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Abstract

The emerging field of “metabolomics,” in which a large number of small molecule metabolites

from body fluids or tissues are detected quantitatively in a single step, promises immense potential

for early diagnosis, therapy monitoring and for understanding the pathogenesis of many diseases.

Metabolomics methods are mostly focused on the information rich analytical techniques of

nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS). Analysis of the

data from these high-resolution methods using advanced chemometric approaches provides a

powerful platform for translational and clinical research, and diagnostic applications. In this

review, the current trends and recent advances in NMR- and MS-based metabolomics are

described with a focus on the development of advanced NMR and MS methods, improved

multivariate statistical data analysis and recent applications in the area of cancer, diabetes, inborn

errors of metabolism, and cardiovascular diseases.
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While vast progress in the fields of genomics and proteomics has occurred, additional

evidence of biological end points of human diseases is highly desired for disease diagnosis,

prognosis and therapeutic development. Thus detection of metabolites that are involved in

human diseases or that can be used to help develop new drugs, using cells, tissue, organs or

biological fluids has risen in prominence over the past several years [1–6]. The promising

field of metabolomics, and the closely related areas of metabonomics and metabolite

profiling, involve the quantitative detection of multiple small molecule metabolites in

biological systems. An improved understanding of biological systems at the molecular level,

i.e., systems biology, is anticipated to result from the metabolomics approach, especially

when combined with genomics and proteomics information. Perhaps even more importantly,

truly “personalized medicine” is anticipated to become a reality through the advancement of

metabolomics and other ‘omic’ sciences [7]. A major advantage in the application of

metabolomics stems from an improved ability to detect up to many hundreds of metabolites

in parallel, which provides an efficient method for monitoring altered biochemistry. It is

thought that the human body contains approximately 3000 to 5000 detectable metabolites, a

sizable fraction of which have already been identified [8]. In addition, metabolite

concentration alterations are often amplified when compared to those of gene expression or
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protein levels, making the detection of metabolite profiles a relatively sensitive measure of

biological status. Changes in biological status is then based on the detection of perturbations

in the concentrations and fluxes of specific endogenous metabolites involved in a number of

key disease-related or other specific cellular pathways. Thus, metabolomics can reveal

crucial information that is closely related to the current disease or theraputic status. More

generally, the metabolic profile of biological specimens is affected by a numerous factors

such as diet, age, ethnicity, drugs, lifestyle or gut microfloral populations, and these factors

need to be either controlled or deconvoluted in order to obtain information specific to

disease [2]. A number of articles providing information on the background of NMR- and

MS-based metabolomics and related areas, its various applications and technologies, as well

as the advantages and limitations of the metabolomics approach have appeared [6, 9–19].

Among the analytical techniques that can be employed for metabolomics applications,

nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) are the most

common. A number of methodologies within these two technological areas are currently

being developed specifically to deal with the types of complex samples analyzed in

metabolomics studies. NMR spectroscopy is known as one of the premier methods for the

analyses of multi-component mixtures as it requires little or no sample preparation; is rapid,

non-destructive, and non-invasive; and provides highly reproducible results (coefficient of

variation ~1–2%). Peaks in the NMR spectra can be reliably assigned to specific metabolic

species, based on their chemical shifts and multiplet patterns, and thus NMR provides a

wealth of information on the identity and quantity of a large number of metabolites in

parallel from a single experiment. With advanced high-throughput NMR methodology, up to

200 samples can be measured within a day with the assistance of flow-injection probes and

automated liquid handlers. The detection limit can also be decreased to 10’s of ng by the use

of high field magnets, cryogenically cooled probes, microcoil probes equipped to handle

very small samples, and methodologies that couple NMR to liquid chromatography and

solid phase extraction [20–22]. On the other hand, the intrinsic high sensitivity (typically pg

level) of MS detection makes it an important method for measuring metabolites in complex

biofluids. A variety of MS methods in combination with separation techniques such as gas-

chromatography (GC) and liquid chromatography (LC) and their variants have been used in

numerous metabolomics investigations [19, 23–27]. Recently, a variety of promising

atmospheric sample introduction MS methods have been developed that require essentially

no sample separation or preparation [28–30].

Data from NMR and MS experiments are generally complex since they contain qualitative/

quantitative information on upwards of several hundreds of metabolites. Multivariate

statistical analyses are thus used for data reduction and in particular for differentiating

biofluids samples into “disease” and “control” populations based on the differences in

signals of multiple metabolites (Figure 1). A variety of statistical methodologies exist and

many are now easily accessible via commercial software or “freeware,” and these methods

provide extremely helpful tools for filtering the large amounts of data and for accessing the

often-subtle biochemical perturbations latent in the spectra [31–35]. In addition, these

approaches are used to extract single biomarkers or sets of biomarkers with the best

properties for the assessment of disease status. Validation of such putative biomarkers is of

great importance, as is the biological understanding of the disease that can provide

additional validation in the application of metabolomics.

Biological specimens

Urine and blood serum or plasma are the most commonly used biofluids for metabolomics-

based studies for the simple reasons that they both contain hundreds to thousands of

detectable metabolites and can be obtained non- or minimally invasively. A number of other
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fluids such as cerebrospinal fluid, bile, seminal fluid, amniotic fluid, synovial fluid, gut

aspirate and saliva have also been studied [36–38]. More recently, metabolic profiling of

intact tissue and its lipid and aqueous metabolites extracts is gaining more importance for

biomarker detection [39].

Compared with other biofluids, the analysis of urine provides certain obvious advantages.

The relatively low concentrations of proteins and high concentrations of low molecular

weight compounds minimize sample preparation and result in high quality measurements

due to the narrow line widths of the spectral peaks in the NMR spectra. These characteristics

enhance the process of biomarker identification by NMR for both diagnostic and monitoring

applications. However, the high salt content of urine is more challenging for MS

measurements which typically require some sample pretreatment.

Blood maintains a normal homeostasis in the human body by constant regulatory

mechanisms and hence metabolic profiling of serum/plasma provides a global view of the

instantaneous metabolic status. Moreover, blood perfuses essentially all living cells in the

human body and thus is anticipated to carry vital information on virtually every cell. Unlike

urine, the NMR spectrum of serum/plasma includes both narrow signals from small

molecule metabolites and broad signals from proteins and lipids. A variety of spectral

editing methods are used to selectively detect small or large molecules signals. MS analysis

of serum is normally carried out using extracts, and in the case of GC/MS, derivatization

procedures.

