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Abstract

The human can be thought of as a human-microbe hybrid, and the health of this superorganism will be affected by intrinsic

properties such as human genetics, diurnal cycles, and age and by extrinsic factors such as lifestyle choices (food and

drink, drug intake) and the acquisition of a stable ‘‘healthy’’ gut microflora (the so-called microbiome). Alterations in this

superorganism will be manifest in the metabolite complement within its serum and urine samples. The unraveling of this

metabolic compartmentalization in this complex ecosystem will certainly be a challenge for systems biology and

necessary for defining human health at the molecular level. Within the systems biology framework, functional analyses at

the level of gene expression (transcriptomics), protein translation (proteomics), and, more recently, the metabolite

network (metabolomics) have become increasingly popular. Metabolomics experiments aim to quantify all metabolites in a

cellular system (cell or tissue) under defined states and at different time points so that the dynamics of any biotic, abiotic,

or genetic perturbation can be accurately assessed. This article provides an overview of metabolomics and discusses how

data are generated and analyzed within a systems biology framework. The role of metabolomics in nutrigenomics is also

discussed, as are the concepts of the human being a superorganism and the complexities required to be overcome to

understand human health and disease. J. Nutr. 137: 259S–266S, 2007.

Metabolomics and systems biology

When the human genome sequencing projects drew their
conclusions (1,2), what was surprising was that just as in the
microbiologist’s pet organism Escherichia coli (3), a vast number
of genes had never been seen before in classical (molecular)
genetics. For E. coli K-12, a jaw dropping 38% of the total 4288
open reading frames (ORFs)4 had never been observed or stud-
ied before; of the remaining 60%, many of these were given
gene function by association with DNA sequence matches to
other organisms’ genes held in the genomic databases and not by
direct functional analyses. Despite the continuing deluge of
genome sequences (http://www.genomesonline.org/), including
those for microorganisms that are yet to be cultured in the labo-

ratory (4), this situation has not improved significantly. For a
whole organism, typically 20–40% of the genes can not be as-
cribed a function by sequence analogy, largely because although
the databases are peppered with As, Cs, Gs, and Ts, they do not
contain accurate information about what these ORFs actually do.

Clearly something needs to be done to assign biochemical
function to these so-called orphan genes and to validate them as
molecular targets for therapeutic intervention. In addition, many
diseases have no clear diagnoses, and even fewer have any
prognostic tests. Therefore, the search for biomarkers from body
fluids that can serve as indicators of disease progression or
response to therapeutic intervention has also increased.

Perhaps the way we were taught science is to blame for our
forgetting the biological phenotype and the now urgent need to
bridge the genotype-to-phenotype gap. Our love affair with
molecular biology has certainly blinkered us, until recently, into
thinking only in terms of its central dogma. In this concept, it is
generally considered that there is a linear flow of information
within a cell that goes from gene to transcript to protein.
Enzymes would then affect metabolic pathways and thereby lead
to changes in the phenotype of the organism (Fig. 1 A). However,
this traditional thinking is no longer accepted. The cellular
processes are in reality intimately networked with many
feedback loops and thus should be represented as dynamic
protein complexes interacting with neighborhoods of metabo-
lites (5). The construction, visualization, and understanding of
these networks (6) certainly present big challenges for systems
biology, as does a full understanding of the fluxes through
metabolic neighborhoods and their control (7).

Molecular biology has been bogged down by hypothetical-
reductionist thinking where small parts of the jigsaw have been
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studied in isolation; although this approach has yielded useful
information, albeit in isolation, the whole picture is often
missed. Even functional analyses (Fig. 1 B) have emphasized
analyses at the level of gene expression (transcriptomics), protein
translation (proteomics, including posttranslational modifica-
tions), and more recently the metabolite network (metabolomics).
The repopularization of systems biology constitutes a paradigm
shift for molecular biology and will initially be dominated by the
integrative analyses of these �omics to generate predictive and
hypothesis-generating mathematical models to better under-
stand the cell at the systems level (8).

