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Context: Metabolomics provides a biochemical fingerprint that, when coupled with clinical phe-
notypes, can provide insight into physiological processes.

Objective: Survey metabolites associated with dynamic and basal measures of glucose homeostasis.

Design:Analysis of 733 plasmametabolites from the Insulin Resistance Atherosclerosis Family Study.

Setting: Community based.

Participants: One thousand one hundred eleven Mexican Americans.

MainOutcome:Dynamicmeasureswere obtained from the frequently sampled intravenous glucose
tolerance test and included insulin sensitivity and acute insulin response to glucose. Basal measures
included homeostatic model assessment of insulin resistance and b-cell function.

Results: Insulin sensitivity was associated with 99 metabolites (P , 6.82 3 1025) explaining 28% of
the variance (R2adj) beyond 28% by body mass index. Beyond branched chain amino acids (BCAAs;
P = 1.85 3 10218 to 1.70 3 1025, R2adj = 8.1%) and phospholipids (P = 3.51 3 10217 to 3.00 3 1025,
R2

adj = 14%), novel signatures of long-chain fatty acids (LCFAs; P = 4.493 10223 to 4.143 1027, R2
adj =

11%) were observed. Conditional analysis suggested that BCAA and LCFA signatures were
independent. LCFAs were not associated with homeostatic model assessment of insulin resistance
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Abbreviations: AIRg, acute insulin response to glucose; BCAA, branched-chain amino acid;
BMI, body mass index; DI, disposition index; FSIGT, frequently sampled intravenous
glucose tolerance test; HOMAB, homeostatic model assessment of b-cell function;
HOMAIR, homeostatic model assessment of insulin resistance; IRAS-FS, Insulin Resistance
Atherosclerosis Family Study; LCFA, long-chain fatty acid; PUFA, polyunsaturated
fatty acid; rS, Spearman rank-order correlation; SG, glucose effectiveness; SI, insulin
sensitivity; T2D, type 2 diabetes.
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(P . 0.024). Acute insulin response to glucose was associated with six metabolites; glucose had the
strongest association (P = 5.68 3 10216). Homeostatic model assessment of b-cell function had
significant signatures from the urea cycle (P = 9.64 3 10214 to 7.27 3 1026, R2

adj = 11%). Novel
associations of polyunsaturated fatty acids (P = 2.583 10213 to 6.703 1025, R2

adj = 10%) and LCFAs
(P = 9.063 10215 to 3.933 1027, R2

adj = 10%) were observedwith glucose effectiveness. Assessment
of the hyperbolic relationship between insulin sensitivity and secretion through the disposition
index revealed a distinctive signature of polyunsaturated fatty acids (P= 1.553 10212 to 5.813 1026;
R2

adj = 3.8%) beyond that of its component measures.

Conclusions: Metabolomics reveals distinct signatures that differentiate dynamic and basal mea-
sures of glucose homeostasis and further identifies newmetabolite classes associated with dynamic
measures, providing expanded insight into the metabolic basis of insulin resistance. (J Clin Endo-
crinol Metab 103: 1877–1888, 2018)

Type 2 diabetes (T2D) is a heterogeneous disorder
characterized by hyperglycemia resulting from insu-

lin resistance and insulin insufficiency (1). A variety
of physiological measures of basal glucose homeosta-
sis [homeostatic model assessment of insulin resistance
(HOMAIR) and homeostatic model assessment of b-cell
function (HOMAB)] have beenwidely used as clinical and
epidemiological tools for estimating the degree of insulin
resistance and secretory dysfunction in diverse pop-
ulations (2, 3). However, dynamic measures of glucose
homeostasis obtained from euglycemic–hyperinsulinemic
and hyperglycemic clamps (4) are considered the “gold
standard” for assessment of insulin resistance and b-cell
dysfunction. These measures are highly correlated with
results obtained from the frequently sampled intravenous
glucose tolerance test [FSIGT; insulin sensitivity index (SI)
and acute insulin response to glucose (AIRg)] across a
range of glucose tolerance states (5–8). These dynamic
measures could be considered physiologically more
proximal to pathogenic components of T2D and provide
insight into the discrete mechanisms of action (9).

High-throughput assessment of small-molecule
intermediates in biological systems, termed metab-
olomics, provides a valuable tool for understanding
biochemical pathways and disease mechanisms (10).
Early studies in this field have frequently targeted
specific metabolite classes, for example, amino acids,
acylcarnitines, and organic acids. When applied to
T2D, targeted metabolomic studies have revealed a
characteristic metabolomic signature of amino acids,
especially increased branch-chain amino acids (BCAAs),
being associated with insulin resistance and overt
disease. Thus, increased levels of leucine, isoleucine,
valine, phenylalanine, and tyrosine were associated
with up to a fivefold risk for future T2D (11–13). As
technology has evolved, broad-spectrum evaluation
of metabolomic features has become increasingly
feasible. Metabolomic studies of the overt phenotype
of T2D have reported alterations in amino acid, lipid,

and sugar metabolites associated with disease (11, 14).
However, large-scale metabolomic studies of alterations
preceding overt disease, simultaneously assessing both
dynamic and basal measures of glucose homeostasis,
have not been undertaken.

