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ABSTRACT 
Limited by the laboratory technique, traditional microorganism 
research usually focuses on one single individual species. This 
significantly limits the deep analysis of intricate biological 
processes among complex microorganism communities. With the 
rapid development of genome sequencing techniques, the 
traditional research methods of microorganisms based on the 
isolation and cultivation are gradually replaced by metagenomics, 
also known as environmental genomics. The first step, which is 
also the major bottleneck of metagenomic data analysis id the 
identification and taxonomic characterization of the DNA 
fragments (reads) resulting from sequencing a sample of mixed 
species. This step is usually referred as “binning”.  

Existing binning methods based on sequence similarity and 
sequence composition markers rely heavily on the reference 
genomes of known microorganisms and phylogenetic markers. 
Due to the limited availability of reference genomes and the bias 
and unstable of markers, these methods may not be applicable in 
all cases. Not much unsupervised binning methods are reported, 
but the unsupervised nature of these methods makes them 
extremely difficult to annotate the clusters with taxonomic labels. 
In this paper, we present MetaCluster 2.0, an unsupervised 
binning method which could bin metagenomic sequencing 
datasets with high accuracy, and also identify unknown genomes 
and annotate them with proper taxonomic labels. The running 
time of MetaCluster 2.0 is at least 30 times faster than existing 
binning algorithms.  

MetaCluster 2.0, and all the test datasets mentioned in this paper 
are available at http://i.cs.hku.hk/~alse/MetaCluster/. 

Categories and Subject Descriptors 
J.3. [Computer Applications]: Life and Medical Sciences – 
biology and genetics. 

General Terms 
Algorithms, Experimentation, Measurement, Performance,  

Reliability, Verification. 

Keywords 
Metagenomics, Binning, DNA composition features, l-mer, 

Spearman Distance, taxonomic annotation, k-mean clustering. 

1. INTRODUCTION 
Traditional genomic study usually focuses on one single 
individual species (e.g. human). However, researchers have 
discovered that all the microorganisms present in a specific 
habitat have critical effects on one another and the host. For 
example, the unbalance or abnormal diversity of microbes in 
human is proved to be associated with common diseases such as 
Inflammatory Bowel Disease (IBD) [1] and gastrointestinal 
disturbance [2]. In particular, understanding the effects of 
microbial community on human may contribute to better 
diagnosis, prevention, and treatment of diseases. Genomic 
analysis on the collective genomes of all microorganisms from an 
environmental sample (also known as metagenomics, 
environmental genomics, or community genomics) becomes 
necessary. The difficulty of metagenomics lies on the fact that 
most of the species (can be up to 99%) found in a sample are 
unknown and cannot be easily cultivated and separated in a 
laboratory [3]. One possible approach is to make use of high-
throughput sequencing technology to obtain DNA fragments 
(contigs) of different genomes from the mixed sample and 
perform analysis on the fragments [4]. Examples of metagenomics 
projects include Acid Mine Drainage Biofilm (AMD) which 
analyzes dozens of species [5] and the recent Human Gut 
Microbiome (HGM) which involves thousands of species [6].  

Fragments of a metagenomics project are from multiple genomes 
for which most of them are unknown. The first step to analyze 
these fragments is to assign them to the taxonomy tree (referred as 
binning) [7] to obtain a general map and approximate taxonomic 
annotation of the microbe distribution of the sample. Depending 
on the research requirements, the quality and the complexity of 
the metagenomic sequencing (MS) dataset, the binning process 
could be done at various taxonomic levels from Kingdom (the 
highest) to some low levels such as Genus.  

Existing binning methods could be roughly classified into three 
categories: sequence similarity-based method, sequence 
composition-based method and unsupervised-based method. 
Sequence similarity-based methods [8] try to align each DNA 
fragment to known reference genomes. Based on the alignment 
results (e.g. BLAST hits or selected phylogenetic specific marker 
genes [9]), each fragment is assigned to the taxonomic class with 
a reference genome showing a high similarity to the fragment. 
Since less than 1% of microorganisms can be cultured and 
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sequenced, many genomes of microorganisms are not in the 
database and many DNA fragments cannot be aligned well. 
Besides, a single run of sequencing machine can produce billion 
of DNA fragments [1] which require several days to align them 
with all known reference genomes. 

Since the sequence similarity-based methods are time-consuming 
and only work well for the DNA fragments from species with 
known genomes, other researchers introduced sequence 
composition-based methods which cluster DNA fragments in a 
supervised or semi-supervised manner using generic features such 
as genome structure or composition. Structure features such as 
composition features of reference genomes or taxonomic marker 
regions (e.g. 16S rRNA[10], recA and rpoB are commonly 
accepted fingerprint genes) are extracted. These generic features 
can be used to construct a classifier [11] for determining DNA 
fragments from different species or can be used as constraints for 

semi-supervised clustering or classification. These methods 
suffered from low availability and reliability of taxonomic 
markers. For example, study on several metagenomic projects, 
such as the enhanced biological phosphorus removing (EBPR) 
sludge [12], Sargasso Sea [4] and the Minnesota soil samples [13], 
indicated that only 0.17%, 0.06% and 0.017% of the contigs 
(DNA fragments) respectively are known to carry 16S rRNA 
markers. Even if we select more markers such sas recA and rpoB, 
still less than 1% of the fragments could be identified. The 
reliability of taxonomic markers has also been challenged, some 
papers [14] reported that some species may share multiple 
markers with other species or multiple kinds of 16S rRNA 
molecules exist in a single bacterium due to high mutation and 
gene exchange ratio of microbe, which leads to incorrect 
classifications. 