Metabolomics has a special place within systems biology,
functional genomics, and biomarker discovery (9,10). The the-
ory of metabolic control analysis (MCA) (7,11), as well as
practical evidence (12), shows that although changes in the
levels of individual enzymes may be expected to have little effect
on metabolic fluxes, they can and do have significant effects on
the concentrations of a variety of individual metabolites. Fur-
thermore, Figure 1 B highlights the fact that metabolites are
further down the line from gene to function and so more closely
reflect the activities of the cell at the phenotypic (functional)
level. Indeed, it has been shown (13) that changes in the
metabolome are expected to be amplified relative to changes in
the transcriptome and the proteome, as changes in the metab-
olite pool are the downstream result of gene expression. A
consideration of the number of transcripts, proteins, and metab-
olites in humans also suggests that metabolomics is ‘‘the way
forward.’’ The human genome contains 31,897 genes (http://
eugenes.org/). The expression and alternative splicing of the
mRNAs indicate that humans may be able to produce 106 dif-
ferent proteins (14)! By contrast, a recent prediction by Palsson
suggests that there are only 2645 metabolites (15). Certainly
2645 is a more manageable number to measure accurately.
Finally, because many diseases are a result of metabolic dis-
orders, it would be sensible to measure metabolism directly.

Metabolome analyses: considerations and approaches

As with any emerging science, there are a plethora of approaches
beingdevelopedandimprovedontomeasurequantitative changes
in a cell’s metabolism caused by either abiotic, biotic, or genetic
perturbation, typically as a function of time. Although this area is
constantly evolving, a number of recent reviews have extensively
summarized the current technological approaches that are being

developed within the metabolomics field (10,16–21), and so only
a brief synopsis of the pertinent points is given here.

Metabolites by their nature are generally labile species,
chemically very diverse, and often present in a very wide
dynamic range. In addition, if one is analyzing a living system,
the enzymes are still active, and so metabolite turnover will
continue [for example, in yeast this has been estimated to occur
in seconds (22)]. Therefore, it is important to quench metabo-
lism or else the system will equilibrate, and the metabolite
information will be compromised. Ideally metabolism should be
stopped immediately. For unicellular organisms, this can be
achieved by spraying the sample into very cold (,240�C)
buffered methanol (23). By contrast, for tissues from animals or
plants, it is usual to snap freeze these samples in liquid nitrogen
(N2), after which mechanical disruption is employed to release
metabolites (24).

The above quenching methods are, however, realistic only in
a laboratory setting. For the analysis of human biofluids (e.g.,
blood, urine, tears, breath, and saliva), it may not always be
possible to spray these immediately into cold methanol. If a
patient is referred to a clinical biochemical laboratory at a local
hospital, then immediate cessation of metabolic turnover from
a freshly drawn blood sample is possible. By contrast, if the
patient has been to see a doctor or nurse in a general
practitioner’s clinic, then it may be hours before the serum can
be separated from the blood sample and frozen. The latter
scenario is of course closer to reality for mass screening, and as
part of the HUSERMET consortium (http://www.husermet.org/),
this stability is being assessed and will form part of a wider
program to investigate and then define the human serum
metabolome in health and disease.

After metabolism has been quenched, most metabolomics
analyses that use chromatography require that the metabolites
be extracted. A variety of methods are being used (17,23,25),
and the majority are based on acid, alkali, or ethanolic
extraction. In addition, Folch-based extractions (26) using
methanol:chloroform:H2O are also employed to separate polar
metabolites from lipophilic ones before analysis.

Although there are no universally accepted metabolomics
strategies, it is possible to summarize the most popular ones
(16,27,28); these are detailed in Table 1 and include metabolite
target analysis, metabolite profiling, metabolomics, metabolite
flux analysis, and metabolic fingerprinting (and footprinting).
Table 1 includes a brief description of what these 5 strategies aim
to achieve and which analytical approaches are commonly used.
Clearly, to perform detailed metabolomics analyses, one must be
suitably tooled up. Although this is certainly costly in terms of
equipment and manpower, the actually running costs per sample
are generally lower and of higher throughput than a typical
microarray or proteomics experiment. This is especially true for
the metabolic fingerprinting methods, which take in the order of
a few seconds to minutes to generate information-rich metabolic
fingerprints from each sample.

