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Abstract

Interpretation of variants of uncertain significance is an actual major challenge. We addressed this question on a set of

OPA1 missense variants responsible for variable severity of neurological impairments. We used targeted metabolomics to

explore the different signatures of OPA1 variants expressed in Opa1 deleted mouse embryonic fibroblasts (Opa1−/− MEFs),

grown under selective conditions. Multivariate analyses of data discriminated Opa1+/+ from Opa1−/− MEFs metabolic

signatures and classified OPA1 variants according to their in vitro severity. Indeed, the mild p.I382M hypomorphic variant

was segregating close to the wild-type allele, while the most severe p.R445H variant was close to Opa1−/− MEFs, and the

p.D603H and p.G439V alleles, responsible for isolated and syndromic presentations, respectively, were intermediary between

the p.I382M and the p.R445H variants. The most discriminant metabolic features were hydroxyproline, the

spermine/spermidine ratio, amino acid pool and several phospholipids, emphasizing proteostasis, endoplasmic reticulum

(ER) stress and phospholipid remodeling as the main mechanisms ranking OPA1 allele impacts on metabolism. These

results demonstrate the high resolving power of metabolomics in hierarchizing OPA1 missense mutations by their in vitro

severity, fitting clinical expressivity. This suggests that our methodological approach can be used to discriminate the

pathological significance of variants in genes responsible for other rare metabolic diseases and may be instrumental to

select possible compounds eligible for supplementation treatment.
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Introduction

High-throughput sequencing currently reports myriads of

genetic variants for which pathogenicity is difficult to predict

in the absence of universal functional tests. Metabolomics,

which is closer to the phenotype than any other ‘omics,’ may

be particularly relevant for such fine pathogenicity prediction.

More than 400 pathogenic variants have been reported in

OPA1 (Optic Atrophy 1) gene (http://opa1.mitodyn.org) (1, 2),

responsible for optic nerve degeneration and visual loss, ranging

from isolated ‘Dominant Optic Atrophy’ (DOA; OMIM #165500) to

more severemulti-systemic syndromes named ‘DOAplus’ (OMIM

#125250), including some bi-allelic cases with Behr Syndrome

(OMIM #210000). OPA1 encodes a dynamin-related GTPase driv-

ing the efficiency of energy production through its multiple

roles in mitochondrial dynamics and ultrastructure (3–6), mito-

chondrial DNA (mtDNA) maintenance (7–9), apoptosis (10), cal-

cium fluxes (11), oxidative stress (12), mitophagic flux (13–15),

and more generally in mitochondrial plasticity and quality con-

trol (16–18), all these functions being affected when OPA1 is

mutated.

The severe DOAplus syndromes, affecting about 20% of

patients, involve extraocular features such as sensorineural

deafness, ataxia, peripheral neuropathy and chronic progressive

external ophthalmoplegia with mitochondrial myopathy and

mtDNA instability (19). Additional neurological phenotypes,

such as spastic paraplegia (19), multiple sclerosis-like syndrome

(20), parkinsonism and dementia (21), have also been related

to dominant OPA1 variants. More recently, the severe early

onset Behr (22–24), MELAS-like stroke (25) and Leigh-like (26)

syndromes, as well as syndromes involving cardiomyopathy

(27), were associated with biallelic OPA1 inheritance (for reviews

see 17, 28).

The relationships between OPA1 variants and their clini-

cal consequences remain largely unknown. Only two clear cut

genotype/phenotype correlations have been established so far:

one concerns the higher severity of missense mutations in the

GTPase and dynamin domains than those leading toOPA1haplo-

insufficiency (19). For instance, the p.R445H variant has been

associated with severe dominant forms of the disease (29). The

second is related to OPA1 bi-allelic inheritance leading to severe

encephalopathy with, sometimes, early death of the patients.

Although a few cases of homozygous variants were reported,

the majority of clinical presentations associated with bi-allelic

inheritance are related to the association of an OPA1 pathogenic

variants with a rather frequent p.I382M hypomorphic OPA1 vari-

ant, which by itself, either in heterozygous or homozygous state,

has almost no clinical consequence (22–24, 30).

To better understand the impact of OPA1 pathogenic variants

on mitochondrial functions, we cloned mutated cDNAs of the

human OPA1 isoform 1 (ISO1), and stably expressed them in

Opa1−/− MEFs (31). These isogenic cell models revealed that

the p.D603H variant, associated with isolated optic atrophy,

exhibitedmildly reduced respiration and complexVdisassembly

with increased mitochondrial network fragmentation. The most

severe p.G439V and p.R445H variants, associated with DOAplus

displayed a complete mitochondrial network fragmentation,

severe energetic impairment and mtDNA depletion. Conversely,

the hypomorphic p.I382M variant alone failed to manifest

any significant mitochondrial alteration, under normal growth

condition in high-glucose medium (31).

Here, we used a targeted metabolomics approach to re-

examine this collection of isogenic cells bearing OPA1 wild-type

and pathogenic variants in glucose-free medium supplemented

with galactose, a growth condition forcing the oxidative

metabolism (32). We evidenced a clear correlation between

the metabolomic signature of each mutation, including the

hypomorphic p.I382M variant, with their in vitro phenotype,

overall fitting the clinical severity, thus predicting with high

resolution their pathogenicity and clearly discriminating among

the different missense variants.

Results

Metabolomics analysis

Weused a targetedmetabolomics approach onOpa1+/+,Opa1−/−

MEFs and five Opa1−/− MEFs expressing human WT or mutated

ISO1 OPA1, grown for 24 h in galactose medium. After validation

of the quality control (QC) and considering the dynamic range

for eachmetabolite, 129 out of 188 (68.6%) metabolites were con-

served for statistical analyses (Supplementary Table S1). First

plan of the principal component analysis (PCA) showed that

sample normalization was accurate to overcoming batch effect

(Supplementary Fig. S1). The first principal plan of the PCA with

all seven groups of MEFs showed a clear discrimination between

groups with the first and the second principal components

(PC1 and PC2), accounting for more than 68% of the total data

covariance (Fig. 1). PC1 accounts for 51.3% of the total covari-

ance and when samples are projected to this PC groups are

distinctively separated according to the function of OPA1 gene

and the impact different isoforms have on the clinical presen-

tation of the disease based on genotype-phenotype correlation.

PC2 captures 17.1% of the total covariance and when the sam-

ples are projected into this component, MEFs transfected with

human OPA1 has positive coordinates (positive score values)

whilst MEFs with native murine Opa1 gene have negative score

values suggesting an effect of the transfection experience on

MEF metabolic phenotype. Independence of these two factors

(impact of gene mutation and transfection) on the metabolome

is verified here by the orthogonality of PCs.

