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Abstract

Background: During the past decade, the development of high throughput nucleic sequencing and mass
spectrometry analysis techniques have enabled the characterization of microbial communities through
metagenomics, metatranscriptomics, metaproteomics and metabolomics data. To reveal the diversity of microbial
communities and interactions between living conditions and microbes, it is necessary to introduce comparative
analysis based upon integration of all four types of data mentioned above. Comparative meta-omics, especially
comparative metageomics, has been established as a routine process to highlight the significant differences in taxon
composition and functional gene abundance among microbiota samples. Meanwhile, biologists are increasingly
concerning about the correlations between meta-omics features and environmental factors, which may further
decipher the adaptation strategy of a microbial community.

Results: We developed a graphical comprehensive analysis software named MetaComp comprising a series of
statistical analysis approaches with visualized results for metagenomics and other meta-omics data comparison. This
software is capable to read files generated by a variety of upstream programs. After data loading, analyses such as
multivariate statistics, hypothesis testing of two-sample, multi-sample as well as two-group sample and a novel
function—regression analysis of environmental factors are offered. Here, regression analysis regards meta-omic
features as independent variable and environmental factors as dependent variables. Moreover, MetaComp is capable
to automatically choose an appropriate two-group sample test based upon the traits of input abundance profiles. We
further evaluate the performance of its choice, and exhibit applications for metagenomics, metaproteomics and
metabolomics samples.

Conclusion: MetaComp, an integrative software capable for applying to all meta-omics data, originally distills the
influence of living environment on microbial community by regression analysis. Moreover, since the automatically
chosen two-group sample test is verified to be outperformed, MetaComp is friendly to users without adequate
statistical training. These improvements are aiming to overcome the new challenges under big data era for all
meta-omics data. MetaComp is available at: http://cqb.pku.edu.cn/ZhuLab/MetaComp/ and https://github.com/
pzhaipku/MetaComp/.
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Background
High-throughput meta-omic approaches over the last

few years have facilitated researches on understanding of

the unculturable majority of microorganisms on earth.

Environmental and clinical microbiota samples are

characterized in metagenomics, metatranscriptomics,

metaproteomics and metabolomics levels. Metagenome

reveals taxonomic composition and functional genes

abundance. Metatranscriptome accompany with

metaproteome further reflect the temporal fluctuation

of gene expression. Metabolome identifies metabolites

associated with phenotype and physiology as biomarkers.

Previously, biologists focused on one or part of all types of

meta-omic information, while the integration of metage-

nomics, metatranscriptomics, metaproteomics and

metabolomics data has begun to gain attention for the

purpose of systematically characterizing complex micro-

bial communities [1]. Therefore, related bioinformatics

tools for processing all types of meta-omics data is in

urgent need.

Though the combination of meta-omics approaches

may describe a single microbiota in a systems-level,

the functional genomic traits associated to host niches

and ecological habitats remains obscure. Therefore, it

is necessary to introduce comparative meta-omic meth-

ods, which refers to statistically comparing meta-omics

data from two or more microbiota samples. During the

past decades, comparative meta-omics analysis has been

established as a routine procedure applied in human

pathology and ecology studies. Researchers have already

discovered host-specific genes in human gut microbiotas

from comparisons between obese and lean volunteers

[2], between long- and short-term dietary volunteers [3,

4] and between patients of nonalcoholic fatty liver dis-

ease (NAFLD) [5] or irritable bowel syndrome (IBS) [6]

and healthy control volunteers. Meanwhile, by applying

these techniques, many studies have reported that the

composition of microbial community varies with depth

of ocean [7, 8] and oscillates seasonally in Western

English Channel [9]. Gene expression pattern of a

microbiota fluctuates during different growth stages

in Acid Mine Drainage (AMD) [10]. Furthermore, it

is notable that an increasing number of studies pay

attention on measuring physiological or ecological vari-

ables for comprehensively investigating the responds of

microbial communities to environmental factor varia-

tions [3, 4, 7, 11, 12]. This trend requires bioinformat-

ics tools not only to distinguish environmental effects

on microbiotas through p-value from hypothesis test-

ing or correlation analysis but also to unveil intrinsic

mechanisms by statistical modeling such as regression

analysis.

For comparative metagenomics, the first tool named

as XIPE-TOTEC offered two-sample test and utilized

metagenomic shotgun sequences as input [13]. Then,

MEGAN was designed to perform barplot for compar-

ing multiple samples clustered in taxonomic or functional

clustering views and integrate all types of meta-omics

data except metabolomics data in the latest version [14].