Metabolic profiling using intact tissue has gained momentum as an approach for

understanding the molecular basis of diseases [39]. This interest stems from the fact that

biomarkers due to pathophysiological stress are anticipated to be more highly concentrated

in the pathological source for diseases such as cancer. The latest technological

advancements in NMR have reduced the required sample quantity to as little as a few mgs

so that even the biopsy tissue is sufficient to obtain good quality NMR spectra with

resolution that is comparable to solution-state spectra. The rich metabolic profile of tissue is

thought to be particularly useful for guiding the detection of biomarkers in more relatively

easily accessible biofluids.

NMR Spectroscopy

A number of one and two-dimensional NMR methods are currently used for metabolomics

applications. A recent article provides NMR experimental protocols for the common

biological samples used in metabolomics along with protocols for sample preparation [40].

Currently, the simple one pulse sequence and one-dimensional nuclear Overhauser

enhancement spectroscopy (NOESY) sequence with water suppression are the most

commonly used NMR methods for metabolomics applications. Water suppression in the one

pulse experiment depends more critically on good shimming. On the other hand, 1D

NOESY is more robust and provides a flatter baseline under similar conditions. A number of

pulse sequences are available all of which are designed to effectively suppress the high

intensity water signal leaving the metabolites signals intact [41, 42]. A commonly used

method for suppressing the broad signals from large molecules (such as in tissue or serum

samples) is the Carr–Purcell–Mieboom–Gill (CPMG) sequence. This sequence is generally

robust, and is widely used in a number of studies to date. In contrast, the so-called “diffusion

edited” NMR experiment may be used for observing signals from large molecules such as

lipids [43]. The 1D selective TOCSY experiment has been successfully applied to

metabolomics studies to detect metabolites quantitatively even if they are found at

concentrations 10–100 times below those of the major components [44]. This approach has

been shown to be highly useful for detecting targeted metabolites in biological samples [45].
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2D NMR methods are highly useful for reducing the spectral complexity and obtaining

connectivity between the nuclei to make assignments and identify metabolites. However,

these methods have not been widely used in metabolomics to date because of their increased

acquisition time, data size, and complexity in data analysis. Nevertheless, a small but

growing number of papers report using 2D approaches in metabolomics studies [46–49].

The most commonly used include 2D–J spectroscopy, correlation spectroscopy (COSY),

total correlation spectroscopy (TOCSY), heteronuclear single quantum coherence (HSQC)

spectroscopy and heteronuclear multiple bond correlation (HMBC) experiments. 2D J-

resolved (JRES) spectroscopy is attractive for metabolomics studies [50] because it can lead

to a substantial simplification of the spectra. One drawback of this method is that the

integral of signals is strongly influenced by T2 relaxation during generally the long t1
evolution period and hence only a relative quantification of concentration of metabolites is

possible.

The use of 13C NMR in metabolomics, while attractive from the standpoint of improved

resolution, has been limited due to the low natural abundance (~1.1%) and low

gyromagnetic ratio of 13C nuclei, and therefore 13C NMR requires unacceptably long data

acquisition times. To improve this situation, a 13C labeling approach that can be carried out

directly in aqueous solution at ambient temperature has been introduced [51]. The analysis

of complex mixtures such as urine, serum or other bio-fluids is improved because the

approach can be combined with fast 2D (1H-13C) heteronuclear experiments to yield spectra

with good signal-to-noise ratios. The method has been applied to identify patients with

inborn errors of metabolism.

For the non-invasive metabolic profiling of tissue specimens, a technique called high

resolution magic angle spinning (HRMAS) NMR spectroscopy is utilized. In this approach,

a rotor containing the tissue sample is spun typically at 3 to 6 kHz at an angle of 54.7°

relative to the applied magnetic field, resulting in high-resolution, liquid-like NMR spectra

[52]. Most of the common NMR pulse techniques can be used for tissue NMR

applications. 1H HRMAS NMR spectra of tissue samples can generally be obtained using

small quantity of intact tissue (~ 5 to 20 mg).

Mass spectrometry

MS methods coupled with prior separation modalities such as gas chromatography (GC),

liquid chromatography (LC), and capillary electrophoresis (CE) provide enormous amounts

of chemical information for metabolomics studies [19, 23–26,53]. A range of MS

instruments, including quadrupoles, triple quads, ion traps, and time-of-flight mass analyzers

are commonly used. Tandem MS (MS/MS or even MSn) methods are often used to validate

the identity of unknown molecules. Fourier-transform ion cyclotron resonance (FT-ICR)

provides an (expensive) alternative approach with extremely high resolution and a mass

accuracy better than 1 ppm [23]. The introduction of Orbitrap MS [53], allows an alternative

high resolution mass analyzer that detects ions with very high mass accuracy.

LC-MS is currently the most important MS-based approach for metabolomics application

[26] because of its sensitivity and rich information content. Biofluids such as urine can be

directly injected into the LC system while samples such as serum require minimal sample

preparation such as protein precipitation. LC-MS is considered to be a moderately high

throughput method. The recently developed ultrahigh pressure liquid chromatography

(UPLC) approach has significantly improved the chromatic resolution, and reduced the limit

of detection by 3–5 fold [54]. A common challenge for LC- (and GC-) MS measurements is

the inter-batch-variation as well as the fact that the separation process makes the analysis
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time-consuming. In addition, the selectivity of LC/GC-MS to specific classes of analytes

provides both benefits and complications.

The high separation efficiency and reproducibility of GC-MS makes it also a very useful

tool for metabolomics [55]. Depending on the sample preparation conditions, GC-MS can be

applied to the analysis of a wide range of metabolite classes including ketones, aldehydes,

alcohols, esters, sulfides, sugars, sugar-phosphates, sugar-alcohols, organic acids, amino

acids, lipids, peptides, alkaloids, amines and amides. Unlike LC-MS, GC-MS often requires

rather extensive sample preparation steps such as chemical derivatization before the

analysis. A new technology that incorporates a second GC column (2D GC-MS) is very

promising for metabolomics applications because of the additional resolution it provides

[27, 56].

As an alternative to chromatographic separation, sample effusion methods [57] and several

recently introduced atmospheric sample introduction methods appear promising for fast

screening purposes. Recently developed techniques such as EESI (extractive electrospray

ionization)-MS [28], DESI (desorption electrospray atmospheric ionization)-MS [29],

DART (direct analysis in real time)-MS [30] promise new avenues for metabolic profiling of

human body specimens particularly since these methods require little or no sample

preparation or extraction. DESI is carried out by directing a charged and nebulized solvent

toward an analyte of interest (which could be a biofluid sample directly deposited on to a

piece of filter paper). DART-MS, which uses a stream of excited metastable He gas and hot

N2 to volatilize and ionize analytes of interest, also provides real-time information on

analytes of interest and can be used to identify metabolites. Another atmospheric method is

EESI, which utilizes two colliding spray sources for ionization and introduction into the MS.