The goal of this study was to provide a comprehensive
survey of the metabolomic signatures of dynamic mea-
sures of glucose homeostasis using metabolomic profiling
(n = 733 metabolites) in Mexican American participants
from the Insulin Resistance Atherosclerosis Family Study
(IRAS-FS). These results were then contrasted with
findings from basal indices of glucose homeostasis in the
same study population. These results reveal distinctive
metabolic patterns associated with different measures of
glucose homeostasis.

Materials and Methods

Study population
The IRAS-FS was designed to investigate the genetic and

environmental basis of glucose homeostasis and visceral
adiposity. Study design, recruitment, and phenotyping have
been previously described (15). Specific to this report,
Mexican American families were recruited from clinical
centers in San Antonio, TX and San Luis Valley, CO. The
study protocol was approved by the Institutional Review
Board of each participating clinical and analysis site and all
participants provided their written informed consent.

Phenotyping
A clinical examination was performed for nondiabetic

participants that included an interview, an FSIGT, anthropo-
metric measurements, and blood collection. Dynamic measures
of glucose homeostasis included those from the FSIGT using the
reduced sampling protocol (16–18) calculated by mathematical
modeling methods (MINMOD) (9), including the SI index and
glucose effectiveness (SG). Additionally, AIRg was calculated as
the increase in insulin concentrations at 2 to 8minutes above the
basal (fasting) insulin level after a bolus glucose injection at 0 to
1 minute. Disposition index (DI) was calculated as the product
of SI 3 AIRg. HOMAIR and HOMAB were modeled from
fasting glucose and insulin measures using the updated HOMA
model (19).
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Metabolite profiling of fasting plasma samples stored
at 280°C since baseline collection from 1999 to 2002 was
performed. Detection and quantification of 1274 metabolites
was completed by Metabolon (Durham, North Carolina) using
untargeted liquid chromatography–mass spectrometry (Dis-
coveryHD4 panel). This panel identifies and provides relative
quantitation for known chemical compounds (n = 733) among
amino acid, carbohydrate, energy, lipid, nucleotide, and peptide
superpathways, which were the focus of this report. Prior to
receipt, data were block corrected for run day, normalized by
batch, and missing data by metabolite was imputed to the
minimum. Subsequently, sample-level analysis revealed an ex-
cess of metabolite outliers (64 standard deviations) for a single
sample (n = 134 outliers), which was removed from analysis.
Individualmetabolite valueswerewinsorized at 1%and 99% to
reduce the effect of outliers. Correlation structure among me-
tabolites was examined using a Spearman rank-order correla-
tion (rS).

Statistical analysis
Variance component models as implemented in SOLAR (20)

were used to test for association between metabolites and
glucose homeostasis phenotypes accounting for the familial
relationships using a random effect model. All models were
adjusted for age, sex, body mass index (BMI), and recruitment
center. For glucose homeostasis traits, winsorization and/or
transformation was applied to best approximate the distribu-
tional assumptions of conditional normality and homogeneity
of the variance. Transformations included natural logarithm of
the trait plus a constant (SI), square root (AIRg and DI), and
natural logarithm (HOMAIR, HOMAB, and fasting insulin). SG
and fasting glucose were not transformed. Tests of association
between individual metabolites (predictor) and glucose ho-
meostasis phenotypes (outcome) were computed using theWald
test. A conservative Bonferroni correction was used to account
for multiple testing with 733 metabolites, that is, 6.82 3 1025

(0.05/733). To test for independent associations, conditional
models with inclusion of metabolites as covariates were eval-
uated. A random effects model as computed in SOLARwas used
to estimate the proportion of variance (R2) explained by me-
tabolites within a given subpathway after removing the effect of
covariates. Correction of this value for the total number of
samples and metabolites in a subpathway was also performed
(R2

adj).
To evaluate the cumulative effect of associated metabolites

on a given phenotype, the random effects model was used as
implemented in SOLAR. R2 was estimated in a model including
the minimum number of covariates, that is, age, sex, and re-
cruitment center. Subsequently, models were constructed in-
clusive of BMI with and without all individually associated
metabolites.

Results

This study sample comprised data from up to 1111
Mexican Americans from the IRAS-FS cohort (Table 1).
Sample sizes were nominally different between dynamic
(n = 922) and basal (n = 940) measures owing to the ease
of sample collection for the latter. On average, study
subjects were overweight (BMI = 28.9 kg/m2) and most

participants were female. Participants had a mean SI of
2.16 6 1.85 3 1024 min/mU/mL, mean AIRg of 777 6
665 mU/mL/min, and a resulting mean DI of 1339 6

1227. Fasting glucose levels (93.2 6 9.4 mg/dL) were
consistent with a nondiabetic population. Basal estimates
of insulin resistance fromHOMAIRwere 1.666 1.03 and
estimates of b-cell function from HOMAB were 121.2 6

46.9. The heritability estimates and genetic and envi-
ronmental correlations for these phenotypes have been
published previously (21).