 

 
Figure 1. The 4-mer frequency spectrum. Figure. 1A is the 4-mer spectrums of two DNA fragments from the same E-coli genome. 
Figure. 1B is the 4-mer spectrums of two DNA fragments from the genomes of E-coli and Lactobacillus which belong to the same 
kingdom but different phyla.  

Since there are not enough reference genomes and the generic 
features are not reliable, another direction is to consider 
unsupervised method for clustering DNA fragments based on the 
occurrence frequencies of the l-mer (short DNA substrings of 
length l) distribution of the DNA fragments [15,16]. In these 
approaches, each fragment can be regarded as a vector containing 
the occurrence frequencies of all possible l-mers in the fragment. 
The rationale behind is based on the observation that the l-mer 
distributions within same genome are more similar than the l-mer 
distributions of two unrelated species, say in different phyla. 
Figure 1 gives a straightforward about this phenomenon. This 

observation is supported by [17] which reported that the 
distribution of dinucleotide is more or less the same for the same 
genome, but varies between genomes from different taxonomic 
groups. TETRA [18,19] was the first who applied l-mer frequency 
distribution to the binning problem of metagenomic datasets. 
Their method requires long DNA fragments (40kb) in order to 
produce reasonable results. However, assembling reads from 
metagenomics data to long contigs is still not feasible, thus their 
method is not very practical. [20] Further investigates this 
approach and has come up with an approach to bin the fragments 
based on a carefully selected subset of l-mers. Although the 
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results in [20] are good, it is not clear how to select the subset of l-
mers. Both the above papers do not provide a taxonomy 
annotation for the fragments. MEGAN [8] is the only tool that can 
provide taxonomy annotation for DNA fragments, however the 
core of MEGAN is based on the alignment of the fragments on 
known reference genomes. For fragments from unknown species, 
the results are not satisfactory. Recently, there is another 
unsupervised clustering method called LikelyBin [22] which 
makes use of Markov Chain Monte Carlo approach to model the 
genome sequences of different species. The model is complicated. 
Thus, it may have the problem of over fitting and requires a lot of 
computation to perform the clustering. 

In this paper, we provide a two-step approach to solve the binning 
problem of the metagenomic data. We first cluster the fragments 
using an unsupervised approach (i.e., we do not make use of any 
known reference genomes) based also on the l-mer distribution of 
the fragments. Instead of using a selected subset of l-mers as in 
[20], we use all l-mers and apply the well known statistical 
measure, Spearman Footrule Distance [21], to capture the 
similarity of l-mer distributions of any two fragments. Combining 
with k-mean clustering algorithm, we group the fragments into the 
same cluster which a strong similarity on their l-mer distributions. 
Spearman Footrule Distance considers the relative ranking of the 
occurrence frequency of an l-mer compared to other l-mers which 
provides a more reasonable assessment on the similarity than 
using the absolute or normalized occurrence frequencies as in [20]. 
Our approach is simple and much faster (30-50 times faster than 
the best existing approach LikelyBin) and the average accuracy is 
at least as good as theirs. 

More important, unlike all other unsupervised approaches which 
do not provide any taxonomic annotation to the clusters, our 
second step is to label (annotate) the clusters with taxonomic 
information even if some of the genomes are unknown. We 
believe that this step is important. Even providing an 
approximated annotation at high taxonomic ranks such as Family 
or Order helps the biologists to design follow-up experiments for 
further investigation. In order to assign the clusters to taxonomy 
tree, we represent each reference genome by a composition 
feature vector. The process of assigning the cluster to the 
taxonomic tree is similar to the most prevalent single-winner 
plurality (also called "first-past-the-post") voting system. Each 
DNA fragment in a cluster will vote for the nearest reference 
genome based on the Spearman Footrule Distance. Then 
according to the requested taxonomic rank, say genus (or higher 
level like family and order), the total number of votes for the 
reference genomes of the same genus will represent the support of 
this genus. Finally, the cluster will be assigned to the majority 
genus such is the winner of this voting. Experimental results 
demonstrated that we can assign the clusters to the taxonomy tree 
with high accuracy (about 87.5% to 91.85%) at different 
taxonomic ranks and is about 20% higher than MEGAN. We also 
show that our approach is robust in view of the amount of 
sequencing errors and relative species abundance ratios in the 
sample. 