IMG/M is a web portal supporting a systematical service

containing taxonomic classification, sequence assembly,

functional annotation and differential abundance analysis

for two- and multi-sample comparison of metagenomic

reads [15]. Another comparative metagenomics analy-

sis tool, STAMP, mainly exploits Fishers’s exact test in

two-sample test and t-test in two-group samples. [16].

MetaStats, developed for two- andmulti-sample compari-

son was exploited on data normalization for metagenomic

data [17]. Later on, FANTOM emphasized its ability in

comparison between two groups of metagenomic sam-

ples which was implemented with user-friendly graphical

interface [18].

Several bioinformatic programs had been developed

for comparative metagenomics, however few tools

were specialized for metatranscriptomics, metapro-

teomics and metabolomics data comparison (see Table 1

for details). To compare metatranscriptomics sam-

ples, metagenomeSeq were often introduced in 16S

rRNA, marker-gene expression, RNA-seq data abun-

dance comparison. It was capable for correcting bias

caused by variations on sequencing coverage [19]. As

for metaproteomics data, MEGAN and STAMP were

reported able to process. While only XCMS, an online

metabolomic processing platform, performs two-group

comparison [20].

Recently, the rapid accumulation of all types of meta-

omics data brings out three major challenges. Firstly, most

comparative analysis tools focused on one type of meta-

omics data. A universal analysis tool, which is applicable

for all types of meta-omics data, will be convenient for

researchers characterizing microbiota in multiple meta-

omics levels. Secondly, all these tools paid no attention

to unveil the correlation between microbiota and its liv-

ing conditions such as temperature, humidity, pH value

and salinity. Lacking of this analysis will definitely ham-

per biologists from deciphering the microbial adaptive

strategy and other interaction between microbes and

habitats. Finally, as there are a number of hypothesis

testing methods employed in those tools, choosing an

optimal one is thus a challenge for users without enough

training in statistics. Therefore, an automatical hypoth-

esis testing method selection function based on intrin-

sic attributes of meta-omics data will greatly improve

user experience.

In this study, we present MetaComp, a graphical soft-

ware incorporates metagenomics, metatranscriptomics,

metaproteomics and metabolomics data by accepting

abundance profile matrices (APM) saved as txt or BIOM
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Table 1 Input data for available comparative meta-omic tools

Tool
Meta-omics

Input Format
Hypothesis Multiple Testing

Reference
Dataa Testing Modesb Correctionc

XIPE-TOTEC GS SEED output, APM format. TST Bonferroni and FDR [13]

MEGAN6 GM, GR, GS, BLAST, RDP classifier, SIN NA NA [14]

TM*, TS* -A and STAMP outputs; AP

and P -M in CSV format, BIOM,

DAA and SAM files.

IMG/M4 GR, and GS MG-RAST and BLAST out MST and TST NA [15]

-puts; APM, BIOM, fasta

and fastq files.

STAMP GM, GR, GS, MG-RAST, IMG/M, CoMet MST, TGST and Bonferroni, FDR and [16]

TM*, TS* and RITA outputs; APM a TST Šidák

and P* -nd BIOM files.

Metastats and GM, GR, GS,
APM and BIOM files. MST and TST Bonferroni and FDR [17, 19]

metagenomeSeq TM and TS

Fantom GR, GS CAMERA, MG-RAST and TGST and TST Bonferroni and FDR [18]

IMG/M outputs.

XCMS B cdf, mzData, mzData.XML, MST and TGST FDR [20]

mzXML, netCDF, wiff

and wiff.scan

MetaComp GM, GR, GS, BLAST, HMMscan, IMG/M, MST, TGST and Bonferroni and FDR This work

TM, TS, P MG-RAST, MZmine, Kraken TST

and B and PhymmBL outputs; APM

and BIOM files.