EESI has been used recently to study human breath samples [58], and to analyze rat urine to

identify dietary changes [59]. MALDI (matrix-assisted laser desorption/ionization)-MS has

been investigated for the simultaneous detection of several metabolites using a synthetic

cocktail of 30 metabolites separately and after spiking into a microbial extract [60]. A recent

study that compared several ionization methods quantitatively using serum found more

metabolite species by laser desorption on silica compared to other methods, indicating its

potential for biomarker detection [61].

A summary of potentially useful NMR and MS methods for metabolomics applications is

shown in Table 1.

Data preprocessing

Both NMR and MS data contain up to thousands of signals arising from the many hundreds

of detected metabolites. Analysis of such complex data is extremely challenging, and thus a

variety of pattern recognition methods are used to simplify the data. A number of data pre-

treatments are generally required before statistical analysis can be performed to obtain

meaningful information on healthy and disease samples.

For NMR data, baseline correction is used to reduce the effect of any non-ideal offsets in

individual data. This is particularly important for low-abundance but potentially important

metabolites that have small peaks and are more prone to baseline artifacts than high-

abundance metabolites. Statistical analysis of spectral data sets requires each spectral peak

(or variable) be compared throughout all observations (samples). Misalignment will

jeopardize the construction of an appropriate model, which readily produces incorrect

metabolic patterns and erroneous identification of potential biomarkers. NMR spectra can be

aligned using a reference compound (for example trimethylsilylpropionic acid-d4 sodium

salt, TSP or sodium 4,4-dimethyl-4-silapentane-1-sulphonate-d6, DSS). Metabolomic data

analysis packages such as KnowItAll (BioRad, Philadelphia, PA), AMIX (Bruker, Billerica,
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MA) and others allow rapid analysis of biosamples with improved NMR data alignment.

The alignment of LC- and GC-MS data is often more challenging because of the tendency of

peaks to shift or even reverse in the chromatographic separation as well as the size of the

data sets involved. A number of attempts at solving these challenges have been made [62–

66], which are typically based on either pattern recognition, time warping, or similarity

calculations. This important and challenging area is still evolving.

Data binning is often used and follows spectral alignment. An important advantage of data

binning is that it reduces the effect of peak misalignments. At the extremes, binning size

does affect biomarker exploration, so judicious use of binning is advised. In any event, the

full resolution NMR or MS spectra are recoverable if necessary for metabolite identification.

Data scaling, which allows the emphasis of smaller concentration metabolites is often used.

A number of scaling methods are popular, including variance scaling (division by the

standard deviation of the peak intensities across the set of spectra) and Parato scaling

(division by the square root of the standard deviations). Log scaling has been used to reduce

the size of very large and dominant peaks. The data are then typically mean centered by

subtracting the average of all the spectra. For samples such as urine, data normalization is

also generally performed to reduce any dependence on overall concentration differences.

Statistical Analysis

Modern multivariate statistical methods have become an essential part of the metabolomics

field. While feature selection through the use of p-values is of high utility, the need to build

predictive models based on multiple biomarkers necessitates the use of multivariate

methods. These methods are also quite useful to reduce the dimensionality of the NMR/MS

data, and to extract the maximum information from the data. A variety of such methods are

capable of analyzing several thousand inputs or “variables” and their corresponding

intensities. These statistical approaches are broadly classified into two categories:

“unsupervised” and “supervised” methods.

Unsupervised methods classify the spectra without the knowledge of the class of biological

specimens (such as disease or control) by using the NMR frequencies or MS m/z values and

their intensities for each sample as the sole inputs. Principal component analysis (PCA) is

the most commonly used unsupervised method in multivariate analysis. PCA generates

orthogonal and ranked principal components (PCs) that explain the variance in the data. The

PCs are essentially a new set of data descriptors (basis set or axes) obtained from the linear

combination of the variables (metabolite signals) from the NMR or MS data. Hierarchical

cluster analysis (HCA) aims to define natural clusters based on comparing distances

between pairs of samples (or variables): small distances between samples imply that the

samples share similar metabolite content representing similar physiological properties,

dietary habits or disease grades, etc. HCA represents analytical results in the format of

dendrogram, and facilitates the visualization of different categories with a given similarity

level. In biomarker discovery, HCA is usually used as a supporting method to more

powerful methods such as PCA in order to target key individual metabolites or spectral

regions which most correlate to the class membership. Proton NMR spectroscopy of sera

coupled with PCA and HCA has been successfully used in discriminating 120 serum

samples into three baseline clusters and two treatment clusters to detect variations in the

metabolism of lipids resulting from statin treatments [67]. K nearest neighbor (KNN)

analysis is a method of classification based on the similarity within classes. Each spectrum

can be treated as a point in a multi-dimensional space. In KNN, the Euclidean distance

between every pair of spectra is first calculated. The class assignment of one sample is based

on the majority vote of its nearest neighbors.
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Supervised methods require a training data set in which the outcome (i.e., disease or healthy)

is known and used to build a (hopefully) predictive model. After training, the model can be

used on a test set to classify unknown samples and measure the predictive accuracy of the

model. Supervised methods are very useful for detecting subtle differences between similar

samples in order to identify potential biomarker candidates. Cross validation [31] is used to

test the robustness of putative biomarker candidates during the training process. Supervised

techniques can be appropriate to force classification (such as in determining which

metabolites distinguish between groups) or to regress a pattern against a trend (such as

correlating a temporal progression with metabolic changes). Methods for supervised pattern

recognition include partial least squares discriminant analysis (PLS-DA) [68] and soft

independent modeling of class analogies (SIMCA), which are extensive tools for the

classification of spectroscopic results. Other methods, including orthogonal signal correction

(OSC), genetic programming and neural networks are also used. OSC and PLS-DA have

recently been combined to extend the power of supervised methods into metabolomics

analyses [35], and this approach has quickly gained wide usage. In general, it is extremely

important to validate the findings of PCA, PLS or other methods using extensive cross

validation and, in particular, a second set of samples (preferably blinded and from a second

location). Ultimately, biological validation, involving a disease hypothesis specifically

related to the discovered biomarkers, will likely be required before acceptance by the

medical and scientific communities can be anticipated.