Association analysis of dynamic and basal measures of
SI revealed some common features but also distinct dif-
ferences in metabolite profiles. Analysis of SI (dynamic
measure) and HOMAIR (basal measure) revealed sig-
nificant association with 152 metabolites, approximately
half of which were unique to each phenotype (Fig. 1).
Consistent with previous reports, both dynamic and
basal measures were associated with leucine, isoleucine,
and valine metabolism, metabolites involved in BCAA
metabolism (Fig. 2; Table 2). Taken together, significant
BCAA metabolites explained 8.1% to 10% of the vari-
ance and were inversely associated with SI. The strongest
association was detected at 3-methyl-2-oxovalerate for SI
(b = 20.55, P = 1.85 3 10218; Supplemental Table 2A)
andHOMAIR (b = 0.54, P = 1.573 10214; Supplemental
Table 2B). The most strongly associated metabolite sig-
nature with SI was long-chain fatty acid (LCFA) meta-
bolism (Fig. 2A; Table 2), which was also inversely
associated with SI. Specifically, the most significant me-
tabolites were stearate (b = 20.70, P = 4.49 3 10223),
margarate (b =20.36, P = 1.723 10217), and palmitate
(b = 20.44, P = 4.42 3 10215), metabolites that were
highly correlated with one another (rS . 0.79, Supple-
mental Table 1). Analysis conditioned on the most

Table 1. Clinical Characteristics of the IRAS-FS
Cohort

Values

Demographics
Sample size 1111
Age, y 42.3 6 13.9
Women, % 59.0
BMI, kg/m2 28.9 6 6.2

Dynamic measures
SI, x 1024 min/mU/mL 2.16 6 1.85
SG, per min 0.021 6 0.009
AIRg, mU/mL/min 777 6 665
DI 1339 6 1227

Basal measures
Fasting glucose, mg/dL 93.2 6 9.4
Fasting insulin, mL/U/L 14.8 6 10.6
HOMAIR 1.66 6 1.03
HOMAB 121.2 6 46.9

Values are expressed as the mean and standard deviation unless
otherwise indicated.
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significant BCAA metabolite (3-methyl-2-oxovalerate)
that captured the effect of additional BCAA metabo-
lites (rS . 0.56) did not significantly impact the observed
LCFA associations with SI (P = 4.18 3 10219 to 2.00 3

1027; Supplemental Table 4), suggesting that the BCAA
and LCFA associations were independent. Compara-
tively, association with HOMAIR was much less pro-
nounced (P . 0.069) and the only LCFA metabolite
significantly associated with HOMAIR was myristoleate
(b = 20.15, P = 3.22 3 1027), which was not associated
with SI (b = 20.04, P = 0.13) (Supplemental Fig. 1;
Supplemental Table 2). Results for fasting insulin were
largely similar to HOMAIR and are presented in Sup-
plemental Table 3G.

Examination of dynamic and basal measures of insulin
secretion also revealed differences in metabolite profiles
for AIRg and HOMAB (Fig. 1). Examination of AIRg, a
dynamicmeasure of insulin secretion, revealed significant
association with only 6 metabolites compared with 45
metabolites significantly associated with HOMAB

(Fig. 2B). By far, the most prominent was association of
AIRg with glucose (b =226.57, P = 5.683 10216,R2

adj =
4.0%; Supplemental Table 3C). Noticeably less striking
for HOMAB was association with glucose (b = 20.42,
P = 5.40 3 1025; Supplemental Fig. 1; Supplemental
Table 2D). Among HOMAB-associated pathways,
g-glutamyl amino acid (P = 1.883 1029 to 5.103 102 5,
R2

adj = 13%) and urea cycle (P = 9.643 10214 to 7.273
1026, R2

adj = 11%) metabolism individually explained
the largest proportion of variance (Table 2). Results for
fasting glucose were largely similar to HOMAB (Sup-
plemental Table 3H).

Analysis of data derived from the FSIGT facilitates
capture of the ability of glucose to enhance its own
disposal, termed glucose effectiveness (SG). Metabolomic
analysis of SG (Fig. 2C; Supplemental Table 3E) identified
significant association with 47 metabolites. Consistent
with this measurement, SG was not significantly associ-
ated with glucose (b = 20.0096, P = 3.42 3 1024). The
most prominent pathways were identified within lipid

metabolism and included polyunsaturated fatty acid
[(PUFA) P = 2.583 10213 to 6.703 1025, R2

adj = 10%]
and LCFA (P = 9.06 3 10215 to 3.93 3 1027, R2

adj =
9.8%) metabolism. Beyond SG, the FSIGT analysis
also captures the interrelationship of SI and secretion
through the DI, which captures the compensatory
response of b-cells to insulin resistance to maintain
glucose homeostasis. Perhaps surprising, given that DI
is the product of SI and AIRg, distinct metabolites
appear to be more strongly associated with this
composite phenotype; that is, 18 of 56 significant
metabolites were unique to DI (Fig. 2D; Supplemental
Fig. 1; Supplemental Table 3F). In addition to BCAA
(P = 6.99 3 10213 to 6.10 3 1025, R2

adj = 5.6%) and
LCFA (P = 6.233 10214 to 3.633 1026, R2

adj = 3.9%)
metabolism, there was a strong association with PUFA
metabolism (P = 1.55 3 10212 to 5.81 3 1026, R2