Informatics: needs and requirements

All of the biochemical analyses that are used for metabolomics
generate data torrents; when multiple time-course measure-
ments are made to measure any dynamics, these become data
floods, and when one thinks spatially (e.g., location within the
liver), then tsunamis of data are easily produced! And it is
perhaps no coincidence that one refers to the information over-
load in terms of natural disasters! As the French philosopher
Jules Henri Poincaré (1854–1912) said in La Science et l�
Hypothèse: ‘‘Science is built up with facts, as a house is with

Figure 1 (A) Traditional central dogma of molecular biology where the flow of

information goes from gene to transcript to protein; also shown are sites where

enzymes act on metabolism. (B) General schematic of the �omic organization

where the flow of information is from genes to transcripts to proteins to

metabolites to function (or phenotype).
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stones. But a collection of facts is no more a science than a heap
of stones is a house.’’ Therefore, in addition to strategies for data
storage, curation, and retrieval of metabolomics data, robust
statistical analyses are needed to turn these data into informa-
tion and hence understand changes in cellular metabolism.

Each metabolomics experiment contains 2 general data sets.
The first are the metabolite data themselves and the second a
summary of the experimental setup. The latter metadata (data
about the data) are just as important as the metabolite data and
need to be captured and stored so that database mining is easily
achieved (e.g., one might want to retrieve all the GC-MS serum
profiles from diabetic females who are nonsmokers, nonpreg-
nant, aged 21–30, with a BMI of 20–25). With reference to data
storage, curation, and retrieval, the reader is referred to Table 2,
which summarizes the main sorts of database (29) and the

current international efforts in progress to address the structure
and contents of these metabolite databases.

After the data have been collected, the multivariate analysis
(MVA) is tailored to the question that is being asked (vide infra).
Metabolomics data are multivariate in that they consist of the
results of observations of many different metabolites (variables;
so-called x-data) for a number of individuals (objects). In MVA,
each variable may be regarded as constituting a different dimen-
sion, such that if there are n variables (metabolites), each object
may be said to reside at a unique position in an abstract entity
referred to as n-dimensional hyperspace (30). This hyperspace is
necessarily difficult to visualize, and the underlying theme of
MVA is thus simplification or dimensionality reduction. This
dimensionality reduction occurs in 1 of 2 ways, using either
unsupervised or supervised learning algorithms.

TABLE 1 Metabolomics strategies and common analytical platforms

Metabolite target analysis
An approach that is restricted to metabolites of, for example, a particular enzyme system that would be directly affected by abiotic, biotic, or genetic perturbation.

Metabolite extraction approach is selective to those metabolites affected by the specific enzymes under study.

HPLC High-performance liquid chromatography

GC-MS Gas chromatography-mass spectrometry (76)

LC-MS Liquid chromatrography-MS

Metabolite profiling

Focuses on a specific group of metabolites (e.g., lipids), within clinical and pharmaceutical analysis. Within the pharmaceutical sector this is often called metabolic profiling,

which is used to trace the fate of a drug or metabolite.

Metabolite extraction approach is selective to particular class of metabolites.

HPLC-MS HPLC coupled to electrospray ionization MS (77,78)

HILIC Hydrophobic interaction liquid chromatography (79)

CE-MS Capillary electrophoresis-MS (80,81)

LC-NMR LC coupled to nuclear magnetic resonance (82)

LC-EC Liquid chromatography using an electrochemical array (83)

Metabolomics

Comprehensive analysis of the entire metabolome (all measurable metabolites) under a given set of conditions; this is often confused with metabonomics, which seeks to

measure the fingerprint of biochemical perturbations caused by disease, drugs, and toxins.

Many metabolite extraction approaches are used to be as comprehensive as possible.

In addition to those used for metabolite profiling:

GC(xGC)-MS 2-dimensional GC coupled to MS (84)

LCn-MS 2D or parallel LC coupled to MS

UPLC Ultraperformance LC-MS (78)

FT-ICR-MS Fourier transform ion cyclotron resonance MS (85)

Metabolite flux analysis

Commonly referred to as mass isotopomer analysis and by others as fluxomics.

Labeled (13C or 15N) metabolites are fed to tissue cultures (mammalian, plant, yeast, or bacterial), and the destination of these metabolites is assessed. Temporal studies

may help reveal novel metabolic pathways and networks.

NMR For highly abundant metabolites isotope patterns can be investigated by NMR spectroscopy (86).

MS Isotope distributions are investigated by chromatography linked to MS (87,88). This MS-based approach has often been

referred to as SIDMAP [stable isotope-based dynamic metabolic profiling (89)]

Metabolic fingerprinting/footprinting

Classification of samples based on provenance of either their biological relevance or origin using a fingerprinting technology that is rapid but does not necessarily give

specific metabolite information. This approach is generally aimed at measuring the cell or tissue samples directly, where information on the intracellular metabolome

is generated.

