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Abstract

Recent studies suggest that biofluid-based metabonomics may identify metabolite markers 

promising for colorectal cancer (CRC) diagnosis. We report here a follow-up replication study, 

after a previous CRC metabonomics study, aiming to identify a distinct serum metabolic signature 

of CRC with diagnostic potential. Serum metabolites from newly diagnosed CRC patients (N = 

101) and healthy subjects (N = 102) were profiled using gas chromatography time-of-flight mass 
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spectrometry (GC–TOFMS) and ultraperformance liquid chromatography quadrupole time-of-

flight mass spectrometry (UPLC–QTOFMS). Differential metabolites were identified with 

statistical tests of orthogonal partial least-squares-discriminant analysis (VIP > 1) and the Mann–

Whitney U test (p < 0.05). With a total of 249 annotated serum metabolites, we were able to 

differentiate CRC patients from the healthy controls using an orthogonal partial least-squares-

discriminant analysis (OPLS-DA) in a learning sample set of 62 CRC patients and 62 matched 

healthy controls. This established model was able to correctly assign the rest of the samples to the 

CRC or control groups in a validation set of 39 CRC patients and 40 healthy controls. Consistent 

with our findings from the previous study, we observed a distinct metabolic signature in CRC 

patients including tricarboxylic acid (TCA) cycle, urea cycle, glutamine, fatty acids, and gut flora 

metabolism. Our results demonstrated that a panel of serum metabolite markers is of great 

potential as a noninvasive diagnostic method for the detection of CRC.
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INTRODUCTION

Colorectal cancer (CRC) is the third most common type of cancer in the world and is a 

major cause of worldwide cancer morbidity and mortality.1 Due to the lack of early and 

accurate diagnosis, fewer than 40% of CRC patients were diagnosed at the localized stage 

with relatively high 5-year survival rate.2 To date, colonoscopy is the gold standard for 

accurate diagnosis of CRC, but its invasive and unpleasant nature often brings unwanted 

pain and discomfort to the patient. Although certain tumor biomarkers such as 

carcinoembryonic antigen (CEA) and fecal occult blood testing (FOBT) are commonly used 

in clinic, the poor sensitivity and specificity limit their application.3–5 Therefore, 

development of effective molecular biomarkers for early diagnosis has become increasingly 

important in the management of CRC patients.
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Cancer, as a metabolic disease, is characterized by its metabolic transformations in cells 

essential to sustain their higher proliferative rates and resist cell death signals with altered 

flux along key metabolic pathways such as glycolysis and tricarboxylic acid cycle (TCA 

cycle).6 Metabonomics (or metabolomics) enables the quantitative measurement of the 

dynamic multiparametric metabolic response of living systems to pathophysiological stimuli 

or genetic modification.7 This technology has been extensively used to identify metabolite-

based biomarkers in various cancers.8–12 Differentially expressed serum or plasma 

metabolites have been reported, involving intermediates in glycolysis, TCA cycle, urea 

cycle, arginine and proline metabolism, fatty acid metabolism, and gut flora metabolism 

associated with CRC morbidity.13,14 However, cancer metabonomics studies15–20 often 

generate different metabolite markers due to the different clinical protocols used and the 

wide dynamic range of metabolites measured by different platforms. As a result, very few 

metabolic markers in a given cancer type have been consistently discovered, confirmed, and 

validated by use of this approach. Therefore, it is of central importance to replicate the 

cancer metabonomics studies and verify the biomarker findings.

Here we present a comprehensive serum metabonomics study designed to replicate a 

previous CRC study13 by our group and confirm whether a serum based metabonomics 

approach can be used as diagnostic tool for CRC patients. Serum metabolites from newly 

diagnosed CRC patients (N = 101) and healthy subjects (N = 102) were measured with gas 

chromatography time-of-flight mass spectrometry (GC–TOFMS) and ultraperformance 

liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC–QTOFMS). 