adj =
3.8%), which was more modestly associated with SI
(P = 2.36 3 10210 to 3.30 3 1025) and absent from
association with AIRg (P. 4.733 1023). Among the 56
DI-associated metabolites were glycolysis, gluconeo-
genesis, and pyruvate metabolism (P = 1.94 3 10221

to 2.00 3 1025, R2
adj = 8.3%), inclusive of glucose

(b = 245.18, P = 1.90 3 10221).
Although fasting measures of insulin and glucose are

used to calculate basal measures of insulin resistance
(HOMAIR) and secretion (HOMAB), association analysis
of metabolites with fasting insulin and fasting glucose
were also examined. Fasting insulin was significantly
associated with 79 metabolites (Supplemental Table 3G).
Overrepresented pathways included BCAA (P = 7.67 3

10212 to 4.10 3 1025, R2
adj = 11%), plasmalogen

(P = 1.67 3 10216 to 3.90 3 1025, R2
adj = 11%), and

glycolysis, gluconeogenesis, and pyruvate (P = 6.30 3
10212 to 1.743 1027, R2

adj = 13%) metabolism. Fasting
glucose was significantly associated with 26 metabolites
(Supplemental Table 3H). Not surprisingly, it was sig-
nificantly associated with glycolysis, gluconeogenesis,
and pyruvate metabolism (P = 3.88 3 10291 to 1.90 3
1025, R2

adj = 39%).

Figure 1. Overlap of significant metabolites between dynamic and basal measures of glucose homeostasis.
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To examine the cumulative impact of all significantly
associated metabolites with the phenotypes of interest,
the proportion of variance explained was calculated with
and without the inclusion of BMI or individually asso-
ciated metabolites (Table 3). Across the eight dynamic

and basal glucose homeostasis phenotypes examined,
essential covariates, that is, age, sex, and recruitment
center, explained a limited proportion of the variance
(R2

adj , 12%). These estimates were further increased
with the inclusion of BMI (R2

adj , 35%). However, the

Figure 2. (A) Opposed plot of metabolite associations with SI and HOMAIR. Log-transformed P values are shown for association with SI (top) and
HOMAIR (bottom). Metabolites are plotted by superpathway: amino acids (blue), carbohydrates (orange), cofactors and vitamins (green), energy
(yellow), lipids (pink), nucleotides (turquoise), and peptides (purple). The gray lines correspond to statistical significance (P , 6.82 3 1025,
corrected for 733 metabolites) in each direction. (B) Opposed plot of metabolite associations with AIRg and HOMAB. Log-transformed P values are
shown for association with AIRg (top) and HOMAB (bottom). Metabolites are plotted by superpathway: amino acids (blue), carbohydrates
(orange), cofactors and vitamins (green), energy (yellow), lipids (pink), nucleotides (turquoise), and peptides (purple). The gray lines correspond to
statistical significance (P , 6.82 3 1025, corrected for 733 metabolites) in each direction. (C) Manhattan plot of metabolite associations with SG.
Log-transformed P values are shown for association with SG. Metabolites are plotted by superpathway: amino acids (blue), carbohydrates
(orange), cofactors and vitamins (green), energy (yellow), lipids (pink), nucleotides (turquoise), and peptides (purple). The gray lines correspond to
statistical significance (P , 6.82 3 1025, corrected for 733 metabolites). (D) Manhattan plot of metabolite associations with DI. Log-transformed
P values are shown for association with DI. Metabolites are plotted by superpathway: amino acids (blue), carbohydrates (orange), cofactors and
vitamins (green), energy (yellow), lipids (pink), nucleotides (turquoise), and peptides (purple). The gray lines correspond to statistical significance
(P , 6.82 3 1025, corrected for 733 metabolites).
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Table 2. Significant Associations (R2
adj> 0.10) AmongMetabolitesWithMeasures of Insulin Resistance (SI and

HOMAIR) and Insulin Secretion (AIRg and HOMAB)

Superpathway Subpathway na nb Metabolitesc P Value Range R2
adj

d

SI (nmax = 922)

Lipid LCFA 10 14 Stearate (18:0), margarate (17:0), palmitate
(16:0), 10-nonadecenoate (19:1n9),
oleate/vaccenate (18:1), nonadecanoate
(19:0), pentadecanoate (15:0),
10-heptadecenoate (17:1n7), myristate
(14:0), eicosenoate (20:1)