Typically samples are analyzed directly or with very little extraction and without lengthy chromatography.

The footprinting (90) techniques are variants on this approach in which extracellular metabolites are measured. In this case GC-MS or LC-MS may be used to generate

comprehensive metabolic footprint profiles.

NMR Nuclear magnetic resonance spectroscopy (12,91) which can incorporate magic angle spinning (MAS)

DIMS Direct infusion electrospray ionization-MS (92,93)

LDI-MS Laser desorption ionization-MS (94)

MSLDI-MS Matrix suppressed LDI-MS (95)

FT-IR Fourier transform infrared spectroscopy (96,97)

Raman Inelastic light scattering spectroscopy (97)
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Unsupervised algorithms are used when one wants to answer
a question such as ‘‘Are the metabolite profiles from the same
patient taken throughout the day different?’’ In this case one
wants an algorithm that will cluster the metabolite data into
groups (31). For MVA this optimization procedure computes
dimensionality reduction (30,32), where a large body of metabo-
lite data (x-data) are summarized by means of a few parameters
with minimal loss of information. The most used approaches are
principal components (PCA) and hierarchical cluster analyses
(HCA). After clustering (or what is also called explanatory
analysis), the ordination plots or dendrograms then have to be
interpreted. Alternative approaches include nested algorithms
(e.g., PCA followed by HCA), soft independent modeling of
class analogy (SIMCA) and k-nearest neighbors (kNN).

By contrast, for supervised learning algorithms, one generally
wants to place a new metabolite pattern into a class that one has
already encountered. For example ‘‘Does this serum sample
come from someone who has prostate cancer or not?’’ For these
cases there must be some gold standard data of metabolic
profiles taken from patients with prostate cancer and healthy
matched controls. With supervised learning, then, one knows
the desired responses (y-data, or traits or classes; in this case

prostate cancer or not) associated with each of the metabolite
data inputs (x-data). The goal of supervised analyses is to find a
mathematical transformation (model) that will correctly associ-
ate all or some of the inputs with the target traits (16,33,34).
This is usually achieved by minimizing the error between the
known target and the model’s response (output), with artificial
neural networks (ANNs), discriminant algorithms (DAs), and
partial least squares (PLS) currently being the most popular
(33,35,36).

The example trait to be predicted above is categorical (e.g.,
disease vs. healthy), but one may of course want a quantitative
prediction to be made. For example, the Gleason grade for
prostate cancer is important, as this would dictate therapeutic
action. ANNs and PLS are ideally suited for quantification
(33,37) and so will also play a role for predictions of the severity
of disease.

Finally with respect to supervised learning, there also exist
special types of algorithms that affect explanatory analyses; that
is to say, the mathematical transformation from input to output
data is transparent. These inductive reasoning methods include
decision tree approaches in which predictive segregation
(branching) of the data produces decision boundaries allowing

TABLE 2 Metabolomics database types and structures

Database types
Laboratory specific databases Store raw (primary) data and metadata.

Specific and narrow in topic.

Contain much detailed information.

Able to export data in standard formats to allow for interoperability with other databases.

Species-based databases Store relatively simple metabolite profiles of collections of all experiments published for 1 species.

Provide a data source for other types of experiments (phenotypic ones, sequencing, transcriptomics, and proteomics).

Act as primary point of entry for species-related information.

Generic metabolite profiles Do not store raw data but reference(s) to it.

Because these are generic they must allow comparisons between different databases and between different metabolomics platforms.

These are complex databases in that they contain all published metabolic profiles from many species in many different physiological states.

Likely to be few of these, preferably all mirroring the same data.

Known metabolites for each

biological species

Species specific.

List all metabolites observed in that organism, that encompass different physiological states.

Equivalent to gene databases in that they contain lists of all potential metabolites that could be seen in an organism.

E.g., Human metabolome project: http://www.metabolomics.ca/

All known metabolites Not species specific.

Contain a list of all metabolites ever likely to see, with a means for their identification (98).

Data deposition is likely to be at the single organism level and organized taxonomically.

Reference biochemical databases Represent established biochemical facts (i.e., reference information from the literature).