The differentially expressed serum metabolites in CRC were identified using univariate and 

multivariate statistical tools.

MATERIALS AND METHODS

Clinical Samples

All subjects were recruited in the study with the same sample collection protocol. The 

patients consisting of 101 CRC patients (aged 24–82 years) and 102 healthy subjects (aged 

31–76 years) was recruited and diagnosed at the Ruijin Hospital affiliated with Shanghai 

Jiao Tong University School of Medicine. CRC and control samples were divided into a 

learning group and a validation group, with the age (p = 0.364, the Pearson’s chi-squared 

test) and gender (p = 0.281) matched in the learning group. All patients were not on any 

medication before sample collection. Any subjects in the healthy control group with 

inflammatory conditions or gastrointestinal tract disorders were excluded. Blood samples 

were collected in the morning before breakfast, and sera were prepared within one hour after 

blood collection and then kept at −80 °C. CRC was staged according to TNM classification 

of malignant tumors. CEA levels for all CRC patients were also assessed. The demographic 

information and clinical characteristics of all subjects are provided in Table 1.

All the patients signed a consent form. The study was approved by the institutional ethics 

committees of the Ruijin Hospital.
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Serum Sample Preparation and Analysis by GC–TOFMS

Following our previous procedure,13 each 100 μL of serum sample spiked with two internal 

standards (10 μL of L-2-chlorophenylalanine in water, 0.3 mg/mL; 10 μL of heptadecanoic 

acid in methanol, 1 mg/mL) was used for metabolite extraction with 300 μL of 

methanol:chloroform (3:1) at −20 °C for 10 min. An aliquot of the 300 μL supernatant was 

used for further analysis after a 12,000 rpm centrifuge for 10 min. The samples were 

vacuum-dried at room temperature. The residue was subjected to a two-step derivatization 

procedure with 80 μL of methoxyamine (15 mg/mL in pyridine) for 90 min at 30 °C, and 80 

μL of BSTFA (1%TMCS) for 60 min at 70 °C. In addition to the internal standards used for 

quality control, another quality control sample consisting of multiple reference standards 

was prepared and run with each of 10 samples (see Supplementary Table 3 in the Supporting 

Information). This QC sample was vacuum-dried and derivatized using the same procedure 

along with the samples.

The samples were analyzed by Pegasus HT system (Leco Corporation, St. Joseph, MI, USA) 

coupled with an Agilent 6890N gas chromatography in the order “control–CRC–control”. A 

QC sample was run after each 10 serum samples. The injection volume was 1 μL with a 

splitless mode. The injection was set to 270 °C. A DB-5MS capillary column (30 m × 250 

μm i.d., 0.25 μm film thickness; Agilent J&W Scientific, USA) was used to separate the 

metabolites. Helium was used as the carrier gas, with 1.0 mL/min. The GC oven temperature 

started at 80 °C for 2 min, then ramped to 180 °C at 10 °C/min, to 230 °C at 6 °C/min, and 

finally to 295 °C at 40 °C/min. The final temperature of 295 °C was maintained for 8 min. 

The temperature of the transfer interface and the ion source was set to 270 and 220 °C, 

respectively. The m/z range was set to 30–600 with electron impact ionization (70 eV). The 

acquisition rate was set to 20 spectra/second.

Serum Sample Preparation and Analysis by UPLC–QTOFMS

The procedure for serum sample treatment and analysis for UPLC–QTOFMS followed our 

published report with minor modifications.8,13 Each 80 μL of serum sample was used in 

UPLC–QTOFMS analysis. After addition of internal standard (10 μL of L-2-

chlorophenylalanine in water, 0.3 mg/mL), the samples were combined with 400 μL of a 

mixture of water, methanol, and acetonitrile (1:2:7). The extraction procedure was 

performed at −20 °C for 10 min after 2 min vortexing and 1 min ultrasonication. The 

samples were then centrifuged at 12,000 rpm for 20 min. The supernatant was transferred 

into the sampling vial for UPLC–QTOFMS analysis. Similar to GC–TOFMS analysis, a QC 

sample consisting of multiple reference standards was prepared (Supplementary Table 3 in 

the Supporting Information). This QC sample was run after each 10 serum samples.