4.49 3 10223 to
4.14 3 1027

0.11

Lipid Phospholipidmetabolism 18 82 1-Palmitoyl-2-linoleoyl-GPI (16:0/18:2),
1-stearoyl-2-oleoyl-GPE (18:0/18:1),
1-stearoyl-2-docosahexaenoyl-GPE
(18:0/22:6)e, 1-stearoyl-2-linoleoyl-GPE
(18:0/18:2)e, 1-palmitoyl-2-arachidonoyl-
GPI (16:0/20:4)e, 1-palmitoyl-2-linoleoyl-
GPE (16:0/18:2), 1-palmitoyl-2-oleoyl-GPE
(16:0/18:1), 1-stearoyl-2-linoleoyl-
GPI (18:0/18:2), 1-linoleoyl-2-
docosapentaenyol-GPC (18:2/22:5n3)e,
1-stearoyl-2-dihomo-linolenoyl-GPC (18:
0/20:3n3 or 6)e, 1-palmitoyl-2-
palmitoleoyl-GPE (16:0/16:1)e,
1-palmitoyl-2-arachidonoyl-GPE (16:0/20:4)e,
1-stearoyl-2-arachidonoyl-GPE
(18:0/20:4), 1-palmitoyl-2-dihomo-
linolenoyl-GPC (16:0/20:3n3 or 6)e,
1-palmitoyl-2-palmitoleoyl-GPC (16:0/16:1)e,
1-oleoyl-2-docosapentaenoyl-GPC (18:1/
22:5n3)e, 1,2-dilinoleoyl-GPC
(18:2/18:2), 1-stearoyl-2-adrenoyl-GPC
(18:0/22:4)e

3.51 3 10217 to
3.00 3 1025

0.14

Peptide g-Glutamyl amino acid 4 16 g-glutamylvaline, g-glutamylisoleucinee,
g-glutamylglycine,
g-glutamylglutamine

6.03 3 10212 to
5.69 3 1026

0.10

HOMAIR (nmax = 940)
Amino acid Alanine and aspartate

metabolism
3 6 Asparagine, alanine, aspartate 3.29 3 10212 to

9.16 3 1027
0.11

Amino acid Glycine, Serine and
Threonine Metabolism

4 9 N-acetylglycine, serine, glycine, betaine 2.00 3 10216 to
1.95 3 1026

0.11

Amino acid Leucine, isoleucine and
valine metabolism

7 24 Isoleucine, 3-methyl-2-oxovalerate,
valine, 3-hydroxyisobutyrate,
e-methyl-2-oxobutyrate, leucine,
4-methyl-2-oxopentanoate

1.57 3 10214 to
8.32 3 1026

0.10

Amino acid Urea cycle; arginine and
proline metabolism

5 18 2-Oxoarginine, proline, arininate,
dimethylarginine, citrulline

1.68 3 10218 to
1.00 3 1025

0.13

Carbohydrate Glycolysis,
gluconeogenesis, and
pyruvate metabolism

3 7 Pyruvate, glucose, lactate 1.06 3 10218 to
6.54 3 10216

0.11

Lipid Phospholipidmetabolism 11 82 1-Stearoyl-2-oleoyl-GPE (18:0/18:1),
1-palmitoyl-2-linoleoyl-GPI (16:0/18:2),
1-stearoyl-2-linoleoyl-GPE (18:0/18:2)e,
1-stearoyl-2-docosahexaenoyl-
GPE (18:0/22:6)e, 1-palmitoyl-2-
dihomo-linolenoyl-GPC (16:0/20:3n3
or 6)e, 1-stearoyl-2-dihomo-linolenoyl-
GPC (18:0/20:3n3 or 6)e, choline,
1-myristoyl-2-palmitoyl-GPC (14:0/16:0),
arachidonoylcholine, 1-oleoyl-2-
docosapentaenoyl-GPC (18:1/22:5n3)e,
1-palmitoyl-2-arachidonoyl-GPI
(16:0/20:4)e, 1-palmitoyl-2-
arachidonoyl-GPI (16:0/20:4)e

6.35 3 10212 to
5.50 3 1025

0.11

(Continued)
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proportion of variance explained by significantly asso-
ciated metabolites consistently exceeded that of BMI
when included in the models. For example, 6.4% of the
variance in SI was explained in amodel including age, sex,
and recruitment center. This estimate increased to 35%
and 63% with the inclusion of BMI and BMI with sig-
nificant metabolites (n = 99), respectively. Similar esti-
mates were observed for HOMAIR. For insulin secretion,
7.3% of the variance in AIRg was explained in a model
including age, sex, and recruitment center. This estimate
increased to 11%and 21%with the inclusion of BMI and
BMI with significant metabolites (n = 6), respectively. A
larger proportion of the variance was explained for
HOMAIR, with BMI explaining 19% and BMI with
significant metabolites (n = 45) explaining 45%.

Discussion

Using metabolomics, we have performed a survey of the
signatures of dynamic and basal measures of glucose
homeostasis. Qualitatively there were many more me-
tabolites associated with SI suggesting metabolic com-
plexity of this measure when compared with insulin
secretion (Fig. 1). Assessment of insulin response revealed
similar numbers of metabolites significantly associated
with SI and HOMAIR, although overlapping metabolites
were more significantly associated with SI. These ob-
servations suggest a complex physiology where the
findings from basal and dynamic measures of glucose
homeostasis share commonality but where a more
comprehensive phenotypic assessment, beyond basal
measures routinely assessed in large epidemiologic
studies, may provide more insight into the contributing

pathways. When placed in the context of genetic studies,
these observations suggest a complex physiology may
underlie the dearth of genetic associations for insulin
resistance.