2. METHOD 
As shown in Figure 2, our binning approach could be divided into 
two major steps. During the first step, an unsupervised K-mean 
clustering method assigns the mixed DNA fragments from several 
unknown species into clusters based on the similarity of their l-
mer distributions. With the assumption that each cluster contains 

the DNA fragments from the same genome, these clusters are 
classified into the most similar taxonomic groups in the second 
step. So generally speaking, our solution identifies the unknown 
genomes from the metagenomic sequencing datasets (step 1) and 
provides taxonomic labels for the unknown genomes (step 2). 

2.1 l-mer frequency calculation 
The DNA composition features of each DNA fragment are 
represented by its l-mer frequencies. As there are 4 different DNA 
nucleotides, there are at most 4௟ l-mers in a DNA sequence. If a 
sliding window of length l is slid along each DNA fragment and 
the frequency of every l-mer, say ௜݂, ݅ ∈ ሾ1, 4

௟ሿ, were recorded, 
then the total number of l-mers in a DNA fragment would be 

∑ ௝݂
ସ೗

௝ୀଵ . For example, a DNA fragment of length 500bp has 497 
4-mers and a DNA fragment of length 2000bp has 1997 4-mers. 
Thus the DNA is a feature vector defined as ൣ ଵ݂, ଶ݂  ⋯ ݂ସ೗ିଵ, ݂ସ೗൧. 
As each DNA fragment can be obtained from either strand of the 
DNA genome, the frequency of one l-mer and its reverse 
complement l-mer can be combined into a single frequency and 
this process will reduce the size of vector by half, i.e.  ܰሺ݈ሻ ൌ
4௟ 2⁄ , if l is odd;  ൫4௟ ൅ 4௟ ଶ⁄ ൯ 2⁄ , if l is even. 

For example, in order to be effective and to have a reasonable 
vector size, l can be set to 4. So each DNA fragment will be 
represented by a feature vector with 136 components and the input 
metagenomic sequencing dataset of FASTA format will be 
transformed to a  ݊ ൈ 136 matrix with n rows representing n DNA 
fragments.  

 
Figure 2. The pipeline of our method could be generally 
divided into two major steps: clustering and annotation. 
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2.2 Distance definition based on the ranked 
list correlation coefficient 
Our binning method is based on a widely accepted observation 
[17] that the l-mer distributions of those DNA substrings 
(fragments) from the same genome are similar (see Figure 1). As 
the feature vector represents the l-mer distribution of a given 
DNA fragment, the similarity between two DNA fragments can be 
measured by the “distance” between their l-mer feature vectors. In 
[20], an “essential l-mer region” is selected to calculate the 
distance between two DNA fragments. This distance definition 
filters out both intra-species and inter-species noise and achieves 
reasonably good performance. However, this distance definition is 
very sensitive to the variation of l-mer occurrence frequencies and 
affects the stability of the performance. To improve the binning 
performance, we apply a commonly used correlation coefficient 
based distance definition called Spearman Footrule Distance 
which considers the relative ranking of the occurrence frequency 
of an l-mer with other l-mers.  

Consider two DNA fragments A and B with the following 4-mer 
feature vectors: 

A: ൫ܽଵ, ܽଶ,⋯ , ܽ௜,⋯ ௝ܽ, ⋯ܽ௞൯ 

B: ൫ܾଵ, ܾଶ,⋯ , ܾ௜, ⋯ ௝ܾ, ⋯ܾ௞൯ 

The Spearman Footrule Distance is a very intuitive definition for 
comparing two ordered lists. Let ݎ஺ሺܽ௜ሻ be the rank of ܽ௜ in the 
sorted list and ݎ஻ሺ ௜ܾሻ be the rank of ܾ௜ in the sorted list. Then the 
Spearman Footrule Distance is defined as: 

,ܣ௦ሺ݁ܿ݊ܽݐݏ݅ܦ ሻܤ ൌ ஺ሺܽ௜ሻݎ|∑ െ   |஻ሺܾ௜ሻݎ

The smaller the value of the metric, the more similar the vectors 
are. For vectors with size k, when the two vectors have no element 
in common, the maximum distance value is ݇ሺ݇ ൅ 1ሻ. 

There is another widely used distance definition, Kendall’s Tau 
Distance [23], whose clustering performance is very similar to the 
Spearman Footrule. However, since the computational complexity 
of computing Kendall’s Tau Distance is higher, the Spearman 
Footrule Distance is used. 

 
Figure 3. The frequency distribution of the intra-genome Spearman Footrule Distance and inter-genome Spearman Footrule 
Distance. The inter-genome distances are separated into 6 individual curves which represent 6 different taxonomic levels 

2.3 Clustering and optimization 
Based on the Spearman Footrule Distance, we confirm 
experimentally that the l-mer frequencies feature vectors of DNA 
fragments from the same genome tend to have similar 
distributions.  