Correlation methods, either within one spectroscopic method [69] or used to combine NMR

and MS data have shown to be effective in identifying metabolites based on NMR chemical

shifts and m/z values [70,71]. STOCY has been useful in providing multiple metabolite

peaks from a single metabolite, thus simplifying identification [69]. Statistical

heterospectroscopy (SHY) operates through the analysis of the intrinsic covariance between

signal intensities in the same and related molecules measured by different techniques across

cohorts of samples [70]. Further, it is also possible to combine the results of PCA from

NMR and MS. This is so because the principle components of NMR data can be treated as

independent to those of MS data [72]. Such combined analysis may be useful for larger data

sets where 2D score plots are insufficient to differentiate the samples.

Metabolomics Applications

There has been an explosive growth in the application of NMR- and MS-based

metabolomics driven by the potential for earlier disease detection, therapy monitoring, and

ultimately for reaching the goal of personalized medicine. In particular, metabolomics

studies have been focused on the identification of metabolites associated with a number of

diseases including cancer, diabetes, inborn errors of metabolism and cardiovascular diseases.

In general, these early studies are promising, however, validation studies are critically

needed to confirm the identity and generality of the putative biomarkers. Validation studies

normally involve several independent sample sets for the same disease with even

representation to such factors as gender, age, ethnicity, co-morbidity from other diseases,

and geographical origin.

Cancer

Cancer is typically detected radiographically, and often in late stage when therapy options

are limited. Therefore, there is a high demand for alternative, earlier and chemically based

detection modalities. NMR- and MS-based metabolomics tools have the potential for early

diagnosis and even therapy management. Recent developments include the exploration of

cancer biomarkers and disease pathways in both humans and animal cancer models (Table

2).
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A number of investigations have been carried out to establish breast cancer biomarkers [73–

78], with a majority of these focused on biomarker detection directly in breast cancer

tumors. The correlation of multiple metabolites such as lactate, lipids, phosphocholine,

choline and glycine with the cancer was observed using a variety of 1D and 2D 1H or 31P

high resolution MAS NMR. Based on multivariate statistical analysis of the NMR data,

tumor and non-involved tissues could be classified with a high specificity (100%) and

sensitivity (82%) [73]. Differences in mammary epithelial cell lines such as upregulation of

fatty acid synthesis have been detected from the combined 2D NMR and GC-MS methods

[78]. Attempts to detect breast cancer from the analysis of exhaled breath have also been

made. Volatile organic compounds were targeted in breath from women with abnormal

mammograms and biopsies. In this study, cancer patients and controls have been

distinguished with a sensitivity and specificity of 94.1% 73.8%, respectively [79].

The 1H-NMR study of preoperative serum specimens has been made to detect epithelial

ovarian cancer [80]. NMR data were analyzed using PCA and SIMCA to classify the

patients into ovarian cancer and non-cancer (benign ovarian cysts and healthy controls)

subgroups. Statistical analysis distinguished cancer patients from benign and control

samples with 97–100% accuracy. However, the putative biomarkers consisted of two non-

specific signals emanating from the lipid region, and 3-hydroxybutarate, which has been

seen in a number of other metabolomics studies and may result from gut microfloral

metabolism. In another study, multivariate analysis of GC-MS data of ovarian tumor and the

borderline tissue has shown classification accuracy of 88%. In this study, 51 metabolites

were found to be significantly different between the two types of tissue [81].

Recently, NMR-based metabolomics has been applied to explore liver cancer biomarkers.

Differentiation of both low-grade and high-grade tumors from adjacent non-involved tissue

was obtained using 1H HRMAS NMR in combination with multivariate statistical analysis

[52]. Interestingly, apart from showing metabolic differences between cancer and non-

cancer tissue, the analysis showed distinct metabolic differences between low-grade and

high grade tumors. Significant alteration in the levels of metabolites such as lactate,

phosphorylethanolamine, phosphocholine, amino acids triglycerides, glucose, and glycogen

were detected.

Altered metabolic profiles in pancreatic cancer have been studied using plasma and tissue

samples [82, 83]. 1H NMR analysis of plasma [82] was based on the hypothesis that the

reported altered insulin and glucose levels in pancreatic cancer result in an altered lipid

profile in the blood. NMR spectra of the extracted plasma lipids were subjected to statistical

analysis using PLS-DA. The sensitivity, specificity and the overall accuracy of detecting

pancreatic cancer was reported to be 96%, 88% and 92%, respectively, when 4 NMR

spectral regions were used for the discrimination, and 98%, 94% and 96%, respectively,

when 5 regions were used. Mass spectrometric analysis indicated a decrease of

phospholipids in the cancer samples. These results are complementary to the metabolic

profile recently derived from the 1H HRMAS studies of tissue from animal models of

pancreatic cancer [83]. In that study, phosphocholine and glycerophosphocholine were

found to decrease in pancreatic cancer.

Metabolites characterization of cervical tumors has been shown using 1H HRMAS NMR

and multivariate statistical analysis. Malignant tissue of the cervix showed higher levels of

cholines and amino acids compared to non-malignant tissue [84]. Very recently, HRMAS

NMR studies were performed to explore apoptosis in cervical cancer. The spectra were

analysed for lipid and non-lipid metabolites using one pulse and spin-echo experiments,

respectively [85]. Significant correlations were found between the tumor cell fraction and

glucose concentration, between tumor cell density and glycerophosphocholine

Nagana Gowda et al. Page 8

Expert Rev Mol Diagn. Author manuscript; available in PMC 2014 January 13.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



concentration, and in the ratio of glycerophosphocholine to choline. The results suggest an

application of the method to explore the role of apoptosis in the course of the disease.

Advancements in metabolite-based detection of lung cancer have been made over a number

of years [86–91]. The majority of these investigations focus on the detection of volatile

organic compounds in breath samples using various collection strategies and highly sensitive

GC-MS detection. A large number of volatile organic compounds have been shown to

distinguish between lung cancer and controls [86, 88–91], however achieving a diagnostic

accuracy above 90% has been challenging. Lung cancer biomarkers investigations have also

been carried out using body fluids such as serum and urine [72,87]. From the GC-MS

analysis of serum, higher concentrations of two aldehydes, hexanal and heptanal, have been

shown to distinguish lung cancer patients from controls [87]. Metabolite profiles in urine

from xenographic lung cancer mice models have been explored using both NMR and the

new DESI-MS technique [72]. Urine from both cancerous and control mice were subjected

to NMR and MS combined with multivariate statistical analysis. PCA of both the NMR and

MS identified a large number of differentiating metabolites, many of which where localized

to the purine metabolism pathway.