Many exist already (KEGG is the most popular):

KEGG: Kyoto encyclopedia of genes and genomes: http://www.genome.jp/kegg/

ExPASy: Biochemical pathways: http://www.expasy.ch/cgi-bin/search-biochem-index

PUMA2: Evolutionary analysis of metabolism: http://compbio.mcs.anl.gov/puma2/

EcoCyc: Encyclopedia of E. coli K12 genes and metabolism: http://ecocyc.org/

BRENDA: The comprehensive enzyme information system: http://www.brenda.uni-koeln.de/

Reactome: Curated knowledgebase of biological pathways: http://www.reactome.org/

Metabolome databases and international standards

Armet Architecture for metabolomics: http://www.armet.org/

Data schema for metabolomics including the basis for storage and transmission of data via UML (99).

SMRS Standard metabolic reporting structure: http://www.smrsgroup.org/

Discussion of the details of what experimental metadata need to be captured (100).

MeMo Metabolomic modeling: http://dbkgroup.org/memo/

Hybrid SQL/XML approach to metabolomic data management for functional genomics (101)

MSI Metabolomics standards initiative: http://msi-workgroups.sourceforge.net/

International workgroups aimed at defining the minimal information required throughout a metabolomics study (102).

Types of database are adapted from Mendes (29).
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the discovery of which metabolites are important. CART (clas-
sification and regression trees) (38), FuRES (fuzzy rule-building
expert system) (39), and C4.5/C5 (40) are the most popular
decision tree algorithms. In addition, there are a range of evo-
lutionary computation (EC) algorithms (41) that also affect in-
ductive reasoning, and include genetic algorithms (GAs) (42,43),
genetic programming (GP) (44–47), and genomic computing
(GC) (48). These are based on the concepts of Darwinian selec-
tion and are programmed to evolve the desired mapping between
input and output variables; again these elucidate which metab-
olites are important.

All of the methods used must be validated properly, and this
is an important step within good modeling practice (GMP) (49).
Brown et al. (50) have recently described a metabolomics data
analysis pipeline. In this process, one goes from the design
of good experiments through instrumental optimization, data
storage, and manipulation, the chemometric data-processing
methods in common use, and the necessary means of validation
and cross-validation for giving conclusions that are credible
(50). This pipeline is likely to help in the validation of the model
in terms of its biological relevance (especially when inductive
algorithms are used), which can be tested by a complementary
approach using transcriptomics and proteomics.

Superorganisms and their biological complexity

Thanks to the genome sequence projects, the number of genes in
the human has been calculated to be a modest 31,897 (http://
eugenes.org/), a relatively small number when one considers
that yeast has 7,547, thale cress (Arabidopsis thaliana) contains
29,388 ORFs, and a measly little worm (Caenorhabditis
elegans) has 23,399. Indeed, Mus musculus (the mouse) has
;6,000 genes more than humans, and one may wonder if we
really are that complex after all!

Gill et al. have used small subunit ribosomal DNA sequences
to estimate that the human intestinal microflora are composed of
between 1013 and 1014 microorganisms (10 times the number of
our own cells, comprising .1000 bacterial species). The
metagenome of this so-called microbiome has at least 100 times
as many genes as our own genome (51). The microbiome can be
thought of as an additional organ, which is estimated to weigh
1 kg in an adult human and is mutalistic to humans (and the
commensal microflora that inhabit the host) (52). In mice and
rats, it has been shown that Lactobacillus species have anti-
diabetic effects on noninsulin-dependent diabetes mellitus
(53,54). Ordovas and Mooser have suggested that the micro-
biome may play an important role in maintaining human health
(55), and it is likely therefore that the intestinal microflora (as
well as those bacteria found on the skin, in airways, and in the
urogenital tract) play a vital role in our well-being.

This interaction of the microbiome with humans suggests
that the human be considered as a superorganism (56), where we
are in fact a human-microbe hybrid (57). Eckburg et al. have
shown that the diversity in the microbiome is huge and that there
is significant intersubject variability (58). The womb is sterile,
and so babies are born with gnotobiotic gastrointestinal tracts,
and the new soon-to-be superorganism needs to acquire its
commensal microflora (59). These bacteria are mainly ma-
ternally acquired, and this process is largely achieved in the first
year of life. We may be born 100% human but will die 90%
bacterial—a truly complex organism!