We randomly select 10,000 pairs of DNA fragments from each 
reference genome from the NCBI genome database, calculate the 
Spearman Footrule Distance for each pair, and then apply the 
average value of these 10,000 distances as the intra-genome 
distance for each genome. For all the genomes (1140 genomes in 
total) in the NCBI reference database, we plot the statistical 
distribution of these intra-genome distances in Figure 3. 

We also test the inter-genome Spearman Footrule Distance 
between two randomly selected genome A and B at some specific 
different taxonomic differentia levels say, Species (which means 
genome A and B are from the same Genus but different Species), 
Genus (which means genome A and genome B are from the same 
Family but different Genus) as well as level like Family, Order, 
Class and Phylum. For each level, we select 1000 genome pairs, 
and for each genome pair, we select 10,000 pairs of DNA 
fragments, one from genome A and the other from B. Then we 

calculate the Spearman Footrule Distance of these 10,000 DNA 
fragments pairs and apply the average value as the inter-genome 
distance between genome A and B. So for each taxonomic 
differentia level we have 1000 inter-genome distances. Similar to 
the intra-genome distance, we plot the statistical distribution of 
these inter-genome distances in Figure 3. The intra-genome 
distance is consistently and significantly smaller than any other 
inter-genome distances no matter at which taxonomic differentia 
level. 

Another observation is that, the l-mer feature vectors from the 
same genome tend to be located around the same cluster center. 
Based on this observation, we can simply apply the simple K-
mean algorithm to cluster the fragments. 

Suppose that we want to cluster the l-mers feature vectors of 
fragments into K clusters. Based on our distance definition, the 
objective function of K-mean is: 

ܧ݊݅ܯ ൌ ∑ ∑ ௦݁ܿ݊ܽݐݏ݅ܦ
ଶሺݔ,௫∈஼೔

௄
௜ୀଵ ܿ௜ሻ  

The vector ܿ௜ represents the center of cluster ܥ௜.  

The K-mean clustering algorithm is described in the Appendix 
(see Algorithm 1). 
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Because of the unstable feature of K-mean caused by the random 
selection of the initial clustering centers, we will run the algorithm 
with different initial clustering centers and choose the clustering 
result with the minimum objective value. 

In [20], it is mentioned that even for the same genome, the l-mer 
distribution of some special genome region (such as promoters 
and exogenous transferred regions) can be very unique when 
compared with general genome regions. These l-mer data points 
could be considered outliers and they might introduce negative 
effects during the clustering process. So after the K-mean 
clustering, an additional outlier filtering step is introduced to 
improve the performance. So during the K-mean clustering 
process, we calculate the distance between every data point to the 
cluster, their average center distance ߤ and the standard deviation 
 for each cluster. Those data points with center distance larger ߪ
than ߤ ൅  should be removed as outliers (Algorithm 2 in the ߪ2
Appendix). 

Normally, after this step usually no more than 5% of the data 
points will be removed as outliers. Based on the experiment 
results, the average clustering accuracy will be increased by about 
2% when compared with the performance before filtering. 

2.4 Taxonomic annotation of clusters 
After the first step of clustering, we have high confidence that the 
sequences in a cluster should come from the same genome. The 
exciting part of the unsupervised binning method is its potential to 
identify new genomes which have never be discovered before. On 
the other hand, unless we could provide a general description of 
the context in the clusters, the binning results remain helpless for 
following up practical researches. Without any background 
taxonomic information, it is extremely difficult for an 
unsupervised method to annotate the clusters with taxonomic 
labels. This deficiency seriously limits the practical application of 
the unsupervised binning methods. Although this objective is 
important, all the existing unsupervised binning methods seldom 
mention the requirement of annotation for the clusters generated 
after binning process. 

If the genome exists in the NCBI taxonomic tree, it should be easy 
to classify the clusters by an alignment-based binning method. 
Since the input DNA fragments for our research are from 
unknown species which have no reference genomes in the NCBI 
database, the alignment-based method cannot be used for 
classifying the clusters. However, for the unknown species, there 
is high probability that the genome sequence of some similar 
species in the level of genius, family or higher ranks may be 
available in the NCBI taxonomic tree. We can annotate unknown 
genomes by estimating the similarity between the clusters and the 
reference genomes. Note that, even with this additional step of 
annotation, our approach quite different from the alignment or 
machine learning based binning methods. The main difference is 
that our approach directly identifies the unknown genomes and 
then annotates them with taxonomic information, instead of 
directly assigning the DNA fragments to the high level taxonomic 
groups. When compared with our approach whose resolution is 
performed at the genome level, the resolution of other approaches 
at a higher level is more ambiguous.  