A closer examination of the metabolites associated
with SI revealed signatures of branched-chain amino acid
(BCAA; R2

adj = 8.1% to 10%) and phospholipid (R2
adj =

11% to 14%) metabolism. The signature of dysregulated
BCAA metabolism is a well-documented finding from
targeted metabolomics studies in the setting of insulin
resistance (13) and T2D where elevated levels predict
disease development (11). The findings in the present
study point to the intermediate metabolites in BCAA
catabolism generated after the rate-limiting step catalyzed
by branched-chain aminotransferase, that is, 3-methyl-
2-oxovalerate from isoleucine, 3-methyl-2-oxobutyrate
from valine, and 4-methyl-2-oxopentanoate from
leucine. Consistent with our findings, 3-methyl-2-oxovalerate
has been implicated as a predictive biomarker for insulin
resistance as assessed via the hyperinsulinemic–euglycemic
clamp (22). Beyondmetabolites associatedwith overt disease,
mannose (23) and a-hydroxybutyrate (22) have been iden-
tified as early biomarkers of insulin resistance. In the IRAS-FS,
mannose was not associated with dynamic (SI;
b =20.10, P = 0.089) or basal (HOMAIR; b = 0.14, P =
0.032) measures of insulin response. In contrast,
a-hydroxybutyrate was significantly associated with SI
(b = 20.21, P = 1.27 3 1029) but not HOMAIR (b =
0.05, P = 0.21).

Novel to this study is the strong association of LCFAs
with SI in this nondiabetic cohort. In comparison with
BCAAs, LCFAs were individually more strongly associ-
ated and cumulatively accounted for a greater proportion

Table 2. Continued

Superpathway Subpathway na nb Metabolitesc P Value Range R2
adj

d

Peptide g-Glutamyl amino acid 7 16 g-Glutamylglutamine,
g-glutamylisoleucinee,
g-glutamylvaline, g-glutamyltyrosine,
g-glutamyl-2-aminobutyrate,
g-glutamylglycine,
g-glutamylglutamate

1.74 3 10212 to
6.80 3 1025

0.16

HOMAB (nmax = 940)
Amino acid Urea cycle; arginine and

proline metabolism
2 18 2-Oxoarginine, citrulline 9.64 3 10214 to

7.27 3 1026
0.11

Peptide g-Glutamyl amino acid 5 16 g-Glutamylglutamine, g-glutamyl-2-
aminobutyrate, g-glutamylisoleucine,
g-glutamylvaline, g-glutamylglycine

1.88 3 1029 to
5.10 3 1025

0.13

aNumber of significant metabolites (P , 6.82 3 1025).
bTotal number of metabolites in the specified subpathway.
cMetabolites in bold had a positive b value (direction of effect).
dProportion of variance explained after adjusting for the number of associated metabolites in each subpathway.
eNamed compounds identified from mass and fragmentation analysis but yet to be confirmed with standards.
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of variance. Additionally, analysis conditioned on asso-
ciation with BCAAs did not significantly impact the as-
sociations observed with LCFAs. Patients with T2D often
present with dyslipidemia and LCFAs are reported to be
elevated in the setting of impaired glucose tolerance (22,
24–26). In this study, SI was inversely correlated among
all LCFAs assessed (n = 14) with the most significant
saturated fatty acids including stearate (b = 20.70,
P = 4.49 3 10223), margarate (b = 20.36, P = 1.72 3

10217), and palmitate (b = 20.44, P = 4.42 3 10215).
Because SI is a measure of peripheral insulin resistance,
these associations could reflect metabolic inflexibility,
that is, lipid oxidation that is not proportional to lipid
availability, which can result in accumulation of lipid in
peripheral tissues, leading to insulin resistance (27). In
this nondiabetic cohort, increased levels of LCFAs

present in individuals with lower SI values do not appear
to contribute to lipotoxicity in the b-cells, as LCFAs were
not associated with measures of insulin secretion as is
seen in the setting of T2D (28). Notably, LCFAs asso-
ciated with SI were not significantly associated with the
basal measure of insulin resistance, HOMAIR. This ob-
servation suggests that basal measures of insulin re-
sistance that are used broadly in the literature owing to
their ease of assessment may not fully capture the
physiological pathways involved in disease risk; that is,
HOMAIR is a measure of hepatic insulin resistance as
compared with SI, which measures peripheral SI (29).

In comparison with SI, there were fewer metabolites
associated with insulin secretion. HOMAB, the basal mea-
sure of insulin secretion, was significantly associatedwith 45
metabolites.Overrepresentedpathways includedg-glutamyl
amino acid and urea cycle metabolism. g-Glutamyl amino
acids have previously been thought to impact insulin re-
sistance as a product of glutathione degradation (30).
However, in this study we observe an association with
insulin secretion with five significant and nominally cor-
related (rS = 0.24 to 0.79) metabolites (g-glutamylglut-
amine, g-glutamyl-2-aminobutyrate, g-glutamylisoleucine,
g-glutamylvaline, g-glutamylglucine). Similarly, two un-
correlated metabolites (rS = 0.09) in the urea cycle were
associated with HOMAB. The most significant metabolite,
2-oxoargnine (b = 0.13, P = 9.643 10214), was positively
associatedwithHOMABwhereas citrulline (b =20.32,P =
7.27 3 1026) was inversely associated. Whereas arginine
has been shown to promote insulin secretion (31), the
conversion of arginine to citrulline produces nitric oxide,
which negatively impacts insulin secretion (32). Also, al-
though currently there are no detailed studies of arginine
metabolism in theb-cell, the observation that 2-oxoargnine
was positively associated with insulin secretion could be
mechanistically related to the resultswith citrullinewhereby
the conversion of arginine to 2-oxoargnine diverts from a
nitric oxide–producing pathway. Among additional urea
cycle metabolites examined (n = 18), levels of asymmetric
dimethylarginine are reported tobe elevated inT2D(33)with
its underlying contribution through insulin resistance (34). In
this study, we report an inverse association with HOMAB in
which elevated levels of dimethylarginine were associated
with decreasedb-cell function (b =20.32,P=1.373 1024).
Parenthetically, this metabolite was also associated with
HOMAIR (b = 20.56, P . 3.17 3 1026), although the
inverse relationshipwould suggest thatmetabolite levelswere
decreased in thepresenceof insulin resistance; however, in the
present study we could not differentiate between sym-
metric and asymmetric dimethylarginine.