As expected from the PCA, the supervised orthogonal projec-

tions to latent structures discriminant analysis (OPLS-DA) (not

shown) model separated Opa1+/+ and Opa1−/− samples with

excellent predictive capabilities and very low risk of overfitting

(Q2Ycum =0.99; Q2Y cum-perm =−0.82 and P-value CV-ANOVA =1.35e-

5). Important metabolites contributing to this model according

to their variable importance in projection (VIP) and loadings

are represented in Figure 2. Metabolic signature was essentially

composed by relatively diminished concentration in MEF bear-

ing deleted Opa1 gene of 15 out of 20 quantified amino acids,

the indicator of collagen turnover trans-4-hydroxyproline and 3

other biogenic amines: taurine, methionine sulfoxide (Met-SO)

and the polyamine spermidine. Glutamine was the only amino

acid found relatively increased in Opa1−/− MEF fibroblasts while

the polyamine spermine was found also relatively increased

in these cells. Concerning lipid molecules, there exists a deep

phosphatidylcholine (PC) remodeling with rather decreased PCs

concentration in Opa1−/− MEF whilst the opposite is observed

with sphingomyelins (SM), except for SM 16:1. Lysophosphatidyl-

cholines (lysoPC) even when participating to the metabolic sig-

nature did not behave as a single class and some lysoPC were

found relatively increased while other relatively decreased in

Opa1−/− MEF.

When only Opa1−/− MEFs with transfected human OPA1 iso-

forms were studied, the first two PC explained 65.5% of the total

covariance in the X matrix (containing only metabolomic data

from transfected isoforms),with PC1 and PC2 accounting for 52.5
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Figure 1. First principal plan of the PCA. When samples are projected into the first principal component (PC1) different isoforms are well separated according to their

proximity to Opa1+/+ (black circles) or Opa1−/− (red circles) which have opposite coordinates in PC1 and represent normal and totally deleted Opa1 gene, respectively.

Two subgroups are less well separated though: transfected human normal isoform (ISO1, gray circles) from I382M (blue circles) variant and R445H (brown circles) variant

from totally deleted murine Opa1−/− MEF. When projecting samples into the second PC (PC2) non-transfected MEF (Opa1+/+ and Opa1−/−) cannot be separated from

each other but plot far away from the projection of transfected MEFs in PC2, indicating a possible effect of transfection. Samples transfected with D603H and G439V

isoforms have been represented as green and pink circles, respectively.

and 13%, respectively (Figure 3A). Out of 5, 4 groups formed by

OPA1 isoforms were unambiguously distinguished in the first

component of the PCA. Indeed, only ISO1 (wild-type allele) and

p.I382M isoforms were not clearly separated one another in this

component. To tackle the relation depicted by the PCA, an unsu-

pervised method that ignores any response vector, we decided

to build a supervised OPLS model considering coordinates in

PC1 (called scores or t1 values) as the quantitative Y vector. We

also calculate Spearman correlation coefficient between t1 and

each metabolite in the X matrix. As expected from the PCA,

the predictive latent variable (pLV) of the OPLS model correlated

very well with the expected Y vector (not shown). This model

had excellent predictive capabilities and the risk of overfitting

was very low (Q2Ycum =0.99.; Q2Y cum-perm =−0.34 and P-value

CV-ANOVA =2.9e−28). Important metabolites for the explanation

of Y vector (i.e. t1 scores as indicators of group separation)

are represented as a volcano plot combining univariate and

multivariate analysis with Spearman ρ correlation coefficient in

the x-axis and VIPs of the OPLS model in the y-axis (Figure 3B).

Concentration of 17 out of 20 amino acid correctly measured

were higher in the fibroblasts carrying OPA1 isoforms associ-

ated to more severe clinical phenotype (p.G439V and p.R445H).

When the metabolic phenotype was oriented toward Opa1−/−

metabolic phenotype, concentrations of trans-4-hydroxyproline,

taurine,methionine sulfoxide and the lowprotonated polyamine

putrescine decreased whilst the concentration of the highest

protonated spermine increased. As the metabolome get closer

to the Opa1−/− metabolic phenotype concentration of 23 PCs,

2 SMs, 3 lysoPCs and acetyl-carnitine (C2) decreased whilst the

concentration of 11 PCs and 4 SMs increased.

OPLS model shared 44 (67%) important metabolites with the

OPLS-DAmodel discriminating Opa1+/+ from Opa1−/−
−carrying

MEFs. All metabolic signatures of OPA1 variants shared a

global amino acids reduction and lipid remodeling, comprising

phosphatidylcholines, sphingomyelins and lysophosphatidyl-

cholines. The regression plots in Figures 4 and 5 represent

the linear regression between scatter plot coordinates of the

first principal component of the PCA or t1 (x-axis) and the

relative concentrations, sums or ratios of metabolites (y-axis)

of the most important polar metabolites and lipids found in

both multivariate supervise models. Figure 4 suggests that

spermine concentration increases with t1 (i.e. whilst the

isoform-associated metabolic profile gets closer to the Opa1−/−

profile and farthest from the Opa1+/+ profile) and in Opa1−/−

compared to Opa1+/+ cells, while less protonated polyamines

(putrescine and spermidine) are relatively decreased, while

trans-hydroxylated proline (t4-OH-Pro) relative concentrations

parallel that of amino acids concentrations.

Figure 5 reports the lipids’ data, showing a linear increased

ratio of two sphingomyelins (SM18:0 and SM16:0) and hydrox-

ylated sphingomyelins (SM:OH 22:1 and SM:OH 22:2) with t1.

Conversely, the absolute concentration of polyunsaturated dia-

cyl phosphatidylcholines (PUFA aa) as well as that of the ratio

between polyunsaturated and monounsaturated (MUFA aa) dia-

cyl phosphatidylcholines decrease with t1. For acyl-alkyl (ae)

species, we also observed a decrease in the MUFA to SFA (sat-

urated fatty acid) ratio with t1.