After the first clustering step, our second step of annotation can be 
described as follows: 

Input:  

Clusters of DNA fragments 

Partial NCBI taxonomic tree (the nodes with complete 
genomes) 

The taxonomic level determined by user to annotate the 
clusters 

Output:  

The clusters with particular taxonomic annotations 

Here we introduce a voting method to annotate the clusters of 
unknown genomes with taxonomic labels. The DNA fragments 
from a cluster can be taken as “voters” and the reference genomes 
in the NCBI database as “candidates” belonging to several 
“political parties”. But instead of directly selecting the 
“candidates”, our objective is to select the “political party” which 
most voters agree with. In our case, the “party” is the majority 
taxonomic group to annotate the cluster. So the most prevalent 
single-winner plurality (also called "first-past-the-post") voting 
system is adopted in our approach. Each DNA fragment in a 
cluster will vote for the nearest reference genome based on the 
Spearman Footrule Distance. Then according to the requested 
taxonomic rank, for example genus (or higher level like family 
and order), the votes of the reference genomes from the same 
genus will be summed up to represent the votes of this genus. 
Finally, the cluster will be annotated with the winner of this 
election, i.e. the same taxonomic label as the majority genus. (The 
algorithm of this voting strategy is shown as Algorithm 3 in the 
Appendix). 

3. RESULTS AND CONCLUSION 
In this section, we analyze the performance of our binning 
algorithm, MetaCluster 2.0, from two aspects, the accuracy of 
clustering DNA fragments from same kind of species and the 
accuracy of annotating DNA fragments to the taxonomic tree 
under different situations. We compare the performance of 
MetaCluster 2.0 with existing binning algorithms, LikelyBin [22] 
and CompostBin [24] on clustering DNA fragments. The 
performance of MetaCluster 2.0 is better than these two 
algorithms in all datasets in [22]. We also compare the 
performance of MetaCluster with MEGAN on annotating DNA 
fragments. Experimental results show that MetaCluster annotates 
20% more DNA fragments to the taxonomic tree correctly. 

3.1 Clustering Performance 
We randomly selected 300 species and downloaded their complete 
reference genomes from NCBI genomes database 
(ftp.ncbi.nih.gov/genomes/). These 300 species were selected 
among almost all the taxonomic groups with different ranks. In 
order to analyze the performance of MetaCluster under different 
situations, we generated 2,500 datasets from these genomics with 
different (1) taxonomic complexity (the number of species in the 
metagenomic dataset); (2) lengths of DNA fragments; (3) 
sequencing error rates and (4) relative abundance ratios (the ratio 
of DNA fragments among different species in the metagenomic 
dataset). We also compared the performance of MetaCluster, 
LikelyBin [22] and CompostBin [24] on five datasets provided in 
[22]. 

For each dataset, MetaCluster was used to cluster the DNA 
fragments. The clustering accuracy was calculated as the 
percentage of DNA fragments from the same species that are in 
the same cluster. Since our approach is unsupervised, no 
information about the species is needed to be given to 
MetaCluster including the exact number of species, where most 



existing binning algorithms require the number of species as input 
parameters. It is because MetaCluster can merge several clusters 
together during the annotation process. However, in order to have 
a fair evaluation, the exact number of species in the dataset was 
given to the binning algorithms. 

3.1.1 Taxonomic Complexity 
When the DNA fragments come from related species, say species 
in the same Genus, the clustering process will be much difficult 
than those datasets with DNA fragments come from unrelated 
species, say species from different Orders. We divide the datasets 
into three categories: (1) DNA fragments from the same Family 
but different Genuses, (2) DNA fragments from the same Order 
but different Families, and (3) DNA fragments from different 
Orders. Table 1 summarises the experimental results of 
MetaCluster on these three categories when length-2000 error free 
DNA fragments are generated under the condition that the relative 
abundance ratio of each species in the datasets are the same. 
When the DNA fragments come from species in different Orders, 
MetaCluster performs well (about 90% accuracy) even there are 
14 different species. When the DNA fragments come from species 
in the same Family or Orders, the performance of MetaCluster is 
still good especially when the number of species in the dataset is 
small. 

 

Table 1. General performance based on different sample 
complexity and taxonomic differentia levels 

Taxonomic 
Difference of 

Species  

No. of 
species in 
datasets 

Median Lower 
Quartile 

Upper 
Quartile

Genus 
2 97.17% 94.69% 98.87%

3 91.07% 81.41% 94.85%

Family 
2 99.12% 95.23% 99.57%

3 93.62% 87.90% 96.50%

Higher than 
Order 

2 99.75% 98.32% 99.97%

3 97.62% 94.96% 99.25%

6 94.39% 92.80% 96.15%

10 92.33% 88.02% 94.63%

14 89.88% 80.03% 92.37%

 

3.1.2 Length of DNA Fragments 
All the binning methods using l-mer distributions based on the 
observation that the l-mer distributions of DNA fragments from 
the same genome are more similar and consistent than DNA 
fragments from different genomes. So the stability of the l-mer 
frequency distribution is very essential for the binning 
performance. According to the studies in [18], the performance of 
binning is improved with longer DNA fragments. The 
performance improvement from longer fragments can be 
explained from two aspects. First, longer DNA fragments cover 
more the source genome, so can be considered more 
compositional similar and contain more information from the 
source genome. Second, longer DNA fragments provide more l-

mers which provide statistically more reliable l-mer occurrence 
frequencies. 