A combined metabolomic and proteomic approach was employed to study a mouse model of

prostate cancer [92]. Multivariate analysis including O-PLS was applied to interpret the

differences in plasma metabolomic and proteomic profiles. Correlations between a

serotransferrin precursor and both tyrosine and 3-D-hydroxybutyrate, and between a

decreased concentration of tyrosine and an increased presence of gelsolin were observed.

Several metabolomic studies on prostate cancer focused on the analysis of tumors and

seminal fluid [93–99] A combined 1H HRMAS NMR and quantitative histopathology study

on same tumor specimens showed a linear correlation between the concentration of

spermine measured by NMR and the volume percentage of normal prostatic epithelial cells

quantified by histopathology [93]. These findings highlight the role of NMR as an effective

tool for investigating the inhibitory mechanism of spermine in humans. A combined in vivo
and in vitro NMR, and histopathology study indicate the potential utility of translating ex
vivo derived biomarkers for improved clinical interpretation of prostate cancer using in vivo
NMR [94]. In this study, healthy glandular tissue was discriminated from prostate cancer

based on high citrate and polyamines, and low choline, phosphocholine and

glycerophosphocholine. In addition, concentrations of taurine, myo-inositol, and scyllo-

inositol were all higher in cancer compared to healthy glandular and stromal tissues. A

computer model of tissue pathology based on metabolic profiles derived from HRMAS

NMR was proposed for prostate cancer [95]. The results of NMR and computer aided tissue

analysis showed a linear correlation between them for both normal epithelium and prostate

cancer. The diagnostic capability of NMR spectroscopy for predicting prostate cancer was

tested using the multivariate analysis of HRMAS NMR metabolic and quantitative

histopathology data of 199 tissue samples from 82 cancer patients [96]. Recently, quantities

of several prostate metabolite concentrations were determined using 1H HRMAS NMR and

compared between normal and cancer tissue [97]. Concentrations of phosphocholine /

glycerophosphocholine, total choline, lactate, and alanine were higher in prostate cancer

than in healthy glandular and healthy stromal tissues, while citrate and polyamine

concentrations were significantly higher in healthy glandular tissues than in healthy stromal

or prostate cancer tissues. A 1H NMR study utilizing seminal fluid indicated that citrate

based prostate cancer detection outperforms prostate specific antigen testing [98] and a more

recent 1H NMR study highlights the use of myo-inositol and spermine, in addition to citrate,

for detecting the presence of prostate cancer [99].

Exploring metabolite biomarkers for renal cancer based on tissue samples was explored

soon after HRMAS was developed [100]. Subsequently, renal tumors have been extensively
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investigated employing the latest technological advancements in HRMAS NMR and

multivariate analysis [101,102]. Conventional 1D NMR methods such as one pulse and spin-

echo as well as 2D experiments such as J-resolved, TOCSY and 1H-13C HMQC have been

utilized for the resonance assignments. Unsupervised and supervised multivariate statistical

analyses of the HRMAS NMR data focused on classifying normal and renal carcinoma

tissue, and showed a clear distinction based on NMR signal intensities. A linear discriminant

analysis was used to classify normal and tumor tissues with 100% accuracy [101]. Recently,

metabolic profiles of normal cortex and medulla samples were compared with malignant

tissue also using HRMAS NMR [102]. Compared to the normal cells, renal carcinoma cells

had lower organic osmolytes and higher lipid concentrations. On the other hand, in the

papillary renal cell carcinoma the taurine concentration was higher and the lipid signals were

absent. Kind et al. have evaluated three MS-based analytical methods to identify potential

biomarkers for renal cancer. The combined approach gives a good coverage of the urinary

metabolites, several of which the authors believe may be useful for diagnosis [103].

Quite a few recent studies have focused on the identification of differential metabolites in

brain cancers [104–112]. Detailed assignments of the biochemical compounds in brain

tumors have been made using the combination of in vivo and ex vivo analyses and

employing several 1D and 2D NMR experiments [104]. A large number of metabolites have

been shown to differentiate brain tumor from normal tissue, and metabolic ratios are used to

achieve the highest sensitivity [105]. Considering the fact that brain in vivo MR

spectroscopy is easily amenable for clinical applications, attempts have been made to

establish the link between MR spectroscopy and neuropathological analysis utilizing the

metabolic profile obtained using ex vivo high resolution NMR spectroscopy [104,106]. A

recent study combined HRMAS NMR and micro scale genomics. It was shown that tissue

samples as small as 2 mg could be successfully used for HRMAS experiments and minute

mRNA amounts yielded high-quality genomic data. This is one of new interesting

applications in which metabolomics and genomics have been combined. In this case,

alterations in the expression of Kennedy pathway genes and dysregulation in Sonic

Hedgehog pathway in the pathogenesis of cancer were observed [107]. Classification of

patients based on metastasis and survival prediction of brain cancer patients were made by

performing multivariate analysis of the HRMAS NMR data [108]. While the PCA results

clearly showed a trend in clustering due to the origin of the metastases, PLS analysis

indicated distinct clustering of the spectra of the patients who died less than 5 months after

surgery. Although further validation is needed, these results indicate the potential for clinical

applications to manage brain cancer patients.

Diabetes

Metabolomics is ideal for studying metabolic diseases, and has already been applied to both

type 1 and type 2 diabetes utilizing a range of biological specimens including urine, serum/

plasma and tissue (Table 3). 1H NMR analysis of urine has identified a number of

significantly changing metabolites, including acetate, lactate, citrate, glycine, alanine,

hippurate, trimethylamine-N-oxide, and dimethylamine [113,114]. Multivariate statistical

analyses of the 1H NMR data from human, rat and mouse urine demonstrate metabolic

similarities among the three species including responses associated with type 2 diabetes

involving glucose metabolism, the TCA cycle, and the nucleotide and methylamine

metabolisms [115]. Another recent study has used quantitative NMR-based metabolomics to

correlate differentiating metabolites in induced diabetes in rats. Significant disturbances in

several metabolic pathways including glucose metabolism and the TCA cycle, the alanine

pathway, the Cori cycle, the acetate switch, and choline metabolism, as well as a

contribution from gut microbial metabolism were identified from the analysis [116]. A

dramatic loss in the correlation among the detected metabolites was observed. Studies on
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animal diabetic models aimed at understanding insulin-resistance induced by a high fat diet

have shown increased concentrations of lipids, lactate, pyruvate, glucose, fucose,

phosphatidylcholine, trimethylamine N-oxide and methylamines in plasma [117]. The effect

of gut microbiota to the fatty liver phenotype in insulin-resistant mice has been studied and a

model linking the impaired glucose homeostasis and nonalcoholic fatty liver disease