The samples were kept at 4 °C during the analysis. A 5 μL aliquot of sample was injected 

into an ultraperformance liquid chromatography system (Waters, USA) with a 100 mm × 2.1 

mm, 1.7 μm BEH C18 column (Waters, USA) in the same order of GC–TOFMS. The 

column was held at 40 °C. The elution procedure for the column was 1–20% B over 0–1 

min, 20–70% B over 1–3 min, 70–85% B over 3–8 min, 85–100% B over 8–9 min, and the 

composition was held at 100% B for 1 min, where A = water with 0.1% formic acid and B = 
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acetonitrile with 0.1% formic acid for positive mode (ES+), while A = water and B = 

acetonitrile for negative ion mode (ES−). The flow rate was 0.4 mL/min.

A Waters Q-TOF premier (Manchester, U.K.) was used for data collection, with an 

electrospray source operating in either positive or negative ion mode. The temperature for 

the source and desolvation gas was set at 120 and 350 °C, respectively. The gas flow for 

cone is 50 L/h, and 650 L/h for desolvation gas. The capillary voltage and cone voltage were 

set to 3.2 kV and 35 V for ES+, and 3 kV and 50 V for ES−, respectively. MassLynx 

software (Waters) was used to collect the data at a centroid data mode with a mass range of 

50 to 1000 m/z. The scan time was set at 0.3 s, and the interscan delay was set at 0.02 s over 

a 9.5 min analysis time. Leucine-enkephalin was used as the lock mass (m/z 556.2771 in ES

+ and 554.2615 in ES−).

Data Analysis

The acquired MS data from GC–TOFMS and UPLC–QTOFMS was analyzed according to 

our previously published work.13 The GC–TOFMS data was analyzed by ChromaTOF 

software (v 4.34, LECO, USA). After alignment with Statistic Compare component, the 

CSV file was obtained with three dimensional data sets including sample information, peak 

retention time, and peak intensities. The internal standard was used for data normalization. 

Internal standards and any known pseudo positive peaks, such as peaks caused by noise, 

column bleed, and BSTFA derivatization procedure, were removed from the data set.

The UPLC–QTOFMS ES+ and ES− raw data was analyzed by the MarkerLynx Applications 

Manager version 4.1 (Waters, Manchester, U.K.) using the following parameters: the initial 

and final retention time (RT) was set at be 0, and 9.5 min, respectively. The mass range was 

set to 50–1000 Da, with mass window of 0.05 Da. The internal standard detection 

parameters were deselected for peak retention time alignment. The isotopic peaks were 

excluded from the analysis. The minimum intensity was set to 5% of base peak intensity. 

The noise elimination level was set at 6 and RT tolerance was set at 0.3 min. A list of the ion 

intensities of each peak detected was generated, using retention time (RT) and the m/z data 

pairs as the identifier for each ion. The resulting three-dimensional matrix contains 

arbitrarily assigned peak index (retention time–m/z pairs), sample names (observations), and 

ion intensity information (variables). To obtain consistent differential variables, the resulting 

matrix was further reduced by removing any peaks with missing value (ion intensity = 0) in 

more than 80% samples. The internal standard was used for data quality control 

(reproducibility) and data normalization. The ion peaks generated by the internal standard 

were also removed. The final data was normalized to the peak area of the corresponding 

internal standard.