With the development of high-throughput sequencing, unlike the 
traditional Sanger sequencing which provides 2,000bp size reads, 
the new generation sequencing platform produces sequencing 
reads with length from about 400bp (454 FLX) to 120bp (Solexa) 
or even as short as 50bp (SOLiD). Although existing binning 
algorithms try to process the short reads, but until now, the 
extremely short reads, which range from 50 to 150bp are still out 
of reach of any non-alignment-based binning method. However, 
since the Spearman Footrule Distance definition is not 
hypersensitive to the variation of the absolute value of l-mer 
frequency, MetaCluster has a good performance even when the 
length of DNA fragments is 300bp. As shown in Figure 4, at the 
taxonomic differentia level of genus, MetaCluster achieves an 
average accuracy about 88%. Therefore, MetaCluster can be 
applied to binning the 454 pyro-sequencing reads. 

When the length of DNA fragments increases from 500bp to 
2000bp, there is an obvious improvement in accuracy. However, 
once the fragment is long enough, the accuracy improvement will 
taper off with further increase of fragment length. Therefore, 
MetaCluster performs well for the traditional Sanger sequencing 
reads. 

 
Figure 4. For each group of selected genomes, 6 datasets are 
generated with different fragment lengths (300bp, 500bp, 
1000bp, 2000bp, 3000bp and 5000bp). With the increasing 
DNA fragment length, the average clustering accuracies based 
on three major taxonomic ranks tend to increase until a 
reasonable length is attained. 

 

3.1.3 Sequencing Error Rates 
Sequencing error is inevitable for metagenomics sequencing 
projects. Hence, error robustness is an important requirement for a 
successful binning algorithm. Although the typical sequencing 
error rate of existing commercial sequencing platforms is less than 
2%, we generated test datasets with error rates ranging from 0% to 
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5% for checking the error robustness of MetaCluster. The 
performance of MetaCluster for different sequencing error rates is 
shown in Figure 5. 

Even for a 5% error rate in the datasets, the accuracy of 
MetaCluster is only decreased by less than 1% when compared 
with error-free datasets. The error robustness property could be 
due to the chosen DNA composition features and the outlier 
filtering step. When compared with the alignment based 
algorithms where DNA substrings of 11bp are usually chosen as 
alignment seeds, MetaCluster uses 4-mer as the compositional 
feature. Any error on the read will affect 11 seeds for the 
alignment based algorithms and only four 4-mers for MetaCluster. 

 

 
Figure 5. The three curves in the figure describe the binning 
average performance when the sequencing error increases 
from 0% to 5%. 

 

3.1.4 Relative Abundance Ratio 
Relative abundance ratio of species is a major factor affecting the 
performances of binning algorithms. When the relative abundance 
ratio between two species is high, existing binning algorithms 
cannot cluster DNA fragments from the same species because it is 
difficult to distinguish the DNA fragments in minority genome 
species from DNA fragments of rare patterns from heavily 
sampled species. We tested the performance of MetaCluster with 
abundance ratio of 1:1, 1:2, 1:3, 1:5 and 1:8, where the minority 
genome’s DNA fragments take about 11.11% to 50% of the 
content. The variation trends are shown in Figure 6.  

With the increase of abundance ratio, the decrease of Genus curve 
is obviously because the genomes of the species are too similar. 
However, when the DNA fragments come from species in 
different Families or Orders, the decreasing is not so significant. 
This result indicates that although MetaCluster works well for 
minority species, the performance for binning relatively rare 
species may still need further improvement. 

3.1.5 Comparison with Existing Binning Algorithms 
We compared the performances of MetaCluster, LikelyBin [22] 
and semi-supervised method CompostBin [24] based on the 5 
genome pairs selected in the original paper of unsupervised 
binning tool LikelyBin. Each dataset contains two species with 
equal relative abundance ratio. There are 500 DNA fragments for 
each species in the datasets with fragment length as low as 400bp.  

As the semi-supervised method, CompostBin requires several 
labelled DNA fragments as the initial seed for its clustering 
algorithm, different numbers of seeds are tested on performance. 
The binning performance of CompostBin is cited from the 
original paper of LikelyBin. In all five datasets, MetaCluster 
performs at least as good as all other algorithms. Besides, we also 
compared the approaches using other hundreds of datasets and in 
all test cases, the results are similar and in some cases, we can 
achieve about 15% higher accuracy. The details of this 
comparison will be given in the full paper. 

The other highlight of MetaCluster is the computational efficiency. 
In practice, a 2-species dataset of 500 fragments per species, with 
length 800bp, consistently takes less than 10 seconds of CPU time 
to run on one Intel 3.0GHz core. For the same workload, 
LikelyBin takes about 360 to 450 seconds of CPU time.  