aAsterisk (*) denotes that the data types are not designed to be processed but compatible with this tool as an input. Abbreviation of meta-omics data types: GM: amplicon
sequenced metagenomic marker gene sequeneces; GR: amplicon sequenced 16S rRNA sequences; GS: shotgun sequenced metagenomic sequences; TM: amplicon
sequenced metatranscriptomic marker gene sequences; TS: shotgun sequenced metatranscriptomic sequences; P: metaproteomic sequences. B: metabolomic data
bAbbreviation of hypothesis testing modes. MST: multi-sample test; TGST: two-group sample test; TST: two-sample test
cFDR denotes for false discovery rate correction

format [21] and the outputs of BLAST [22], HMMER

[23], Kraken [24], MG-RAST [25], MZmine [26] and

PhymmBL [27] as input. To reveal the interaction between

microbial community and its living condition, a novel

quantitative characterization of the effect of environmen-

tal factors on microbial community through a nonlin-

ear regression is introduced. MetaComp also provides

a series of statistical analysis and the visualization for

the comparison of functional, physiological and taxo-

nomic signatures in two-, multi- and two-group sam-

ple tests. During two-group comparison, MetaComp is

able to automatically select the most appropriate hypoth-

esis testing strategy based upon characteristics of the

given data set. Moreover, according to our estimation,

the selected hypothesis testing method demonstrates the

best performance in comparison among mainly used

statistical tools. These novel functions agree with the

core concerns of comparative meta-omics in this big

data era.

Implementation
MetaComp is implemented in C# and R program-

ming languages. The software installer for Windows

system, R program and databases of COG, KO and

Pfam categories for Linux system and user guide can

be found at the website http://cqb.pku.edu.cn/ZhuLab/

MetaComp/ or at the GitHub site https://github.com/

pzhaipku/MetaComp/. The website of MetaComp pro-

vided highlight descriptions, pages about software work-

flow, convenient download pages, online user guides,

detailed demonstration of all application examples with

input data and contacts of authors. As illustrated in Fig. 1,

MetaComp provides a concise graphical user interface

that two drop-down menus are presented: File (for data

input) and Analysis (for analysis method selection). In

the following subsections, we first review the prepara-

tion of abundance profiles for four types of meta-omics

data. Then, based on outputs of these pipelines, we fur-

ther introduce the various standard input formats for

http://cqb.pku.edu.cn/ZhuLab /MetaComp/
http://cqb.pku.edu.cn/ZhuLab /MetaComp/
https://github.com /pzhaipku/MetaComp/
https://github.com /pzhaipku/MetaComp/


Zhai et al. BMC Bioinformatics  (2017) 18:434 Page 4 of 16

Fig. 1 The graphical user interface of MetaComp. (a) Drop-down menu File for data input. (b) Drop-down menu Analysis for selecting analysis
methods

MetaComp. Finally, integrated statistical analysis options

and visualization for these analysis are demonstrated. The

structure as well as work flow of MetaComp is displayed

in Fig. 2.

Preparation of abundance profiles of meta-omics data

According to Fig. 3, three types of macromolecules and

other metabolites are first extracted from environmental

samples separately then sequenced or measured by differ-

ent techniques. Two major sequencing strategies for DNA

and RNA chains are designed in different purposes. Shot-

gun sequencing is aiming to reflect the global content of

metagenome or metatranscriptome by randomly ampli-

fying and sequencing all DNA or RNA sequences, while

amplicon sequencing is focused on selected marker genes

or 16S rRNA by specifically amplifying primer induced

sequences [25, 28]. The metaproteome and metabolome

are measured in another routine. Proteins andmetabolites

are first separated and fractionized by multidimensional

liquid chromatography (LC) then measured by tandem

Fig. 2 The workflow of MetaComp. The input data of MetaComp includes meta-omics data (for all analyses) and environmental factors input (only
for regression analysis). The analysis procedure in MetaComp consist of three independent parts: multivariate statistics (PCA and cluster analysis),
statistical hypothesis tests (two-sample test, multi-sample test and two-group sample test) and regression analysis of environmental factors. The
outputs are provided in Excel spreadsheet (k-means clustering results, statistically significance for each feature and regression analysis results) and
visualized in diagrams (PCA map, hierarchical clustering dendrogram, bar plot, MDS map, heat-map)
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Fig. 3 The workflow of preparation for all four types of meta-omics data. Metagenomics, metatranscriptomics, metaproteomics and metabolomics
data are preprocessed through experimental procedures such as molecule extraction, sequencing for nucleotides or MS measuring for peptides
and metabolites. Then, bioinformatics procedures such as sequence assembly and functional annotation are introduced. Finally, the results of this
workflow are functional gene, taxon and physiological metabolite abundance profiles

mass spectrometer and the final result is mass spectrom-

etry (MS) spectra data [20, 29, 30].