(NAFLD) in reducing mammalian availability of choline was deduced using a number of

biomarkers such as choline, phosphatidylcholine and methylaminies [118]. 1H NMR-based

metabolomics was applied to assess diabetes induced nephropathy and the results indicate

high positive as well as negative predictive values (89% and 83.6%, respectively) which are

comparable to those derived from clinical biochemistry data, 95.5% and 79.2%, respectively

[119]. NMR of other nuclei such as 13C and 31P has been extensively used to understand the

pathogenesis of diabetes [120–125]. For example, 13C NMR was used to investigate

metabolic responses to a dextrose challenge [120] and to understand the role of reduced

glycogen synthesis on muscle insulin resistance [121]. Measurements of glycogen synthesis

was made using 13C NMR to study the effect of insulin resistance on both type 1 and type 2

diabetes [122, 123]. 31P NMR was employed to measure the glucose transport/

phosphorylation activity in situ. The results correlated well with the glycogen synthesis rate

as measured by 13C NMR [124,125].

Several investigations have demonstrated the application of metabolomics to diabetes using

a combination of MS and multivariate statistics [126–129]. Plasma was analysed using LC-

MS and the data subjected to PCA and PLS-DA, focusing on phospholipid metabolites.

Type 2 diabetes could be distinguished from controls based on the differences in the spectral

features [126]. Utilizing the advanced UPLC-MS approach, nearly 10,000 ions in rat plasma

have been detected, and the ability of such metabolic data to distinguish among three rat

strains, obese, lean and the lean/obese was demonstrated using multivariate analysis [127].

Nevertheless, the detection of so many features does give pause as to the required level of

validation that is necessary. Targeted metabolic profiling using GC-MS has enabled

detection of plasma fatty acids including non-esterified fatty acids (NEFA) and esterified

fatty acids [129]. This study detected a number of additional putative biomarkers, and

allowed a comprehensive understanding of the role of NEFA and the effect of treatment

with thiazolidinediones.

Finally, the interest in combining NMR and MS methods for the study of diabetes is

growing [130–132]. The metabolic regulatory mechanisms in diabetes was investigated by

obtaining metabolic profiles in plasma from normal Wistar-derived and Zucker (fa/fa) obese

rats from multiple analytical platforms including NMR, UPLC-MS and GC-MS. PCA

analysis of the data readily detected the differences in the metabolite profiles between the

two rat strains [131]. For example, a number of biomarkers including cholesterol,

arachidonic acid, oleic acid, hexadecanoic acid, monooleoylglycerol and low and very low

density lipoproteins were higher in the Zucker rats. Another recent study combining 1H

HRMAS NMR, GC-MS and LC-MS examined the metabolic perturbations in type 2

diabetes and obesity. Both PCA and PLS analysis showed dramatic alterations in the levels

of several metabolites such as glucose, glutamine, alanine and lactate and indicated

perturbations in glycolysis, the TCA cycle, and gluconeogenesis [132].

Inborn errors of metabolism (IEM)

The IEM form a large and diverse group of diseases. A majority of these involve single

genetic defects that affect a specific enzyme [133]. Individually, IEM are rare, however,

their collective incidence is relatively high and lie in the range of 1 per 1,400 to 5,000 live

births in the United States. In most of the disorders, problems arise due to the accumulation

of metabolites that are toxic or interfere with normal function. Often, IEM are difficult to

diagnose since clinical signs and symptoms overlap among the different diseases.
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Biochemical tests are often nonspecific and gene analysis is not always conclusive.

Moreover, for several metabolic disorders, comprehensive analytical techniques have not

been established making it difficult to diagnose such diseases. For example, N-acetylated

metabolites in urine that are involved in several IEM are not easily detectable [134].

Currently GC/MS or tandem MS is used to detect up to 80 different IEM, although these

analyses are typically based on the detection of single metabolite biomarkers. Metabolomics

may have a role to play in changing the detection of at least some of these IEM. NMR

spectroscopy is very useful for the diagnosis of a number of IEMs [134–138], and has been

successfully combined with MS using a metabolomics approach [139]. Metabolomics

appears to be particularly promising for identifying additional potential IEM biomarkers,

and may prove useful for detecting borderline cases, or for sub-classifying the diseases

[140].

Coronary heart disease

Coronary heart diseases (CHD) provide another excellent target for metabolomics diagnostic

development. Angiography, a current diagnostic modality for CHD is both expensive and

invasive. Hence, advancement in metabolomics-based assessment of CHD is highly

desirable. In view of this opportunity, lipid metabolites have been assessed for some time

using NMR spectroscopy to understand the risk of CHD [141,142]. The diagnostic utility of

the NMR-based metabolomics approach was assessed using serum from individuals with no

evidence of stenosis (normal coronary arteries, NCA), or severe CHD defined as at least

50% of stenosis (triple vessel disease, TVD) employing multivariate statistical analysis

[143]. Disease and control subjects were distinctly separated from the analysis using PLS-

DA and OSC. Classification was achieved mainly from subtle differences in the lipid signals

of the NMR spectra between the two groups. These findings were in conformity with the

results of independent studies made on individuals with and without CHD. Subsequently,

NMR spectroscopy was evaluated as a diagnostic method on patients with hypertension, and

the results clearly distinguished low/normal systolic blood pressure (SBP) serum samples

from borderline and high SBP samples [144]. NMR-based diagnosis of CHD depends

mainly on the major lipid regions of the 1H NMR spectra and many variables such as diet,

gender, lifestyle and drugs affect lipid composition: failing to take such confounding

variable into account can lead to a false conclusion. A study was performed to determine the

predictive power of the NMR-based method in groups of male patients. This study achieved

a mere 36.2% and 6.2% predictive accuracy at the 99% confidence level for untreated and

treated groups, respectively, indicating that the NMR-based metabolomics method still lacks

sufficient diagnostic accuracy [145]. A very recent review presents an evaluation of the

metabolomics approach with emphasis on the CHD risk assessment and diagnosis using 1H

NMR of plasma. It highlights the potential utility of combining in vitro 1H NMR based

metabolomics and in vivo multicontrast magnetic resonance imaging for early diagnosis and

multiphase risk assessment of atherothrombosis [146].