For GC–TOFMS generated data, metabolite annotation was processed by comparing the 

mass fragments with NIST 11 Standard mass spectral databases in ChromaTOF software (v 

4.34, LECO, USA) with a similarity of more than 70% and then verified by available 

reference standards in our lab (~800 mammalian metabolite standards). Metabolites obtained 

from positive (ES+) and negative (ES−) mode of UPLC–QTOFMS analyses were annotated 

by means of available reference standards in our lab (by comparing the accurate mass (mass 

difference <0.02 Da) and retention time (<0.5 min)), in addition to web-based resources 
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such as the Human Metabolome Database (http://www.hmdb.ca/) (by comparing the 

accurate mass with difference less than 0.005 Da).

All annotated metabolites by GC–TOFMS and UPLC–QTOFMS ES+ and ES− (expressed 

as G, P, and N, respectively) were combined into a new data set for further investigation (the 

total list of 249 annotated metabolites is shown in Supplementary Table 1 in the Supporting 

Information). Principal component analysis (PCA) and orthogonal partial least-squares-

discriminant analysis (OPLS-DA) were carried out (SIMCA-P 12.0, Umetrics, Umeå, 

Sweden) to visualize the metabolic alterations between CRC patients and healthy controls 

after mean centering and unit variance scaling. The default 7-fold cross-validation was 

applied, in order to guard against overfitting. The variable importance in the projection 

(VIP) values of all the metabolites from the 7-fold cross-validated OPLS-DA model was 

taken as a criterion for differential metabolites selection. Those variables with VIP > 1.0 are 

considered relevant for group discrimination.21 Additionally, the nonparametric univariate 

method, Mann–Whitney U test, was applied to measure the significance of each metabolite 

in discriminating CRC patients from healthy controls. Differential metabolites were selected 

by consideration of both coefficients (VIP > 1 and p < 0.05). The corresponding up- and 

downregulated trend (fold change) showed how these selected differential metabolites varied 

between CRC patients and healthy controls, and was used for subsequent metabolic pathway 

analysis. Furthermore, we conducted box-plot analysis to show the individual metabolite 

difference between CRC patients and controls with SPSS software (v19, IBM, USA).

RESULTS

Serum Metabolic Profiles of CRC

We obtained 209, 1293, and 1368 spectral features from each sample analyzed by GC–

TOFMS, UPLC–QTOFMS ES+, and ES−, respectively. PCA scores plots showed the 

separation trend between CRC patients and healthy controls in the learning group 

(Supplementary Figure 1A,E,I in the Supporting Information). Subsequently, three cross-

validated OPLS-DA models were established and demonstrated satisfactory modeling and 

predictive abilities with 1 predictive component and 2 orthogonal components (R2X = 

0.245, R2Ycum = 0.881, Q2cum = 0.767) for GC–TOFMS, 1 predictive component and 1 

orthogonal component (R2X = 0.302, R2Ycum = 0.95, Q2cum = 0.938) for UPLC–

QTOFMS ES+, and 1 predictive component and 3 orthogonal components (R2X = 0.363, 

R2Ycum = 0.961, Q2cum = 0.894) for UPLC–QTOFMS ES−, respectively (Supplementary 

Figure 1B,F,J in the Supporting Information). All these results demonstrated the distinct 

serum metabolic profiles of CRC patients.

Serum Metabolite Markers of CRC

We have annotated 249 metabolites in the sera of each subject (summarized in 

Supplementary Table 1 in the Supporting Information), which mainly include sugar 

metabolites (19.2%), amino acid metabolites (14.1%), lipid metabolites (26.9%), short-chain 

carboxylic acids (12.8%), nucleic acid metabolites (3.6%), gut flora metabolites (10.0%), 

amines (3.6%), bile acids (3.6%), and others (16.1%). Based on the 249 metabolites in the 

learning group, an OPLS-DA model was constructed with one predictive component and two 
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orthogonal components with good model parameters (R2X = 0.187, R2Ycum = 0.941, 

Q2cum = 0.86) (Figure 1). The permutation test assured the validity of the OPLS-DA model 

with all the R2 (cum) and Q2 (cum) values calculated from the permuted data were lower 

than the original ones in the validation plot and the Q2 (cum) intercepted the y-axis at 

−0.309 (Supplementary Figure 2 in the Supporting Information). Furthermore, a set of 

samples in the validation group (40 control and 39 CRC samples) were used to test the 

prediction ability of the established OPLS-DA model above. In the Y prediction scores plot, 

all the samples in the validation groups were correctly assigned to either control or CRC 

group using a cutoff value of 0.5 (Figure 2, the Y value was set at 1 for CRC, and 0 for 

controls in the learning group). This result showed the ability of the OPLS-DA model to 

predict the unknown samples to the right groups with a sensitivity of 100% and a specificity 

of 100%.