Discussion

Our study provides compelling evidences for the high power of

metabolomics to establishing and hierarchizing the pathogenic-

ity of OPA1 genetic variants expressed in an isogenic genetic

background deleted for the endogenous Opa1. This strong
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Figure 2. Volcano plot (loadings versus VIP) from the OPLS-DA model comparing murine Opa1+/+ and Opa1−/− MEF. Only most important metabolites, i.e. those with

VIP≥1, have been labelled. Negative loadings indicate relatively decreased metabolite concentrations in Opa1−/− compared to Opa1+/+ MEF. Main features of the

metabolomic signature are decreased level in Opa1−/− MEF of many dialkyl and acyl-alkyl (PC aa and PC ae) phosphatidylcholine species (orange bubbles), almost all

amino acids (green bubbles), some biogenic amines (blue bubbles) including spermidine, trans-hydroxyproline (t4-OH-Pro), taurine and methionine-sulfoxide (Met-SO)

along with lysophosphatidylcholines (lysoPC, brown bubbles) with acyl chain length of less than 22 carbons. On the other side, many sphingomyelins (SM, yellow

bubbles), mainly hydroxylated (SM(OH)), some phosphatidylcholine species, the highest order polyamine spermine and lysophosphatidylcholines species with acyl

chain with more than 22 carbons were found increased in Opa1−/− compared to Opa1+/+ MEF. Glutamine was the only amino acid relatively increased in Opa1−/−

MEF. Legend: Ala, alanine; Asn, asparagine; Asp, aspartate; Gln, glutamine; Gly, glycine; His, histidine; Ile, isoleucine; Met, methionine; Phe, phenylalanine; Pro, proline;

Ser, serine; Thr, threonine; Trp, tryptophan; Val, valine. For phosphatidylcholines, the sum of the length of the two acyl or acyl–alkyl groups is noted after the C and is

followed by the number of double bonds. The same notation is used for representing the length and the number of double bonds in the acyl chain of sphingomyelins

and lysophosphatidylcholines.

predictability is essentially related to the statistical power of

metabolomics, to the fact that all variants were expressed

into the same nuclear background, rendering profiles highly

comparable and to the growth condition in galactose that

exacerbates mitochondrial dysfunctions. Indeed, as already

reported, the absence of glucose and the presence of galactose

restrict glycolysis rate and promote ATP production by the

mitochondrial respiration (32). Under these conditions, cells

exhibiting mitochondrial defects are slowly growing and more

vulnerable to cell death (33).

PCA of themetabolome including MEF with Opa1+/+,Opa1−/−

genes and transfected with human OPA1 isoforms (Fig. 1) strati-

fied the metabolomic signatures of the OPA1 variants according

to their progressive order of pathogenicity. It should be stressed

that PCA is an unsupervisedmethodmeaning that sampleswere

grouped on the basis of their metabolic profile by the algorithm

with no integration of the severity parameter when constructing

latent variables (i.e. principal components). As expected from

the PCA results, excellent predictive models were e further evi-

denced using the supervised OPLS(−DA) approaches, integrating

PCA score of the first PC or t1 as a proxy for clinical severity (for

the OPLS model). These supervised models enabled identifying

the most discriminating metabolites with respect to the clinical

severities.

Furthermore, the power of the metabolomics analysis

allowed to precisely assess how much the different MEF cell

lines differ from the ISO1control, containing the wild-type

human cDNA, and from the Opa1−/− background, considered

as the maximal pathogenic condition. Indeed, the p.R445H

variant, responsible for the most severe syndromic phenotypes,

turned out to be the closest to Opa1−/− genotype, behaving

almost as a null allele. In contrast, the hypomorphic p.I382M

variant, almost without pathological consequence by itself (22–

24), plots very close to ISO1 in t1 but was not significantly

different (P-value=0.056, Wilcoxon test) in this latent variable.

Through this discrete though no significant shift of I382M

MEFs samples to the right of ISO samples (higher t1 scores)

and toward dysfunctional variants metabolomics proves to

be highly sensitive to the impact OPA1 function has on cell

metabolic phenotype.This result found in vitro perfectlymatches

with clinical practice where I328M alone is not correlated

with optic atrophy. It’s also reasonable to expect an overt

metabolic distinction between I382M and ISO MEFs with an

increased samples size. This finding is encouraging because, in

a previous study, we were unable to identify any biochemical

data distinguishing MEFs carrying this hypomorphic variant

from ISO1 MEFs, since neither the mitochondrial network, nor

the respiratory activity or the mtDNA were altered, in contrast

with what we observed for the other pathogenic variants (31).

Noteworthy, targeted metabolomics analysis of fibroblasts from

a cohort of DOApatients failed to reveal any significant signature

(34), while we did evidence a specific signature involving the

purine metabolism in patients’ plasma, but without being able

to discriminate the different OPA1 mutations examined (35).
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Figure 3. Scatter plots of the PCA first principal plan (A) and the Spearman correlation coefficient (ρ) versus VIP (B) comparing MEF metabolomes transfected with

five human OPA1 variants. (A) Out of 5, 4 groups are easily distinguishable in the first principal component (PC1): ISO1- I382M, D603H, G439B and R445H. No group

discrimination can be seen in the second principal component (PC2). (B) Spearman correlation coefficients (ρ) where obtained from the non-parametric correlation

between sample’s scores in the first principal component or t1 in (A) and each metabolite concentration whilst VIP comes from the OPLS model. Only most important

metabolites, i.e. those with VIP≥ 1, have been labelled. For a given metabolite, negative values of ρ indicate negative correlation between its concentration and t1 (i.e.

metabolite concentration are relatively close to Opa1+/+ MEF concentration and relative far from Opa1−/− MEF concentration) whilst a positive ρ value indicates the

opposite situation (i.e. metabolite concentration are relatively close to Opa1−/− MEF concentration and relative far from Opa1+/+ MEF concentration. Main features of

the metabolomic signature are decreased level of many dialkyl and acyl-alkyl (PC aa and PC ae) phosphatidylcholine species (orange bubbles), almost all amino acids

(green bubbles), some biogenic amines (blue bubbles) including taurine, putrescine, trans-4-hydroxyproline (t4-OH-Pro) and methionine-sulfoxide (Met-SO) along with

three lysophosphatidylcholines (lysoPC, brown bubbles) and two sphingomyelins (SM, yellow bubbles). On the other side, four sphingomyelins (SM, yellow bubbles),

two of them hydroxylated (SM(OH)), some phosphatidylcholine species and the highest order polyamine spermine were found to increase while approaching the

metabolomic signature of Opa1−/− . Legend: Ala, alanine; Arg, arginine; Asn, asparagine; Asp, aspartate; Gly, glycine; His, histidine; Ile, isoleucine; Leu, leucine; Lys,

lysine; Met, methionine; Phe, phenylalanine; Pro, proline; Ser, serine; Thr, threonine; Trp, tryptophan; Ser, serine; Val, valine. For phosphatidylcholines, the sum of the

length of the two acyl or acyl–alkyl groups is noted after the C and is followed by the number of double bonds. The same notation is used for representing the length

and the number of double bonds in the acyl chain of sphingomyelins and lysophosphatidylcholines.