The metabolomic complexity of measures of insulin
resistance compared with measures of insulin secretion
may be reflected in genetic analyses performed to date in

Table 3. Proportion of Variance (R2
adj) Explained by

Demographics and/or Metabolites for Measures of
Glucose Homeostasis

R2
adj

SI (n = 922)
Age, sex, center 0.064
Age, sex, center, BMI 0.35
Age, sex, center, BMI, metabolites
(n = 99, P , 6.82 3 1025)

0.63

HOMAIR (n = 940)
Age, sex, center 0.0064
Age, sex, center, BMI 0.29
Age, sex, center, BMI, metabolites
(n = 103, P , 6.82 3 1025)

0.63

AIRg (n = 922)
Age, sex, center 0.073
Age, sex, center, BMI 0.11
Age, sex, center, BMI, metabolites
(n = 6, P , 6.82 3 1025)

0.21

HOMAB (n = 940)
Age, sex, center 0.024
Age, sex, center, BMI 0.19
Age, sex, center, BMI, metabolites
(n = 45, P , 6.82 3 1025)

0.45

SG (n = 922)
Age, sex, center 0.047
Age, sex, center, BMI 0.14
Age, sex, center, BMI, metabolites
(n = 47, P , 6.82 3 1025)

0.27

DI (n = 922)
Age, sex, center 0.12
Age, sex, center, BMI 0.21
Age, sex, center, BMI, metabolites
(n = 56, P , 6.82 3 1025)

0.36

Fasting insulin (n = 979)
Age, sex, center 0.0033
Age, sex, center, BMI 0.23
Age, sex, center, BMI, metabolites
(n = 79, P , 6.82 3 1025)

0.56

Fasting glucose (n = 981)
Age, sex, center 0.12
Age, sex, center, BMI 0.22
Age, sex, center, BMI, metabolites
(n = 26, P , 6.82 3 1025)

0.64
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which loci associated with the b-cell greatly outnumber
variants associated with SI (35). The underlying meta-
bolic complexity of SI suggests challenges to finding ge-
netic loci through simply searching for association with
T2D. Genetic analysis of the metabolite subgroups (e.g.,
BCAA, LCFA) may be fruitful in the future.

Novel to this study and reflective of the clinical as-
sessment of glucose metabolism is capturing the ability of
glucose to enhance its own disposal, that is, SG. Studies
have suggested that SG is an important determinant of
T2D onset owing to the increased dependence on glucose-
mediated glucose disposal when there is dysregulation of
SI and secretion (36). Metabolite signatures associated
with SG included PUFA and LCFA metabolism, signa-
tures initially observed with SI. Among PUFA metabo-
lites, the strongest associations included signals for
linoleate (b =20.0068, P = 4.043 10213) and linolenate
(b =20.0044, P = 5.313 10211), which are two essential
fatty acids. Importantly, although these signals were
inversely associated with SG, note that PUFA metabo-
lites farther down the pathway, for example, arachi-
donic acid and docosapentaenoate that contribute to
proinflammatory phenotypes and eicosapentaenoate and
docosahexaenoate that contribute to anti-inflammatory
phenotypes, were not significantly associated. The po-
tential for diversion of products of linoleate and
linolenate metabolism can be seen through the significant
association of docosatrienoate (22:3n6) (b = 20.00080,
P = 1.75 3 10210), docosadienoate (b = 20.0049,
P = 1.42 3 1029), and docosatrienoate (22:3n3)
(b =20.0021,P = 3.623 1029). Docosatrienoates (22:3n3
and 22:3n6) are rare PUFAs resulting from the pro-
duction of pinolenic acid, which has been shown to in-
crease glucagon-like peptide-1 and suppress appetite
(37). Although pinolenic acid was directly assessed
herein, the association of metabolites downstream could
suggest a mechanism of action; for example, low levels of
downstream metabolites suggest utilization of pinolenic
acid, resulting in improvements in glucose homeostasis. It
is also worth noting that docosadienoate has been shown
to suppress ghrelin secretion, a gastric peptide hor-
mone controlling appetite and energy homeostasis (38).
Therefore, increased levels of docosadienoate, associated
with decreased SG, would suppress ghrelin secretion and
promote appetite. It is possible that reliance on the
pathways captured by SG are somewhat reduced in this
nondiabetic cohort; that is, glucose tolerance is a function
of insulin secretion, insulin action, and SG and is main-
tained in normoglycemic individuals through a com-
pensatory increase in insulin secretion. Therefore, the
variability of SG among participants was quite small
(SG = 0.0216 0.009), reducing the power to detect effects
for this trait.