To further test the influence of gender on the quality of the prediction model, two models 

with males or females only in the training data set were constructed. The samples in the 

validation set were fed into the models to test the predictive ability of the model. The results 

showed both models (constructed with only males or females) can correctly assign all the 

samples in the validation sample set into the right group (CRC or control), suggesting that 

the gender does not significantly affect the quality of the prediction model (Supplementary 

Figure 3 in the Supporting Information).

Significantly altered serum metabolites with the VIP threshold (VIP > 1) in the above-

mentioned OPLS-DA model, as well as the Mann–Whitney U test (p < 0.05), were selected 

in CRC patients and are summarized in Table 2. Among these differential metabolites, 36 

were confirmed by reference standards, and 10 were identified in both analytical platforms 

(GC–TOFMS and UPLC–QTOFMS). Variations of these metabolites are expressed in fold 

change (FC) in CRC subjects from TNM stage I to stage IV (both in learning group and in 

validation group) in Supplementary Figure 4 in the Supporting Information. Using Kyoto 

Encyclopedia of Genes and Genomes (KEGG) database,22 several key metabolic pathways 

that were altered in CRC patients were identified, which involve TCA cycle, urea cycle, 

tryptophan metabolism, fatty acid metabolism, and gut flora metabolism (Table 2 and 

Supplementary Figure 4 in the Supporting Information). The box plots of typical metabolites 

in those metabolic pathways are shown in Figure 3.

We further compared the differential metabolites identified in this study with those selected 

from our previous study with a different patient cohort. A panel of 10 metabolites was 

selected in the two studies between CRC patients and healthy controls with VIP > 1 and p < 

0.05 and with the same up and down direction (see first 10 metabolites in Supplementary 

Table 2 in the Supporting Information). Using these 10 metabolites, an OPLS-DA model 

was constructed with samples in the training set of the current study (one predictive 

component and two orthogonal components with R2X = 0.457, R2Ycum = 0.664, Q2cum = 

0.600. The samples in the validation data set were fed to the model to test the prediction 

ability of this metabolite panel. The results showed the model yielded a sensitivity of 83.7% 

and a specificity of 91.7% (Supplementary Figure 5 in the Supporting Information).
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The serum markers identified in this study can also correctly diagnose the CRC patients with 

low CEA value (<5 ng/mL, n = 58). The samples with high level of CEA and low level of 

CEA cannot be separated in the PCA scores plot as shown in Supplementary Figure 6 in the 

Supporting Information. No valid OPLS-DA model can be obtained, suggesting that the 

CEA values are not associated with changes of serum metabolites. Similar to our previous 

findings, our attempt to stratify TNM stages (I–IV) of CRC patients using these differential 

metabolites was not successful. We also found some metabolites that consistently up- and 

downregulated along with the pathological stages (Supplementary Figure 7 in the 

Supporting Information). Interestingly, consistently with our previous report, β-

hydroxybutyrate was found to continuously increase through stage I to stage IV patients, 

while two metabolites related to tryptophan metabolism (tryptophan and indoleacrylic acid) 

were continuously decreasing through stage I to stage IV patients.