Thus, only the combined use of metabolomics and MEFs

expressing OPA1 alleles proves to be valid for highlighting

metabolic changes discriminating genetic variants. From our

results, this is expected to be truth even for the hypomorphic

p.I382M allele, for which the pathogenicity remains questionable

to date.

From these signatures classifying the variants according to

their severity, we isolated the most discriminating metabolites

responsible for generating this hierarchy, which consisted in

the increase in spermine/spermidine ratio and the decrease

of the sum of amino acids, t4-OH-Pro, SM OH 22:1, SM OH

22:2, SM 18:0/SM16:0 ratio, PC PUFA aa, PC PUFA/MUFA aa, PC

MUFA/SFA ae ratios. Such a decrease in all amino acids was

already observed in fibroblasts from patients with the Leber

Hereditary Optic Neuropathy (LHON), the other major form of

mitochondrial optic neuropathy, witnessing an ER stress with

impairment of protein synthesis due tomitochondrial deficiency

(34). This might be related to the fact that protein synthesis is

one of the most energy-consuming cellular processes, or be a

consequence of an alteration of the autophagic process (15).

The decreased concentrations of hydroxyproline found here is

in full agreement with this hypothesis since hydroxyproline

levels reflect the turnover of collagen, which synthesis is

one of the main fibroblast functions. The deregulation of

polyamines (putrescine, spermine and spermidine) metabolism,

also observed in the optic nerves of the Opa1+/− mouse model

(36), in LHON fibroblasts (34) and in glaucoma patients (37),

is known to be related with mitochondrial deficiency, and

plays a crucial role in the post-translational processing of the

eIF5A translation factor, by activating the protein translation

activity (38). Therefore, the mitochondrial dysfunction related to

OPA1 mutations and the associated patho-mechanism could be

related to a protein synthesis stress, through the alteration of

polyamines metabolism and eIF5A maturation.

The other main alteration disclosed here concerns the phos-

pholipid profiles. The increased concentrations of two hydrox-

ylated sphingomyelins (SM OH 22:1, SM OH 22:2), as well as

those of the SM18:0/SM16:0 ratio are highly predictive of variants

severity. SMs play a crucial role in membrane structure and

function, i.e. by forming lipid raft in association with cholesterol,

by acting as second messengers themselves, by their enzy-

matic transformation in other highly informative molecules like

ceramides, and by their contribution to myelin sheath composi-

tion. Little is known about cellular functions of the specific sph-

ingomyelin species identified in this study. Nevertheless, SM18:0

specifically plays a role in protein export by acting as the natural

ligand of p24 proteins (39). These p24 proteins facilitate cargo

transport from ER to the Golgi apparatus, and under endoplas-

mic stress the increased SM18:0 concentration might contribute

to ER relief, by enhancing cargo transfer to the Golgi apparatus.

In our study, the levels of SM(OH) 22:1 and SM(OH)22:2 increased

with the clinical severity of the OPA1 mutations. Correlation

between SM(OH)22:1 and SM(OH)22:2 concentrations observed

here has been already described in a physiological context and

was imputed to sphingolipid-specific desaturase activity (40).

The biological meaning of this variation is unclear in the context

of OPA1 dysfunction and to the best of our knowledge, the

specific roles of these hydroxyl-sphingomyelin species have not

been explored in any other pathology, so far. The increased

SMs concentrations we observed is in apparent contradiction

with what we have previously found in the Opa1+/− mouse

optic nerve,where 10 sphingomyelinswere decreased (36). These

opposite results may reflect the differences between the tissues,

with probably different pathways activation for sphingomyelin

synthesis and catabolism in retinal ganglion cells and fibrob-

lasts. Nevertheless, all our studies point to an alteration of

sphingomyelin metabolism that needs to be further investi-

gated as far as sphingomyelins play crucial roles in myelination
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Figure 4. Regression and box plots for polar metabolites. Relative metabolite concentrations for the sum of amino acids (upper panel), trans-4-hydroxyproline (t4-OH-

Pro) (middle panel) and the ratio spermine to spermidine (downer panel) have been linearly regressed with t1 (scores of PC1 of the PCA for transfected cells) (left) or

represented as a box plots for Opa1+/+ and Opa1−/− MEFs (right). In MEFs transfected with human isoforms of OPA1 gene, regression lines have been drawn along

with their respective determination coefficients (R2). Amino acid and t4-OH-Pro linearly decrease whilst spermine synthase activity,measured by spermine/spermidine

ratio, linearly decreases with t1 (i.e. whenmetabolic phenotype approaches Opa1−/− and get far away from Opa1−/− phenotypes). These changes are obviously verified

in Opa1+/+ and Opa1−/− MEFs. In regression plots, the following color code has been used: ISO1 (gray); I382M (blue); D603H (green); G439V (pink) and R445H (brown).

In box plots Opa1+/+ (WT) box has been colored in dark gray whilst red was used for Opa1−/− boxes.
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Figure 5. Regression and box plots for lipid metabolites. Upper panels: relative metabolite concentrations for hydroxy sphingomyelins SM OH 22:1 and SM OH 22:2

(upper middle and right panels, respectively) and the ratio between octadecanoyl (SM 18:0) and hexadecanoyl (SM 16:0) sphingomyelins (upper left panel) have been

linearly regressed with t1 (scores of PC1 of the PCA for transfected cells) or represented as box plots for Opa1+/+ and Opa1−/− MEFs (bottom position in each panel). As

for polar metabolites, in MEFs transfected with human isoforms of OPA1 gene, regression lines have been drawn along with their respective determination coefficients

(R2). There exists a clear parallel increasing between the two structurally close related SM OH 22:1 and SM OH 22:2 and t1. Also, the proportion of SM 18:0 seems to

increase when the metabolic phenotype approaches that of Opa1−/− compared to the concentration of SM 16:0. Bottom panels: the sum of polyunsaturated diacyl

phosphatidylcholines (PUFA aa) (bottom left) and the ratios between PUFA aa and monounsaturated diacyl phosphatidylcholines (PUFA/MUFA aa) (bottom middle) and

between monounsaturated and saturated fatty acids in the alkyl-acyl family (MUFA/SFA ae) (bottom right) decrease linearly with t1. As expected these changes are

verified in Opa1+/+ (WT) and Opa1−/− MEFs. In regression plots, the following color code has been used: ISO1 (gray); I382M (blue); D603H (green); G439V (pink) and

R445H (brown). In box plots Opa1+/+ (WT) box has been colored in dark gray whilst red was used for Opa1−/− boxes.

and in the pathophysiology of mitochondrial optic neuropathies

(41).