In addition to SG, the FSIGT provides an ability to
examine the hyperbolic relationship that exists between SI
and AIRg in the form of DI. Generally considered a b-cell
parameter, DI represents the ability of b-cells to com-
pensate for insulin resistance. Consistent with compo-
nent phenotypes, attenuated association with BCAA and
LCFAmetabolism was observed likely owing to a lack of
association with AIRg. Among more significantly asso-
ciated metabolites were those capturing PUFA meta-
bolism that were modestly less significant and far less
prominent with SI. All PUFAs were negatively corre-
lated with DI and represented both omega-3 and omega-
6 fatty acids, including three essential fatty acids
(a-linolenate, b = 27.38, P = 7.87 3 10210; linoleate,
b = 210.04, P = 3.02 x 1029; and docosahexaenoate,
b =25.18, P = 5.81 x 1026). From the literature, dietary
omega-3 fatty acids are thought to be anti-inflammatory,
although the contribution to diabetes remains unclear (39).
For omega-6 fatty acids, the contribution to overt T2D
remains contentious. In a recent report, higher proportions
of linoleic acid, but not arachidonic acid, were associated
with a lower risk of developing T2D (40). Although these
results may seem inconsistent with the results reported in
the present study, this publication examined these bio-
markers as a percentage of total fatty acids. Moreover, the
current observations are from a normoglycemic cohort
where, compensatory with increasing insulin resistance,
insulin secretion increases prior to development of overt
disease (41). It is also noteworthy that docosadienoate
(22:2n6) was inversely associatedwithDI and represents a
shunting from the omega-6 pathway.

It is striking that metabolites contribute a large pro-
portion of variance for multiple traits, especially SI.
Furthermore, it is notable that BMI, often referred to as
the driver of insulin resistance, explains a more nominal
proportion of the variance for SI (Table 3), consistent
with our prior research in the IRAS-FS. We observed that
among glucose homeostasis measures, a model inclusive
of demographic characteristics (age, sex, recruitment
center), BMI, and significant metabolites, on average,
explained twice the proportion of variance as did amodel
including demographic characteristics and BMI alone;
taken together, these accounted for 63% of the variance
in SI. When considered in the context of dynamic mea-
sures, these results suggest that metabolomic biomarkers
have the potential to be surrogates, that is, they can be
used to impute measures from expensive and difficult-to-
obtain phenotypes in large epidemiological cohorts. This
would benefit both epidemiological and genetic mapping
studies. Future clinical models may benefit from the as-
sessment of metabolites to improve risk prediction.

Whereas the current study recapitulates previously
observed signatures associatedwith insulin resistance and
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T2D, it has also identified novel metabolites for glucose
homeostasis. However, it is not without its limitations.
The primary limitation of most studies is the ability to
detect and replicate an effect, that is, power. In the present
study using a stringent Bonferroni correction, there
was .80% power to detect contributions of 2.6% to
2.9% of the variance for the phenotypes examined us-
ing univariate models. Moreover, based on the ethnicity
of the participants, their family structure, and the so-
phistication of metabolic phenotyping, replication of
these findings in a comparable sample is currently not
possible. The dataset investigated in the present study
was untargeted acquisition of data. This approach,
which relies on liquid chromatography–mass spectrom-
etry, could be complemented by other mass spectrometry
approaches (e.g., gas chromatography–mass spectrom-
etry, and extended across other platforms (e.g., nuclear
magnetic resonance spectroscopy). Phenotypically, the
present research examined the association of metabolites
with both dynamic and basal cross-sectional measures of
glucose homeostasis. Notably, there are additional dy-
namic measures of glucose homeostasis that could pro-
vide further insight such as the oral glucose tolerance test,
which could provide insight into gut hormone signaling,
for example, incretin pathways. Additionally, the cross-
sectional measurement of both metabolites and measures
of glucose homeostasis precludes direct insight into a
causal or consequential relationship between these var-
iables, although the results are hypothesis generating for
future studies.

In summary, metabolomic analysis reveals distinct
signatures that differentiate dynamic and basal measures
of glucose homeostasis, providing unique insight into the
pathophysiology of metabolic disease. Significant obser-
vations appeared to be more prominent among measures
of insulin resistance, implicating BCAA, phospholipid, and
LCFA metabolism. In contrast, signatures of insulin se-
cretion were fewer in number but highlighted a contri-
bution from the urea cycle in basal measures. Capturing
the hyperbolic relationship between insulin resistance and
secretion, DI was associated with novel signatures from
PUFA metabolism. These results provide insight into the
biological mechanisms of insulin resistance and b-cell
dysfunction, identifying early pathophysiological changes
to facilitate the identification of relevant biomarkers to
improve diagnosis and treatment of T2D.
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