 
Figure 6. With the increasing of the relative abundance ratio 
of each level, the average clustering performances based on 
three major taxonomic ranges tend to decrease. 

 

3.2 Accuracy of Annotating DNA fragments 
In order to analyze the performance of MetaCluster on annotating 
DNA fragments to the taxonomic tree, first, all the 1140 complete 
bacterial chromosome genomes were downloaded from NCBI 
genomes database ftp server (ftp.ncbi.nih.gov/genomes/). The 
detailed taxonomic information was obtained from the NCBI 
taxonomic database (http://www.ncbi.nlm.nih.gov/taxonomy). 
The NCBI taxonomic tree structure could be downloaded from the 
NCBI taxonomy ftp server (ftp.ncbi.nih.gov/pub/taxonomy/).  
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Recall the precondition and methodology of our annotation 
process that a cluster of DNA fragments for taxonomic annotation 
are from an unknown genome which cannot be found in the NCBI 
database. It is highly probable that the genome sequence of some 
similar species in the level of genius and family or higher ranks 
may be available in the NCBI taxonomic tree. We can annotate 
the unknown genomes by estimating the similarity between 
fragments in the clusters and the reference genomes. To simulate 
the annotation task, in our experiment, we repeatedly selected one 
bacterial genome as the assumed unknown genome and this 
genome removed from the reference genome database. Meanwhile, 
1,000 DNA substrings (fragments) are generated based on the 
selected genome to represent the cluster generated by the binning 
stage. In our experiment, the length of the DNA fragments is 
2,000bp and sequencing error rate is 2%. 

The results are shown in Figure 7. Although the annotating 
accuracy varies for different level between of the overlapping of 
distance between pairs of DNA fragments in different levels 
(Figure 3), the accuracy is over 87% in all levels. 

 
Figure 7. The annotation accuracy based on different 
taxonomic ranks. Both absolute and relative accuracy are 
illustrated here. 

We also compared the performance of MetaCluster on annotation 
with MEGAN [8], a well applied binning tools based on the blast 
alignment result. MEGAN annotates reads by aligning reads to the 
reference genomes in the database. We randomly picked three 
genomes from the same Class but different Orders and removed 
these genomes from the NCBI taxonomic tree. For each genome, 
we generate 2,000 reads of length 2,000bp with error rate varies 
from 0 to 5%. MetaCluster and MEGAN were used to annotate 
these 6,000 reads. The clustering accuracy of MetaCluster varied 
from 92.5% to 95.3% and it also annotated the clusters to the 
correct taxonomic groups. The whole processes could be finished 
within 4 minutes based on one Intel 3.0GHz core. Based on Blastn 
alignment, in the same computer, MEGAN took over 120 minutes 
to finish annotation and about 1000 DNA fragments cannot be 
assigned to any reference genomes even we allow an e-value as 
large as 20. The clustering performance of MEGAN was only 
78.78% (error free, e value = 2), 77.13 (5% error rate, e value = 2) 
and 76.63% (e value = 20 for much loose alignment during blast). 
Therefore, MetaCluster 2.0 out-performs MEGAN in both speed 
and accuracy. 

4. DISCUSSION 
In this paper, we have proposed MetaCluster 2.0 which could bin 
metagenomic sequencing datasets with high accuracy without any 
reference or background information and could also identify 
unknown genomes and annotate them with proper taxonomic 
labels. The methodology of our unsupervised binning step is 
based on the composition feature of l-mer distribution and 
Spearman Footrule Distance. The second annotation step is based 
on the plurality voting system with bottom-up integration strategy 
to annotate the clusters at particular taxonomic level.  

For the unsupervised binning methods, the number of species in a 
metagenomic sequencing dataset is an essential input parameter 
that will affects the binning performance. The exact number of 
species in a MS dataset is usually unknown and is a complex 
research topic. However, to the best of our knowledge, all existing 
unsupervised and part of semi-supervised binning methods require 
the exact number of species be provided as input parameter. 

In our research, the exact number of species inside the sample 
might not be needed. If the selected k value is less than the actual 
number of species inside the sample, the most similar species will 
be clustered together into some taxonomic specific groups. If the k 
value is larger than the actual number of species inside the sample, 
then some DNA fragments from the same genome will be divided 
into clusters. We tested different k values for some datasets and 
the result was satisfactory. 

Although the exact value of k is not necessary, larger k value is 
always recommended because of two reasons. (1) Different 
clusters of the same genome can be annotated with the same 
taxonomic label. (2) When the abundance ratio between different 
species is large, a larger k will divide the majority species into 
many parts so as to maintain the balance among groups, therefore 
improve the clustering performance. 