Expert Commentary

In metabolomics multi-component measurements are primarily focused on the information

rich analytical techniques of MS and NMR spectroscopy. Analysis of the complex data from

these methods using advanced multivariate statistics provides a powerful platform for

diagnostic applications, as well as for translational and clinical research. During the past

several years numerous developments have taken place in the field including a variety of

advances in the analytical methods for high throughput measurements, improved statistical

approaches for classifying samples based on subtle changes, and applications in the area of

disease diagnosis and toxicity assessment.
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Today, MS methods provide high sensitivity, however reproducibility is still a concern, as is

the unique identification of unknown and interesting metabolites. NMR methods allow the

identification and quantification of metabolites down to µM limits facilitated by cryogenic

probes, micro-coil NMR and isotope labeling, however, spectral complexity is still a

problem due to the high degree of signal overlap. Numerous multivariate statistical methods

are readily available due to their incorporation into user-friendly software packages. These

advancements combined with the recently developed databases of human metabolites and

metabolic information, and the vast body of metabolic pathway information currently

available greatly benefit the metabolomics field.

A majority of metabolomics studies have focused on using a single analytical method, NMR

spectroscopy or MS. Given the complexity of the biological systems, it will be more prudent

to exploit both methods in parallel, at least in the developmental stages of the field, to derive

more meaningful information on metabolic variations in health and disease. The high

reproducibility of NMR and high sensitivity of MS provide both supplementary and

complementary data important for biomarker identification and validation. Combined

multivariate analysis of data from NMR and MS will provide information which is more

useful and important than using a single approach.

Five year view

There has been an explosive growth in both NMR- and MS-based metabolomics studies and

applications, with a number of these being applied to assess important diseases.

Metabolomics-based methods will likely have significant clinical diagnostic utility for

numerous inborn errors of metabolism owing to the fact that, generally, such diseases

exhibit massive metabolic disturbances. Risk assessment of cardiovascular diseases using

NMR-based metabolomics is potentially highly promising because the abundant lipoproteins

can be easily detected by NMR thus avoiding the often tedious separation procedures. In

fact, NMR spectroscopy is already being applied for individual risk assessments. The

addition of MS-based metabolomics approaches might well improve the diagnostic accuracy

and utility.

Currently, metabolomics applications to diseases such as cancer and diabetes have provided

better insights in to the altered metabolic pathways and the disease pathogenesis. However,

for applications in early diagnosis the technology is still in its evolutionary stages. Factors

such as diet, age, gender, lifestyle, drugs and environment contribute immensely to human

bio-complexity, and identification of subtle metabolic variations associated with early

cancer or diabetes pathogenesis is a great challenge. Further studies focused on the

deconvolution of such confounding effects are required. In general, NMR detects relatively

highly concentrated metabolites, and it is generally thought to lack sufficient sensitivity to

detect low concentration, more specific early biomarkers. Although the latest technological

advancements have demonstrated a dramatic reduction in the detection limit of NMR using

pure substances, such methods are still not considered high throughput for routine biological

samples analysis. Combining the latest advancements in NMR methods and targeted

metabolic profiling using sensitivity enhanced approaches such as isotope labeling or others

may achieve a breakthrough in biomarker detection.

While MS is intrinsically highly sensitive capable of detecting early biomarkers, problems

with reproducibility arising from the chromatography of biofluids and factors such as matrix

effects and/or ion suppression still present considerable challenges. However, in light of

recent methodological improvements in both NMR and MS, as well as multivariate

statistical methods, it can be envisaged that metabolomics will emerge as a sensitive and

convenient approach for early disease diagnoses. The five year outlook for metabolomics is
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very strong given the rapid developments in the field, as well as the important lessons

learned from early studies in the genomics and proteomics fields.
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18020967] •• This review evaluates plasma/serum based metabolomics in general with emphasis

on coronary heart diseases and diabetes.
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Key issues

• Advancements in 1H NMR spectroscopy and mass spectrometry (and their

combination), as well as multivariate statistical analysis promise high utility for

early disease diagnosis, identification of affected metabolic pathways and

thereby drug discovery.

• Future developments will need to concentrate on detecting subtle metabolic

changes more reliably, and especially to take into account such confounding

effects as diet, drug metabolites, age, gender, ethnicity and environment.

• Deconvoluton of the confounding effects of diet, age, gender, etc., is currently

the major challenge, and a number of studies focused on each confounding

effect separately and in various combinations are required.

• There is a need to improve the quantitative results of many of the biomarker

studies.

• Biomarker validation studies using independent samples are greatly needed.

• While NMR spectroscopy is highly reproducible, its low sensitivity and

resolution have impeded the growth of the field. Recent developments in NMR

sensitivity enhancement may significantly improve the detection limit.

• Reproducibility issues still plague MS studies, although the resolution has

greatly improved lately. The potential for high-throughput MS methods that do

not require chromatography needs to be validated.

• Overall, in light of recent methodological improvements, it can be envisaged

that metabolomics will emerge as an important tool in the field of diseases

diagnosis.
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Figure 1.
Schematic representation illustrating the NMR/MS based metabolomics workflow.
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Table 1

NMR and MS methods used in metabolomics applications.

Techniques Information content Advantages disadvantages

NMR Methods

1D sequences: presaturation
and noesy

Detects signals from both small
and relatively large molecular
weight metabolites

Highly quantitative and good for
high-throughput screening

Spectra are generally complex
because of the presence of both
high and low concentration
molecular signals and extensive J
couplings

CPMG Provides signals from small
molecules by suppressing large
molecule NMR signals

The spectra are easy to interpret
due to the simplification
achieved, and are good for high-
throughput screening applications
using samples such as serum/
plasma. CPMG can also be used
for HRMAS-NMR studies.

Does not show appreciable
simplification for biofluids such
as urine in which majority of the
metabolites are small molecules,
and is less quantitative

Diffusion-edited sequence Provides information on relatively
large molecules such as lipids

Simple, good for high throughput
screening of large molecules in
serum/plasma

Not useful for samples such as
urine where there are no
appreciable difference in diffusion
coefficients, and is less
quantitative

2D J-RES The spectra are highly simplified
due to the elimination of
multiplicity due to J coupling

Overlapping signals can be better
resolved which is very useful to
interpret and to accurately follow
the metabolites variation
corresponding to the otherwise
overlapping signals in normal 1D
spectra

Since the spectrum is derived
from a 2D experiment, it is more
time consuming, and is less
quantitative.