It was stated earlier that, from human genome sequence
analyses, there are predicted to be 2645 metabolites in the
human metabolic network (15). This number will inevitably
need revising when one considers the likelihood that one will

detect prokaryotic-derived metabolites in humans. Indeed,
Nicholson et al. have detected microbial metabolites from the
intestinal microflora in human serum and urine using nuclear
magnetic resonance (NMR) spectroscopy (60). There are likely
to be more examples forthcoming from these and other
researchers, and this added layer of complexity needs careful
consideration. Figure 2 shows a metabolic network from a
superorganism, where secreted metabolites from humans may be
metabolically changed and reabsorbed across the intestinal cell
wall. Thus, not only will environmental effects (vide infra) have
impact on the hundreds of functionally specialized cell types
found in humans (61), but understanding both the interactions
among many different organisms in a single complex system and
their perturbation to environmental changes is very important,
especially when this is highly person specific (58).

Nutrigenomics and metabolomics

One environmental factor that is very important is what happens
to the health of an individual when he or she eats. The link
between nutrition and health is obvious, and the role of bio-
active food components in the protection against disease is also
well documented (e.g., 62–64).

The area of nutrigenomics has recently emerged where the
aim is to generate a picture of how gene expression changes
when a human is exposed to various nutrients (65–68). This
approach may allow the discovery of bioprotective foods.
Metabolomics is expected to play a pivotal role here (http://
www.nugo.org/metabolomics) because nutrition by definition is
aimed at maintaining cellular and organism homeostasis. In
addition, it is known that some metabolic diseases can be
prevented by nutrition (69), and food and drink contain many
metabolites; thus, measuring metabolites directly would be
sensible. Within this context nutrigenomics can be expanded
and should include defining tissue, cellular, or biofluid-specific
nutritional metabolomes (70–73).

The homeostasis of human metabolism is affected by a
combination of intrinsic and extrinsic factors (74). The intrinsic

Figure 2 A complex metabolic network from a superorganism showing

metabolites derived from the enzymatic action of proteins encoded by genes in

the human genome (black circles). One of these metabolites has been secreted

into the gut, where it has been used as a substrate by a microorganism resident

in the gut (enteric bacterium 2). This bacterium has metabolically transformed

this metabolite (white circles) using its own microbially derived enzymes. Two

of these products are secreted; 1 crosses the intestinal barrier and is used by

the human, while the other is absorbed by a second enteric microbe (whose

metabolites are represented by gray circles), leading to so called cross-

feeding. Note in the schematic shown that areas of metabolism in humans that

are not connected could become linked by microbial transformation.
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factors include body composition, tissue turnover, resting
metabolic rate, age, human genotype, health status, reproductive
status, and diurnal cycle. The extrinsic factors include diet (in
terms of nutrients and nonnutrients), drugs (prescribed and
lifestyle/leisure activities), physical activity, microbiome, and
stress (Fig. 3). Metabolomics would aid in the interpretation of
disease processes because a baseline healthy metabolome under
different nutritional conditions could be defined leading to
personalized metabolic assessment (75). Controlled perturba-
tion from this baseline would lead to an understanding of how to
keep human metabolism in homeostasis by tailoring nutritional
intake (69).

Concluding remarks

Metabolomics is the functional analysis method aimed at
acquiring robust and reproducible quantitative information on
intracellular and extracellular metabolites. It is gaining increas-
ing interest across a wide variety of disciplines including func-
tional genomics, integrative and systems biology, nutrigenomics,
pharmacogenomics, and biomarker discovery for disease prog-
noses, diagnoses, and therapy monitoring.

Man can be thought of as a superorganism, and the health of
this human-microbe hybrid will be affected by intrinsic prop-
erties such as human genetics, diurnal cycles, and age and by
extrinsic factors such as lifestyle choices (food, drink, and drug
intake) and the acquisition of a stable ‘‘healthy’’ gut microbiome.
Alterations in this superorganism will be manifested in the
metabolite complement as revealed by its serum and urine
samples. The unraveling of this metabolic compartmentalization
in this complex ecosystem will certainly be a challenge for
systems biology approaches and necessary for defining human
health at the molecular level. Understanding how to keep human
metabolism in healthy homeostasis will lead to lifestyle choices
regarding nutritional intake (you are what you eat!) and will
allow the tailoring of immediate and future personalized
healthcare.
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