolic biomarker for distin-

guishing long-term survivors from short-term survivors

in patients with PA.

The current study demonstrates that metabolomics

profiling may provide prognostic information in patients

with pancreatic cancer. Research has usually focused on

enzymatic steps within the TCA cycle, as it potentially

influences the progression of disease, as well as on alter-

ations of the phospholipid metabolism within the cho-

line/ethanolamine membrane.

Only very few patients are needed to build a model

that can predict oncological outcome in pancreatic

cancer very accurately; this fact alone should help in

promoting our technique.

We acknowledge some limitations to the present

study. First, the number of patients is limited, particu-

larly regarding the long-term survivors included into our

study. Pancreatic cancers are extremely aggressive and

have one of the poorest prognoses among all cancers.

Thus, very few patients get a chance of long-term

survival, and even less so without any neoadjuvant

chemotherapy. Second, further studies should take into

account other elements that affect the survival of pa-

tients. We believe these data are preliminary and should

be validated in further series. We encourage others to

validate the findings and to carry out multicenter stud-

ies. Indeed, in order to include co-factors, the patient

population needs to be significantly enhanced (because

PAs have one of the poorest prognoses among all

cancers). Third, we acknowledge that a comparative ef-

fectiveness study should be performed in real time in

order to evaluate usual serum markers versus HRMAS

NMR spectroscopy before making any definitive conclu-

sions. Fourth, due to the limited number of patients and

the preliminary character of our results, it is difficult to

draw a conclusion about the level of ethanolamine. For

the moment, there is no specific concept. Fifth, although

we acknowledge that the assessment of ethanolamine

concentration can be clinically relevant as a single meta-

bolic biomarker for distinguishing long-term survivors

from short-term survivors in patients with PA, this re-

sult should be put into perspective. Indeed, sensitivity

and specificity are respectively 77.80% and 75%. Lastly,

this study was retrospective and may involve some bias

that could have been unaccounted for.

Metabolomics analysis could be validated as an intraop-

erative discriminant method for distinguishing healthy

tissues from PA tissues. This could deepen our knowledge

of PA metabolism and may also lead to the identification

of new targets for diagnosis, imaging, or future therapeutic

options. If these results are confirmed in further studies, it

is expected that the role of intraoperative HRMAS NMR

spectroscopy could then be evaluated in the setting of PA.
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This approach, which we call “metabolomics-guided sur-

gery,” could help surgeons to extend the excision if neces-

sary. Since HRMAS NMR spectroscopy enables rapid

characterization of intact tissue, it could also be used as

an intraoperative method. HRMAS analysis only takes

20 min. Data analysis is also very quick (<10 min).

Furthermore, the cost is < $50 per sample.

Conclusions

In conclusion, as we are able to distinguish PP from PA,

we could imagine using this technique to analyze several

samples collected from the excision cavity in addition to

tissue tumor samples. This last step could help surgeons

in the detection of residual tumor cells in the excision

cavity and the control of margins. This approach could

be used in clinical routine for prediction of long-term

survival in patients with PA; indeed, this information

can be obtained in 20 min during surgery. Finally, due to

the high morbidity and mortality during surgery, we

could also imagine using this technique before surgery,

with the use of endoscopic or percutaneous biopsy,

although these remain invasive techniques. On the

whole, our own technique could prove useful and have a

positive impact on patient care.
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