DISCUSSION

In this study, we identified 249 serum metabolites of CRC patients with the combination of 

GC–TOFMS and UPLC–QTOFMS. A robust OPLS-DA model based on these identified 

metabolites was able to distinguish all of the CRC patients including all the TNM-I stage 

patients from healthy controls, from which 72 metabolites were found differentially 

expressed in CRC subjects. Compared with our previous CRC metabonomics findings,13,14 

several key metabolic pathways including TCA cycle, urea cycle, glutathione metabolism, 

fatty acid metabolism, and gut microflora metabolism were consistently altered in 

association with CRC (Supplementary Table 2 in the Supporting Information). Some 

previously reported metabolite markers were significantly different between CRC and 

control subjects with univariate statistics in the current study, but do not meet the criteria in 

multivariate statistics (Supplementary Table 2 in the Supporting Information). There were 

also inconsistencies in the differential metabolites compared to our previous study.13 For 

example, lactate and several amino acids such as tyrosine and leucine were found to be 

differential metabolites in the serum of CRC patients in our previous study,13 but not 

identified as biomarkers in the current study. Comparing the two CRC metabonomics 

studies, among the 32 differential metabolites identified in the previous study, only nervonic 

acid was not detected in the present study. About 70.1% (22 out of 31) of those detected 

metabolites are also significantly different between CRC patients and healthy controls in this 

replication study (Supplementary Table 2 in the Supporting Information). Several possible 

factors may contribute to such a discrepancy between the two data sets. First, in the current 

study, 25.7% of the CRC patients were diagnosed at stage I, while only 14.1% of the CRC 

patients were at stage I in the previous study. Second, different data analysis procedure may 

also result in differences in the metabolite markers identified. In our previous study,13 the 

data obtained from GC–TOFMS, UPLC–QTOFMS (ES+), and UPLC–QTOFMS (ES−) 

were analyzed separately, and then the most statistically significant variables were merged 

from the three platforms. The metabolite annotation was only performed on those 

differential variables. However, in this study, with the increased entries in our in-house 

library and the increased knowledge in metabolite annotation, we were able to annotate the 

metabolites detected from the three platforms before statistical analysis.
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The most significant differential metabolites (based on p value) obtained from our 

previously published human hepatocellular carcinoma study23 were compared with the CRC 

metabolite markers. Only two metabolites (oleamide and ornithine) in the most significantly 

differing 20 metabolites (based on the p value) in the HCC study were found in the 22 

differential metabolites (based on p value) in the two CRC studies (Supplementary Table 2 

in the Supporting Information), suggesting that the metabolite markers identified in the 

current study may be specific to CRC phenotype. Consistent with our previous report,13 

pyruvate, an important intermediate in glycolysis, was also detected higher in the CRC 

patients compared with healthy controls. In addition several intermediates in TCA cycle 

such as fumarate and cis-aconitate were found depleted in CRC subjects. The increased 

pyruvate and decreased intermediates in TCA cycle suggest an impaired mitochondrial 

respiration in CRC, which is in line with previous metabonomics studies.14,18 Interestingly, 

a decreased entry of pyruvate into the TCA cycle in cancer cells was also observed in 

leukemia cells by Ismael et al.24 These metabolic changes may be indicative of an increased 

oxidation of non-glucose carbon sources such as fatty acids.

About 10 amino acids detected in our study such as intermediates in urea cycle (aspartate 

and ornithine) and metabolites related to glutamine and proline metabolism were found 

decreased significantly in CRC serum compared to healthy controls. While higher 

concentrations of various amino acids in CRC tissue were reported compared to normal 

mucosa,17,19,20 the findings with depleted amino acids in CRC serum may suggest the 

higher absorption of amino acids by the tumor cells to sustain the rapid cell proliferation. 

One example is that the decreased level of serine in CRC patients may be resulted from the 

higher consumption of serine in the cancer cells, as evidenced by increased serine 3-

phosphoglycerate dehydrogenase and serine hydroxymethyltransferase observed in human 

colon carcinoma.25 Furthermore, lower level of glutamate in CRC patients was observed in 

CRC patients in the current study and our previous study.13 As higher consumption of 

glutamine in tumor cells has been reported to be essential for the production of 

macromolecules such as fatty acid and nuclear acids,26,27 more circulating glutamate may be 

transformed to glutamine in CRC patients to compensate the higher consumption in tumor 

tissue cells.