As for other different models of OPA1 dysfunction previously

studied (34, 36, 42), we found that the phosphatidylcholines’

concentrations were also highly altered. The most discrimi-

native features of variant severity were the decrease of the

sum of polyunsaturated diacyl phosphatidylcholines (PUFA aa)

and a decreased saturation of the diacyl phosphatidylcholines
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(PUFA/MUFA aa ratio) and alkyl species (MUFA/SFA ae). As phos-

phatidylcholines are the most important components of cell

membranes, our observations suggest that membrane remod-

eling due to the alterations of mitochondrial dynamics and to

the ER stress could affect the biosynthesis and transport of

phospholipids between these two cellular compartments. Inter-

estingly, decreased concentration of unsaturated phospholipids

in cellular membranes was shown to trigger endoplasmic stress

through non-classical pathways (43).

To conclude, the combination of the metabolomic approach

with the analysis of OPA1 mutated alleles expressed in the Opa1

knock-out MEF model allowed to accurately classify and hierar-

chize OPA1 variants according to their pathogenicity, clearly dis-

criminating among the different missense variants. This strat-

egy may further represent a relevant tool to predict the progres-

sion of the disease, to identify therapeutic targets and to assess

readily their efficiency as surrogate biomarkers. Ultimately, this

versatile approach could be useful for any rare disease related to

metabolic perturbations.

Materials and Methods

Cells and culture conditions

MEFs with their native Opa1 endogenous gene (Opa1+/+), MEFs

with deleted Opa1 gene (OPA1−/−) and Opa1−/− MEFs transfected

with the human wild-type OPA1 isoform 1 (the original tran-

script identified, RefSeq: NM_015560.2, ISO1), or human OPA1

isoform 1 carrying c.1146A>G (p.I382M), c.1316G>T (p.G439V),

c.1334G>A (p.R455H) or c.1807G>C (p.D603H) pathogenic vari-

ants, previously described in (31, 44, 45) were used. The retroviral

expression vector was co-transfected with the ecotropic retro-

viral packaging vector pCLEco into Hek 293 T cells. Retroviral

stocks were harvested 48 h after transfection and used to infect

MEF cultures. To achieve a stable cell pool, the selection with

antibiotic puromycin lasted as long as the control (untrans-

duced) cells completely die (7–10 days). The concentration of

the antibiotic in culture was then reduced and, after 1 month,

was removed entirely. The antibiotic selection with low con-

centration of puromycin was cyclically performed and the OPA1

expression in cells was regularly checked.

MEFs were grown in a high-glucose (25 mM) Dulbecco’s

modified Eagle medium (DMEM, Life Technologies) supple-

mented with 10% fetal bovine serum (FBS, South America, Gibco,

Life Technologies), 2 mM L-glutamine, 100 U/ml penicillin and

100 μg/ml streptomycin, in an incubator with a humidified

atmosphere of 5%CO2 at 37◦C.Twenty-four hours before harvest-

ing, cells were grown in glucose-free DMEM (Life Technologies)

supplemented with 5 mM galactose, 2 mM L-glutamine, 5 mM

sodium pyruvate and 5% FBS (DMEM-galactose).

Metabolites extraction

For each cell line, samples were collected in quintuplicate.

When approximately 70% confluence was reached, the culture

mediums were removed, and cells were washed twice in ice-

cold phosphate-buffered saline (PBS) solution and harvested by

scraping. The supernatants were discarded after centrifugation

(3000 g for 5 min at 4◦C) and the cell pellets were resuspended

in 400 μl of ice-cold PBS solution, and centrifuged again in the

same conditions.The supernatantwas discarded, and the pellets

immediately frozen by throwing in liquid nitrogen for 5 min and

then stored at −80◦C until analysis. Metabolites extraction was

performed by adding 100 μl of ice-cold ethanol/PBS (85:15, v/v)

solution to the cell pellets. After vortexing, the mixture was

transferred to a 0.5 ml homogenizer tube prefilled with ceramic

beads. Cell lysis were achieved in a Precellys®24 homogenizer

(Bertin instruments, Montigny-le-Bretonneux) by two cycles of

grinding (40 sec at 6500 rpm, followed by 30 sec at 6000 rpm)

at 4◦C. The resulting homogenates were centrifuged at 20000 g

for 10 min at 4◦C and the supernatants stored at −80◦C until

analysis.

Metabolomics analysis

Weapplied a targeted,quantitativemetabolomic approach to the

cell extracts using the Biocrates technology (AbsoluteIDQ® p180

kit, Biocrates Life sciences) in an AB Sciex QTRAP 5500 (Life Sci-

ences SCIEX)mass spectrometer. Sampleswere prepared accord-

ing to the Biocrates Kit User Manual. Briefly, after thawing on ice,

10 μl of each sample (cell-lysate homogenate supernatants) were

added to the center of the filter placed on the upper wall of the

well in a 96-well plate. Metabolites were extracted in a methanol

solution using ammonium acetate after drying the filter spot

under nitrogen flow and derivatizingwith phenylisothiocyanate.

The extracts were finally diluted with mass spectrometry run-

ning solvent beforemass spectrometry analysis. This kit enables

quantification of up to 188 different endogenous molecules,

including acyl-carnitines (40), amino acids (21), biogenic amines

(21), glycerophospholipids (90), sphingolipids (15) and sugar (1).

Flow-injection analysis (FIA-MS/MS) was used for quantifying

acyl-carnitines, glycerophospholipids, sphingolipids and sugar,

whereas liquid chromatography (LC) allowed the separation of

amino acids and biogenic amines prior to detection with mass

spectrometry (LC-MS/MS).

Data cleaning and normalization

After validation of the three levels of QCs used in the kit and

before statistical analysis, the raw data were examined to

excludemetaboliteswithmore than 20% of concentration values

below the detection limit. Since the samples were analyzed

in two different batches, to account for batch effect, the five

Opa1+/+ samples were analyzed in both batches and one of them

was used to normalize all the samples in each batch (sample

normalization). The effectiveness of sample normalization was

then verified using PCA on the remaining eight WT samples.

Metabolite concentrations in each sample were then normalized

with respect to the total sum of metabolites in the given sample

(row normalisation). Row normalisation avoids finding spurious

between-samples differences merely due to differences related

to the number of cells collected for each sample.

Statistical analyses

Relativemetabolite concentration betweenOpa1+/+ andOpa1−/−

were compared using non-parametric Mann-Whitney-Wilcoxon

test.