We have demonstrated this strategy with a simple case: randomly 
pick three genomes from the same Class but different Orders. For 
each genome, we generate 2,000 reads of length 2,000bp. The 
relative abundance ratio is 1:1:8. If k = 3, the clustering accuracy 
is only 83.45% due to the ambiguous cluster of minority species. 
If k = 5, the DNA fragments from majority species are divided 
into 3 clusters and the accuracy increases to 94.15% accordingly. 
After annotation, the clusters are annotated in the rank of Order. 
All the clusters are annotated correctly, and the clusters come 
from the same species are marked with same label thus the user 
can decide to merge them or not. 
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5. APPENDIX 
Algorithm 1: K-mean 

Input: 

ܵ: set of input sequences 

Output:  

,ଵܥ ⋯,ଶܥ ,  ܵ ௄: partition ofܥ

Procedures: 
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ܧ ∶ൌ 0 

Repeats M times 

ሺܿ′ଵ, ܿ′ଶ,⋯ , ܿ′௄ሻ ∶ൌ K randomly selected points from S 

Repeats T times 

for  ݅ ∶ൌ 1 to ܭ 

௜′ܥ ∶ൌ ሼሽ 

for each ݔ in ܵ 

i := argmin௝ୀଵ
௄ ,ݔ௦൫݁ܿ݊ܽݐݏ݅ܦ ܿ′௝൯ 

௜′ܥ ∶ൌ ௜′ܥ ∪ ሼݔሽ 

for  ݅ ∶ൌ 1 to ܭ 

ܿ′௜ ∶ൌ 
ଵ

|஼ᇱ೔|
∑ ௫∈஼ᇱ೔ݔ   

′ܧ ∶ൌ ∑ ∑ ௦݁ܿ݊ܽݐݏ݅ܦ
ଶሺݔ,௫∈஼ᇱ೔

௄
௜ୀଵ ܿ′௜ሻ  

if ܧᇱ ൏  ܧ

ሺܥଵ, ⋯,ଶܥ , ௄ሻܥ ∶ൌ   ሺܥ′ଵ, ⋯,ଶ′ܥ ,  ௄ሻ′ܥ

ൌ:ܧ  ′ܧ

Return ሺܥଵ, ⋯,ଶܥ ,  ௄ሻܥ

 

Algorithm 2: K-mean clustering with outliers filtering 

Input: 

ܵ: set of input sequences 

Output: 

ܵ’: set of outliers  

,ଵܥ ⋯,ଶܥ , ܵ ௄: partition ofܥ െ ܵ’ 

Procedures: 

ሺܥଵ, ⋯,ଶܥ , ௄ሻܥ ∶ൌ K-meanሺܵሻ 

ܵ’ ∶ൌ ሼሽ 

for  i  ∶ൌ 1 to ܭ 

ܿ௜ ∶ൌ  center of ܥ௜ 

௜ߤ ∶ൌ average distances, ∑ ,ݔ௦ሺ݁ܿ݊ܽݐݏ݅ܦ ܿ௜ሻ ௜|⁄௫∈஼೔ܥ|  

௜ߪ ∶ൌ standard deviation of distances 

ට∑ ሺ݁ܿ݊ܽݐݏ݅ܦ௦ሺݔ, ܿ௜ሻ െ ௜ሻߤ
ଶ ሺ|ܥ௜| െ 1ሻ⁄௫∈஼೔   

for each ݔ ∈  ௜ܥ

if ݁ܿ݊ܽݐݏ݅ܦ௦ሺݔ, ௜ሻܥ ൐ ௜ߤ ൅  ௜ߪ2

ܵ’ ∶ൌ ܵ’ ∪ ሼݔሽ 

ሺܥଵ, ⋯,ଶܥ , ௄ሻܥ ∶ൌ K-meanሺܵ െ ܵ’ሻ 

Return ܵ’ and ሺܥଵ, ⋯,ଶܥ ,  ௄ሻܥ

 

Algorithm 3: Annotation 

Input: 

ܵ: set of input sequences 

G: partition of all genome according to taxonomic level 

Output: 

ܵ’: set of outliers  

,ଵܥ ⋯,ଶܥ , ܵ ௄: partition ofܥ െ ܵ’ 

Lሺܥଵሻ, …,ଶሻܥሺܮ ,  ௄ሻ: Classified label of each clusterܥሺܮ

Procedures: 

ሺܥଵ, ⋯,ଶܥ , ௞ሻܥ ∶ൌ Algorithm 2ሺܵሻ 

for  ݅  ∶ൌ 1 to ݇ 

ሺ݃ሻݓ ∶ൌ 0 for all genome ݃ 

for each ݔ ∈ ௜ܥ  

݃∗ ∶ൌ nearest genome of x 

ሺ݃∗ሻݓ ∶ൌ ሺ݃∗ሻݓ  ൅ 1 

for ܨ ∈  ܩ

ሻ:ൌܨሺݓ ∑ ሺ݃ሻ௚∈ிݓ   

Lሺܥ௜ሻ := argmax ி∈ீݓሺܨሻ 

Return ܵ’ , ሺܥଵ, ⋯,ଶܥ , ,ଵሻܥ௄ሻ and ሺLሺܥ …,ଶሻܥሺܮ ,  ௄ሻሻܥሺܮ
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