A notable metabolic feature of CRC subjects was the remarkably disturbed lipid (including 

fatty acids) metabolism. As shown in Table 2, four lysophosphatidylcholines (LysoPCs) 

(LysoPC(14:0), LysoPC(16:1), LysoPC(20:0), and LysoPC(P-18:1)) were observed 

significantly lower in the serum of CRC patients compared with healthy controls. Consistent 

with our observation, decreased signal of LysoPC in cancers was also observed in previous 

reports.28,29 The decrease in LysoPCs was reported to be associated with body weight loss 

and activated inflammatory status in cancer patients.29 Therefore, the observed decreased 

levels of LysoPCs in CRC patients may be indicative of higher decomposition rate of 

LysoPCs to support cancer metabolism and activities. Increased degradation of LysoPCs 

may result in an increased level of the FFAs, which was also observed in our study (for 

example, oleic acid, linolic acid palmitic acid, and elaidic acid were elevated in CRC patient 

serum, Table 2). Additionally, increased fatty acid synthesis characterized by increased 

expression of fatty acid synthase (FAS) and stearoyl-CoA desaturase-1 (SCD 1) was also 
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reported to be an important metabolic characteristic for cancer cells.30,31 The increased 

levels of fatty acids may also be associated with increased FAS and SCD1 in CRC patients.

Concomitant with the decreased LysoPCs and increased FFAs, there was a significant 

elevation of glycerol and β-hydroxybutyrate, the most important ketone body of fatty acid β-

oxidation, observed in the CRC patient, which was consistent with previous serum 

metabonomics study of CRC.13 In fact, FFA and glycerol turnover rates were reported to be 

higher in cancer patients compared with healthy normal subjects. Increased fatty acid β-

oxidation may be used as a fuel source in cancer patients.32 Meanwhile, conjugation with 

carnitine is essential for long chain fatty acids to cross the mitochondrial membranes for β-

oxidation. In our study, carnitine (18:1) and acetyl carnitine were both significantly 

increased, while decanoyl carnitine was found decreased in CRC patients. Fatty acid (18:1) 

is a long chain fatty acid, and decanoic acid is a medium chain fatty acid. The medium chain 

fatty acids can freely diffuse into mitochondria and be oxidized, while the long chain fatty 

acids can cross mitochondrial membrane only after they are conjugated with carnitine. 

Therefore, the conjugated long chain fatty acid, carnitine (18:1), and its β-oxidation product, 

acetyl carnitine, but not decanoyl carnitine, are found increased in CRC with increased 

consumption of energy substrates.

A number of differentially expressed metabolites involved in tryptophan metabolism, 

phenylalanine and tyrosine metabolism, bile acid metabolism, and choline metabolism 

(Table 2), which are linked to gut microbial-host cometabolism, were observed in the CRC 

serum metabolic profile. Consistent with the depleted tryptophan in CRC patients in our 

previous study,13 tryptophan and its metabolites, 5-hydroxytryptamine (5-HT), N-acetyl-5-

HT, indoxyl, and indoxyl sulfate, were found significantly depleted in CRC patients. 

Particularly, 5-HT was observed to be the most significantly lowered metabolite in the CRC 

patients compared with healthy controls. Most of the 5-HT production in the human body 

occurred in the gastrointestinal tract, which is important for the regulation of intestinal 

activity.33 In fact, a recent report showed that a lower level of serotonin in the rat colon can 

enhance colonic dysplasia in a high fat diet rat model.34 Our results support the important 

role of 5-HT metabolism in the CRC carcinogenesis. Intermediates in phenylalanine and 

tyrosine metabolism, including hippuric acid, phenol, and hydroquinone, were produced in 

gut microbiota by fermentation of dietary polyphenols and aromatic amino acids.35 Gut 

microbiota has been suspected to play a key role in the carcinogenesis and progression of 

CRC.36 These abnormal metabolites related to gut microbiota in our study indicated that the 

altered gut flora metabolism was closely associated with CRC morbidity, as suggested in our 

recent study with structural imbalance of gut microbiota in CRC patients.36 We presumed 

that the abnormalities of gut flora metabolism might be a distinct metabolic signature of 

CRC.