Metabolites were scaled to have zero mean and unit variance

scaling before submission to unsupervised and supervised algo-

rithms. PCA was used as an unsupervised approach for outlier

detection, based on Hotelling’s T2 distance, and identification

of similar samples grouping together in the scatter plot. In

the supervised analysis the X matrix of predictive variables

was composed of metabolite concentrations. We applied two

supervised analyses: orthogonal projection to latent structures

(OPLS) alone and associated to discriminant analysis (OPLS-DA).

In the OPLS-DAmodel,Opa1+/+ andOpa1−/− MEFswere included
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in the Y vector as qualitative attributes. In the OPLS model

sample coordinates of the five human transfected isoforms (i.e.

ISO1, p.I382M, p.D603H, p.G439V and p.R445H) in the first prin-

cipal component (PC1) was considered as the quantitative pre-

dicted variable (Y vector) whilst the X matrix was as before the

metabolite concentrations. To avoid selecting optimistic over-

fitted models, predictive capabilities of the final OPLS (DA) mod-

els were evaluated by cross-validation using cross-validated R2Y

(Q2Ycum or goodness of prediction), cross-validated analysis of

variance (CV-ANOVA) test and the goodness of prediction of

permutedmodels (Q2Ycum-perm).Modelswith a lowdegree of over-

fitting are characterized by Q2Ycum >0.5, negative Q2Y cum-perm

and are significantlymore discriminant than the nullmodel (CV-

ANOVA P-value<0.05). In OPLS-DA predictive model, selection

of metabolites of interest was made through the combination

of two pieces of information: VIP and the loading between the

metabolite in the Xmatrix and the pLV(s) of the OPLS-DAmodel.

Only metabolites with a VIP value larger than 1 and (abso-

lute) high loading values were considered as important in the

metabolomics signature. In the OPLS model, the volcano plot

was formed by Spearman ρ correlation coefficients calculated

between PC1 and each metabolite in the x-axis and VIPs in the

y-axis. This way, we put together univariate and multivariate

analysis in one plot, both capturing agreement betweenmetabo-

lite concentration and latent variables. More information about

PCA- and PLS-based methods can be found in ‘Supplementary

information: multivariate statistical analysis.’

Supplementary Material

Supplementary Material is available at HMG online.

Acknowledgments

We acknowledge the support from the Institut National de la

Santé et de la Recherche Médicale (INSERM), the Centre National

de la Recherche Scientifique (CNRS), the University of Angers,

and the University Hospital of Angers, the Région Pays de la

Loire, Angers Loire Métropole, the Fondation Maladies Rares, the

Fondation VISIO, Kjer-France, Ouvrir Les Yeux, Retina France,

UNADEV,Association Française contre lesMyopathies.Thiswork

was supported by Futuro in Ricerca FIR2013 from the Ministero

della Istruzione Università e Ricerca (MIUR) [RBFR131WDS to CZ].

C.Z. was supported by Fondazione Veronesi research fellowship

2019. We thank Aubence for stimulating critical discussions.

Conflict of Interest statement. The authors have no conflict of

interest.

References

1. Ferré, M., Caignard, A., Milea, D., Leruez, S., Cassereau, J.,

Chevrollier, A., Amati-Bonneau, P., Verny, C., Bonneau, D.,

Procaccio, V. and Reynier, P. (2015) Improved locus-specific

database for OPA1 mutations allows inclusion of advanced

clinical data. Hum. Mutat., 36, 20–25.

2. Le Roux, B., Lenaers, G., Zanlonghi, X., Amati-Bonneau, P.,

Chabrun, F., Foulonneau, T., Caignard, A., Leruez, S., Gohier,

P., Procaccio, V. et al. (2019) OPA1: 516 unique variants and

831 patients registered in an updated centralized Variome

database. Orphanet J. Rare Dis., 14, 214.

3. Olichon, A., Baricault, L., Gas, N., Guillou, E., Valette, A.,

Belenguer, P. and Lenaers, G. (2003) Loss of OPA1 perturbates

the mitochondrial inner membrane structure and integrity,

leading to cytochrome c release and apoptosis. J. Biol. Chem.,

278, 7743–7746.

4. Olichon,A., Elachouri, G., Baricault, L., Delettre, C., Belenguer,

P. and Lenaers, G. (2007) OPA1 alternate splicing uncouples

an evolutionary conserved function in mitochondrial fusion

from a vertebrate restricted function in apoptosis. Cell Death

Differ., 14, 682–692.

5. Zanna, C., Ghelli, A., Porcelli, A.M., Karbowski, M., Youle, R.J.,

Schimpf, S., Wissinger, B., Pinti, M., Cossarizza, A., Vidoni,

S. et al. (2008) OPA1 mutations associated with dominant

optic atrophy impair oxidative phosphorylation and mito-

chondrial fusion. Brain, 131, 352–367.

6. Cogliati, S., Frezza, C., Soriano, M.E., Varanita, T., Quintana-

Cabrera, R., Corrado, M., Cipolat, S., Costa, V., Casarin, A.,

Gomes, L.C. et al. (2013) Mitochondrial cristae shape deter-

mines respiratory chain supercomplexes assembly and res-

piratory efficiency. Cell, 155, 160–171.

7. Amati-Bonneau, P., Valentino,M.L., Reynier, P., Gallardo,M.E.,

Bornstein, B., Boissière, A., Campos, Y., Rivera, H., de la Aleja,

J.G., Carroccia, R. et al. (2008) OPA1 mutations induce mito-

chondrial DNA instability and optic atrophy ‘plus’ pheno-

types. Brain, 131, 338–351.

8. Hudson, G., Amati-Bonneau, P., Blakely, E.L., Stewart, J.D., He,

L., Schaefer, A.M., Griffiths, P.G., Ahlqvist, K., Suomalainen,

A., Reynier, P. et al. (2008) Mutation of OPA1 causes domi-

nant optic atrophy with external ophthalmoplegia, ataxia,

deafness andmultiplemitochondrial DNA deletions: a novel

disorder of mtDNA maintenance. Brain, 131, 329–337.

9. Elachouri, G., Vidoni, S., Zanna, C., Pattyn, A., Boukhaddaoui,

H., Gaget, K., Yu-Wai-Man, P., Gasparre, G., Sarzi, E., Delettre,

C. et al. (2011) OPA1 links human mitochondrial genome

maintenance tomtDNA replication and distribution.Genome

Res., 21, 12–20.