MS Methods

LC-MS (HPLC/UPLC-MS) Metabolites are separated using
liquid chromatography and
detected using MS

Most commonly used method in
metabolomics because of the
simplicity in sample preparation,
and is fairly high throughput

Ion suppression in the presence of
multiple cations or anions can be
problematic and significantly
affect the results

GC-MS Similar to LC-MS, but the
separation is based on gas
chromatography

The method can be more sensitive
and more reproducible than LC-
MS. It has high separation
efficiency and is more
quantitative than LC-MS.

Requires rather tedious sample
preparation steps, and not all
compound classes can be detected
by this method. Sample
derivatization can increase the
complexity of the data and
analysis.

2D GC-MS Similar to GC-MS, but the
metabolites separation occurs in
two dimensions

Similar to GC-MS but additional
resolution achieved by the second
dimension makes it more suitable
for the analysis of complex
biological samples

Requires rather tedious sample
preparation, and not all compound
classes can be detected by this
method

EESI-MS Direct solution analysis method
that utilizes two spray sources:
One nebulizes and the other
provides charged solvent droplets.

No sample preparation or
extraction required

Less quantitative, and can also
suffer from ion suppression in the
complex mixture of biological
samples

DESI-MS Ambient ionization method that
analyses the sample directly.

Sensitive, and has excellent
tolerance to high salt
concentrations, no sample
preparation or extraction required

Less quantitative, and may suffer
from ion suppression in the
complex mixture of biological
samples

DART-MS Uses stream of excited metastable
helium gas and hot nitrogen,
provides real time information,
direct sample analysis

Snsitive, and useful for very high
throughput screening, no sample
preparation or extraction required

Less quantitative, and may suffer
from ion suppression in the
complex mixture of biological
samples

Abbreviations: CPMG: Carr–Purcell–Mieboom–Gill; J-RES: J-resolved; LC-MS: Liquid Chromatography-Mass Spectrometry; HPLC: High

Pressure Liquid Chromatography; UPLC: Ultrahigh Pressure Liquid Chromatography; 2D GC-MS: Two Dimensional Gas Chromatography-Mass
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Spectrometry; EESI: Extractive Electrospray Ionization; DESI Desorption ElectroSpray atmospheric Ionization; DART: Direct Analysis in Real

Time.
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Table 2

NMR- and MS-based metabolomics studies of biological samples from various cancers.

Cancer type Sample
type

Analytical
Methods

Important outcome Reference

Breast cancer Tissue, cells, breath 1H, 31P, (1D and 2D) NMR,
HRMAS, GC-MS

82% sensitivity and 100 specificity was
achieved based on choline metabolites;
detection of decanes and heptanes in breath

73–79

Ovarian cancer Serum, tissue 1H NMR, GC-TOF-MS 100% classification accuracy between cancer
and benign, 51 metabolites differentiated tumor
from borderline tissue

80,81

Liver cancer Tissue 1H NMR, HR-MAS High lactate and amino acids, and low
carbohydrates in cancer

52

Pancreatic cancer Plasma, tissue 1H NMR, HRMAS, MS Decreased levels of phosphocholine,
glycerophosphocholine and phosphatidylinositol
in cancer

82, 83

Cervical Cancer Tissue 1H NMR, HRMAS Low glucose, and high cholines and amino acids
levels in cancer

84, 85

Lung cancer Urine, Serum, breath 1H NMR, DESI-MS, LC-MS,
GC-MS

Altered metabolites associated with the purine
pathway, detection of hexanal and heptanal in
serum, and a large number of volatile organic
compounds with altered concentrations in breath

72, 86–91

Prostate cancer Plasma, tissue 1H NMR, HRMAS Altered amino acids levels; increased lactate,
phospholipids, choline, low citrate and
polyamines; spermine regulation

92–97

Renal cancer tissue 1H, 13C NMR, 2D JRES, 2D
TOCSY, HMQC, HRMAS

100 % classification accuracy, high triglycerides
and cholesteryl esters

100–103

Brain cancer Tissue, cells 1H, 13C, 1D and 2D HRMAS
NMR

Alterations in Kennedy and Sonic Hedgehog
pathways; apoptosis, altered lipids, inositol, N-
acetyl aspartate to choline ratio and creatine to
choline ratio.

104–112
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Table 3

NMR- and MS-based metabolomics studies of biological samples from diabetes.

Diabetes
type

Sample
type

Analytical
method

Information derived Reference

Urine 1H NMR High alanine, lactate, acetate and citrate, and
disturbance in the glucose metabolism and TCA cycle,
and a contribution from gut microbial metabolism

113, 116

Diabetes Type 1 Serum 1H NMR High positive (89%) and negative (83.6%) predictive
values obtained

119

tissue 13C NMR Defective glucose transport/phosphorylation
responsible for the lower rate of muscle glycogen
synthesis

122

Urine 1H NMR High lactate, citrate, glycine, alanine, hippurate,
trimethylamine- Noxide, dimethylaminecreatine,
acetate, betaine,and ketone bodies in diabetes

114

Humans, rats and mice have shown similar trends in
the levels of glucose, TCA cycle intermediates,
polyols, amines, and amino acids

115

Urine and plasma 1H NMR Gut microbial contribution to fatty liver phenotype:
trimethylamine-N-oxide

118

Plasma a1H NMR High lipids, lactate, pyruvate, glucose, fucose,
phosphatidylcholine, trimethylamine N-oxide and other
methylamines in the adaptation to high-fat diet

117

Diabetes Type 2 LC-MS Detection of phosphatidylethanolamine and
lysophosphatidylcholine

126

GC-MS, UPLC-MS Distinguishing metabolic features between the Zucker
(fa/fa) obese, Zucker lean and the lean/(fa) obese rats

127, 128

GC-MS Fatty acids detected as biomarkers 129

NMR, UPLC-MS and GC/
MS

Showed metabolic differences between normal and
obese rats

131

Tissue 13C NMR Muscle glycogen synthesis is the principal pathway of
glucose disposal in both normal and diabetic subjects,
and defects in muscle glycogen synthesis have a
dominant role in the insulin resistance

121

13C, 31P NMR Increased plasma free fatty acids inhibit insulin
stimulated glucose uptake at the level of glucose
transport/phosphorylation rather than in the glycogen
synthesis

125

HRMAS GC-MS, LC-MS Low amino acids and high lactate levels detected 132
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