Significantly elevated levels of 2-hydroxybutyrate, 2-oxobutyrate, and 2-aminobutyrate were 

observed in our study. As a byproduct of the conversion from cystathione to cysteine (2-

oxobutyrate is the intermediate), 2-hydroxybutyrate was considered a biomarker of 

glutathione status.37 Therefore, the elevation of 2-hydroxybutyrate and 2-oxobutyrate may 

indicate a higher level of oxidative stress in the CRC patients. Additionally, 2-aminobutyrate 

is used to synthesize ophthalmate,38 which is indicative of glutathione consumption through 
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activation of γ-glutamyl cysteine synthetase. The elevated level of 2-aminobutyrate further 

indicates a higher level of oxidative stress in CRC patients compared with healthy controls.

The lower serum level of ubiquinone may be associated with CRC progression along with 

elevated glutathione metabolism as ubiquinone was reported to suppress fat-induced colon 

carcinogenesis as an antioxidant.39 In addition, the level of ubiquinone was also reported to 

be negatively correlated with redox status.40 The lower level of ubiquinone in CRC patients 

is consistent with the higher levels of metabolites associated with glutathione metabolism 

such as 2-hydroxybutyrate and 2-aminobutyrate.

In summary, a panel of differentially expressed metabolites was identified, which verified 

most of the markers discovered in our previous CRC metabonomics study. We confirmed 

that serum based metabonomics is able to discriminate CRC patients from healthy controls, 

reassuring us about the feasibility of developing a new diagnostic tool for CRC with a serum 

metabolite signature.
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Figure 1. 
The scores plot of the OPLS-DA model of the learning group. The OPLS-DA model was 

constructed using data from 62 CRC patients (red dots) and 62 healthy controls (blue dots).
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Figure 2. 
Y-predicted scatter plot of samples in validation groups. The erected OPLS-DA model with 

those samples in the learning group was used to predict the “group membership” (control or 

CRC) for the samples in a validation data set with 40 healthy controls (blue triangle) and 39 

CRC patients (red triangle). The prediction ability of the OPLS-DA model was made with a 

cutoff of 0.5.
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Figure 3. 
Box plots of 6 typical differential metabolites concerning 5 metabolic pathways: (A) 

fumarate, (B) aspartate, (C) tryptophan, (D) β-hydroxybutyrate, (E) octenedioate, (F) 

trimethylamine N-oxide.
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Table 1

Clinical Information and Characteristics of Human Subjectsa

learning group validation group

control (n = 62) CRC (n = 62) control (n = 40) CRC (n = 39)

male/female 28/34 34/28 0/40 23/16

age (mean, range) 59.4 (31–75) 60.1 (24–82) 55.9 (35–76) 61.8(36–80)

CEA (ng/mL, mean, range)b 27.9 (0.7–891.2) 26.4 (0.9–376.4)

location of tumorc

 AC 15 6

 TC

 DC 5 4

 SC 6 1

 R 35 28

stage (n, male/female)

 TNM-I 16 (11/5) 10 (9/1)

 TNM-II 25 (13/12) 18 (11/7)

 TNM-III 17 (8/7) 9 (3/6)

 TNM-IV 4 (2/2) 2 (0/2)

a
One patient of stage IV without a location record in training set.

b
CEA, carcinoembryonic antigen.

c
R, rectum; AC, ascending colon; DC, descending colon; SC, sigmoid colon.
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