10. Frezza, C., Cipolat, S., Martins de Brito, O., Micaroni, M.,

Beznoussenko, G.V., Rudka, T., Bartoli, D., Polishuck, R.S.,

Danial, N.N., De Strooper, B. et al. (2006) OPA1 controls apop-

totic cristae remodeling independently from mitochondrial

fusion. Cell, 126, 177–189.

11. Dayanithi, G., Chen-Kuo-Chang, M., Viero, C., Hamel, C.,

Muller, A. and Lenaers, G. (2010) Characterization of Ca2+

signalling in postnatal mouse retinal ganglion cells: involve-

ment of OPA1 in Ca2+ clearance. Ophthalmic Genet., 31,

53–65.

12. Millet, A.M.C., Bertholet, A.M., Daloyau, M., Reynier, P., Galin-

ier, A., Devin, A., Wissinguer, B., Belenguer, P. and Davezac,

N. (2016) Loss of functional OPA1 unbalances redox state:

implications in dominant optic atrophy pathogenesis. Ann.

Clin. Transl. Neurol., 3, 408–421.

13. White, K.E., Davies, V.J., Hogan, V.E., Piechota, M.J., Nichols,

P.P., Turnbull, D.M. and Votruba, M. (2009) OPA1 deficiency

associated with increased autophagy in retinal ganglion

cells in a murine model of dominant optic atrophy. Invest.

Ophthalmol. Vis. Sci., 50, 2567–2571.

14. Sarzi, E., Angebault, C., Seveno, M., Gueguen, N., Chaix, B.,

Bielicki, G., Boddaert, N., Mausset-Bonnefont, A.L., Caze-

vieille, C., Rigau, V. et al. (2012) The human OPA1delTTAG

mutation induces premature age-related systemic neurode-

generation in mouse. Brain, 135, 3599–3613.

15. Kane,M.S.,Alban, J.,Desquiret-Dumas,V.,Gueguen,N., Ishak,

L., Ferre, M., Amati-Bonneau, P., Procaccio, V., Bonneau, D.,

Lenaers, G. et al. (2017) Autophagy controls the pathogenicity

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/h
m

g
/a

rtic
le

/2
9
/8

/1
3
1
9
/5

8
0
8
0
0
2
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddaa047#supplementary-data


1328 Human Molecular Genetics, 2020, Vol. 29, No. 8

of OPA1 mutations in dominant optic atrophy. J. Cell. Mol.

Med, 21, 2284–2297

16. Youle, R.J. and van der Bliek, A.M. (2012) Mitochondrial

fission, fusion, and stress. Science, 337, 1062–1065.

17. Del Dotto, V., Fogazza, M., Lenaers, G., Rugolo, M., Carelli,

V. and Zanna, C. (2018) OPA1: how much do we know to

approach therapy? Pharmacol. Res., 131, 199–210.

18. Del Dotto, V., Fogazza, M., Carelli, V., Rugolo, M. and Zanna,

C. (2018) Eight human OPA1 isoforms, long and short: what

are they for? Biochimica et Biophysica Acta (BBA) - Bioenergetics,

1859, 263–269.

19. Yu-Wai-Man, P., Griffiths, P.G., Gorman, G.S., Lourenco, C.M.,

Wright, A.F., Auer-Grumbach, M., Toscano, A., Musumeci, O.,

Valentino, M.L., Caporali, L. et al. (2010) Multi-system neuro-

logical disease is common in patients with OPA1 mutations.

Brain, 133, 771–786.

20. Verny, C., Loiseau, D., Scherer, C., Lejeune, P., Chevrollier, A.,

Gueguen,N., Guillet, V., Dubas, F., Reynier, P., Amati-Bonneau,

P. et al. (2008) Multiple sclerosis-like disorder in OPA1-

related autosomal dominant optic atrophy. Neurology, 70,

1152–1153.

21. Carelli, V., Musumeci, O., Caporali, L., Zanna, C., La Morgia,

C., Del Dotto, V., Porcelli, A.M., Rugolo, M., Valentino, M.L.,

Iommarini, L. et al. (2015) Syndromic parkinsonism and

dementia associated with OPA1 missense mutations. Ann.

Neurol., 78, 21–38.

22. Schaaf, C.P., Blazo, M., Lewis, R.A., Tonini, R.E., Takei, H.,

Wang, J., Wong, L.J. and Scaglia, F. (2011) Early-onset severe

neuromuscular phenotype associated with compound het-

erozygosity for OPA1 mutations. Mol. Genet. Metab., 103,

383–387.

23. Bonneau, D., Colin, E., Oca, F., Ferré, M., Chevrollier, A.,

Guéguen, N., Desquiret-Dumas, V., N’Guyen, S., Barth, M.,

Zanlonghi, X. et al. (2014) Early-onset Behr syndrome

due to compound heterozygous mutations in OPA1. Brain,

137, e301.

24. Carelli, V., Sabatelli, M., Carrozzo, R., Rizza, T., Schimpf, S.,

Wissinger, B., Zanna, C., Rugolo, M., La Morgia, C., Capo-

rali, L. et al. (2015) ‘Behr syndrome’ with OPA1 compound

heterozygote mutations. Brain, 138, e321.

25. Zerem, A., Yosovich, K., Rappaport, Y.C., Libzon, S., Blumkin,

L., Ben-Sira, L., Lev, D. and Lerman-Sagie, T. (2019) Metabolic

stroke in a patient with bi-allelic OPA1 mutations. Metab.

Brain Dis., 34, 1043–1048.

26. Rubegni, A., Pisano, T., Bacci, G., Tessa, A., Battini, R., Proco-

pio, E., Giglio, S., Pasquariello, R., Santorelli, F.M., Guerrini,

R. et al. (2017) Leigh-like neuroimaging features associated

with new biallelic mutations in OPA1. Eur. J. Paediatr. Neurol.,

21, 671–677.

27. Spiegel, R., Saada, A., Flannery, P.J., Burté, F., Soiferman, D.,

Khayat, M., Eisner, V., Vladovski, E., Taylor, R.W., Bindoff, L.A.

et al. (2016) Fatal infantile mitochondrial encephalomyopa-

thy, hypertrophic cardiomyopathy and optic atrophy associ-

ated with a homozygous OPA1 mutation. J. Med. Genet., 53,

127–131.

28. Chao de la Barca, J.M., Prunier-Mirebeau, D., Amati-Bonneau,

P., Ferré, M., Sarzi, E., Bris, C., Leruez, S., Chevrollier, A.,

Desquiret-Dumas, V., Gueguen, N. et al. (2016) OPA1-related

disorders: diversity of clinical expression, modes of inheri-

tance and pathophysiology. Neurobiol. Dis., 90, 20–26.

29. Amati-Bonneau, P., Guichet, A., Olichon, A., Chevrollier, A.,

Viala, F., Miot, S., Ayuso, C., Oden, S., Arrouet, C., Verny, C.

et al. (2005) OPA1 R445Hmutation in optic atrophy associated

with sensorineural deafness. Ann. Neurol., 58, 958–963.

30. Bonifert, T., Karle, K.N., Tonagel, F., Batra, M., Wilhelm, C.,

Theurer, Y., Schoenfeld, C., Kluba, T., Kamenisch,Y., Carelli, V.

et al. (2014) Pure and syndromic optic atrophy explained by

deep intronic OPA1 mutations and an intralocus modifier.

Brain, 137, 2164–2177.

31. Del Dotto, V., Fogazza, M., Musiani, F., Maresca, A., Aleo,

S.J., Caporali, L., La Morgia, C., Nolli, C., Lodi, T., Goffrini, P.

et al. (2018) Deciphering OPA1 mutations pathogenicity by

combined analysis of human, mouse and yeast cell models.

Biochimica et Biophysica Acta (BBA) - Mol. Basis Dis., 1864,

3496–3514.

32. Robinson, B.H. (1996) Use of fibroblast and lymphoblast

cultures for detection of respiratory chain defects. Methods

Enzymol., 264, 454–464.

33. Ghelli, A., Zanna, C., Porcelli, A.M., Schapira, A.H., Martin-

uzzi, A., Carelli, V. and Rugolo, M. (2003) Leber’s heredi-

tary optic neuropathy (LHON) pathogenic mutations induce

mitochondrial-dependent apoptotic death in Transmito-

chondrial cells incubated with Galactose medium. J. Biol.

Chem., 278, 4145–4150.

34. Chao de la Barca, J.M., Simard, G., Amati-Bonneau, P.,

Safiedeen, Z., Prunier-Mirebeau, D., Chupin, S., Gadras, C.,

Tessier, L., Gueguen, N., Chevrollier, A. et al. (2016) The

metabolomic signature of Leber’s hereditary optic neu-

ropathy reveals endoplasmic reticulum stress. Brain, 139,

2864–2876.

35. Bocca, C., Kouassi Nzoughet, J., Leruez, S., Leruez, S., Amati-

Bonneau, P., Ferré, M., Kane, M.S., Veyrat-Durebex, C., Chao

de la Barca, J.M., Chevrollier, A. et al. (2018) A plasma

Metabolomic signature involving purine metabolism in

human optic atrophy 1 (OPA1)-related disorders. Invest. Oph-

thalmol. Vis. Sci., 59, 185–195.

36. Chao de la Barca, J.M., Simard, G., Sarzi, E., Chaumette, T.,

Rousseau, G., Chupin, S., Gadras, C., Tessier, L., Ferré, M.,

Chevrollier, A. et al. (2017) Targeted metabolomics reveals

early dominant optic atrophy signature in optic nerves of

Opa1delTTAG/+mice. Invest.Ophthalmol.Vis. Sci.,58, 812–820.

37. Leruez, S., Marill, A., Bresson, T., de Saint Martin, G., Buisset,

A., Muller, J., Tessier, L., Gadras, C., Verny, C., Gohier, P.

et al. (2018) A metabolomics profiling of glaucoma points

to mitochondrial dysfunction, senescence, and polyamines

deficiency. Invest. Ophthalmol. Vis. Sci., 59, 4355–4361.

38. Puleston,D.J., Buck,M.D.,Klein Geltink,R.I., Kyle, R.L., Caputa,

G., O’Sullivan,D., Cameron,A.M., Castoldi, A.,Musa,Y., Kabat,

A.M. et al. (2019) Polyamines and eIF5A Hypusination mod-

ulate mitochondrial respiration andmacrophage activation.

Cell Metab., 30, 352–363.

39. Contreras, F.-X., Ernst, A. M., Haberkant, P., Björkholm, P.,

Lindahl, E., Gönen, B., Tischer, C., Elofsson, A., von Heijne,

G., Thiele, C. et al. (2012) Molecular recognition of a single

sphingolipid species by a protein’s transmembrane domain.

Nature, 481, 525–529.

40. Krumsiek, J., Suhre, K., Illig, T., Adamski, J. and Theis, F.J.

(2011) Gaussian graphical modeling reconstructs pathway

reactions from high-throughput metabolomics data. BMC

Syst. Biol., 5, 21.

41. Carelli, V., La Morgia, C., Ross-Cisneros, F.N. and Sadun, A.A.

(2017) Optic neuropathies: the tip of the neurodegeneration

iceberg. Hum. Mol. Genet., 26, R139–R150.

42. Bocca,C., Kane,M.S., Veyrat-Durebex,C.,Nzoughet, J.K., Chao

de la Barca, J.M., Chupin, S., Alban, J., Procaccio, V., Bonneau,

D., Simard, G. et al. (2019) Lipidomics reveals triacylglyc-

erol accumulation due to impaired fatty acid flux in Opa1-

disrupted fibroblasts. J. Proteome Res., 18, 2779–2790.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/h
m

g
/a

rtic
le

/2
9
/8

/1
3
1
9
/5

8
0
8
0
0
2
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



Human Molecular Genetics, 2020, Vol. 29, No. 8 1329

43. Volmer, R., van der Ploeg, K. and Ron, D. (2013) Membrane

lipid saturation activates endoplasmic reticulum unfolded

protein response transducers through their transmembrane

domains. Proc. Natl. Acad. Sci. USA., 110, 4628–4633.

44. Song, Z., Chen, H., Fiket, M., Alexander, C. and Chan, D.C.

(2007) OPA1 processing controls mitochondrial fusion and

is regulated by mRNA splicing, membrane potential, and

Yme1L. J. Cell Biol., 178, 749–755.

45. Ban, T., Heymann, J.A.W., Song, Z., Hinshaw, J.E. and Chan,

D.C. (2010) OPA1 disease alleles causing dominant optic atro-

phy have defects in cardiolipin-stimulated GTP hydrolysis

and membrane tubulation. Hum. Mol. Genet., 19, 2113–2122.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/h
m

g
/a

rtic
le

/2
9
/8

/1
3
1
9
/5

8
0
8
0
0
2
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2


	Metabolomics hallmarks OPA1 variants correlating with their in vitro phenotype and predicting clinical severity
	Introduction
	Results
	Metabolomics analysis

	Discussion
	Materials and Methods
	Cells and culture conditions
	Metabolites extraction
	Metabolomics analysis
	Data cleaning and normalization
	Statistical analyses

	Supplementary Material