After these experimental processing, the rest pro-

cedures for functional gene, taxon and physiological

metabolite abundance profiling within a sample are con-

ducted mainly by bioinformatics approaches. There are

three major workflows for generalizing functional gene

abundance profiles from meta-omics data. The work-

flow for metagenomics and metatranscriptomics ampli-

con sequencing data are directly mapped to marker genes

through microarray techniques, and after reads per kilo-

basesmillion (RPKM) normalization or other complicated

normalization the gene abundance profiles are obtained.

To extract taxon profile of a metagenomic sample, both

16S rRNA reads and binning results are utilized. The

reads of amplicon sequenced 16S rRNA are primarily

clustered into operational taxonomic units (OTUs), then

each OTU is classified using RDP classifier [31], QIIME

[32], Mothur [33] or just BLAST against taxonomic 16S

rRNA databases (RDP [34], Greengenes [35], SILVA [36]

and NCBI 16S rRNA). Except this procedure, shotgun

sequenced genomic reads carry phylogenetic features as

well. Based on characterizing nucleotide composition of

a read or aligning to reference genomes, a series of

approaches denoted as binning are developed. Among

these approaches, PhymmBL is themost accuratemethod,

and recently software Kraken achieves a comparable accu-

racy but consumes less time.

The profiling of shotgun sequencing metageomics data

is consist of three steps: reads assembly, gene predic-

tion and gene annotation. DNA reads are first assem-

bled into contigs or scaffolds through IDBA-UD [37],

CABOG [38], MAP [39] or InteMAP [40]. After that,

MetaGeneMark [41], Glimmer-MG [42] or MetaGUN

integrated with MetaTISA [43, 44] are adopted for gene

prediction. MetaGeneMark [41] and Glimmer-MG [42]

are able to perform a solid detection for known cod-

ing genes within metagenomic contigs, while Meta-

GUN further enables to discover novel genes through

domain based searching strategy [43]. At last, by utiliz-

ing BLAST, HMMER or MG-RAST to search in ontology

databases including COG [45], KO [46], Pfam [47] and

SEED [48], the functional profile for metagenomics data

is obtained.

Though the processing of shotgun sequenced meta-

transcriptomics data is consist of three steps as well, the

second step of transcriptomic analysis is contig mapping

other than gene prediction. After assembled by trinity
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[49], RNA contigs and scaffolds are simply mapped to ref-

erence genomes or Uniprot database [50] utilizing BWA

[51] or Bowtie [52] program. The functional profile is

obtained in the same way as that for metageomics data.

The LC-MS measured metaproteomics data are pro-

filed in just two steps: peptide identification and protein

annotation. As for peptide identification step, MS data

are matched with amino acid or nucleotide sequences via

search engines such as SEQUEST [53] and Mascot [54].

Then, it shares the same functional annotation step with

metagenomic and metatranscriptomic analysis.

The physiological biomarker reflected by metabolomics

data are detected in a unique procedure and consist of

tandem MS data filtering or smoothing, nonlinear reten-

tion time alignment of peaks and spectral matching of

the tandem MS data to METLIN [55] and MassBank [56]

databases. This pipeline can be realized by MZmine [26]

and XCMS [20] tools, resulting in fully annotated MS

profiles of metabolites.

Standard input formats

Though the output file formats of all these mentioned

softwares are largely different, they are regarded as stan-

dard inputs of MetaComp. The functional abundance

profiling are mainly conducted by BLAST and HMMER at

the last annotation step, and only a few meta-omics data

are offered in tab separated variables form as MG-RAST.

For taxon abundance profiling, many OTU clustering pro-

grams (e.g. QIIME, Mothur and RDP classifier) employ

BIOM format files as output, meanwhile binning pro-

grams always offer simply two column hit results. Besides,

the output of physiological biomarker detection is always

arranged in a tabular format such as MZmine. After

loaded, input files are automatically transferred into APM

whose rows correspond to features and columns corre-

spond to individual meta-omic samples. Moreover mul-

tiple file selection is supported. Here, the features refer

to functional gene categories or phylotype categories. The

total number of features i (Fi) observed in metagenomic

sample j (Sj) is represented by cij (see Table 2).

Statistical analysis options and visualization

We integrated a series of statistical analysis options in

MetaComp (see Fig. 2), ranging from descriptive mul-

tivariate statistical analyses, hypothesis testing analyses,

Table 2 Input data of MetaComp

S1 S2 . . . Sn

F1 c11 c21 . . . cn1

F2 c12 c22 . . . cn2

F3 c13 c23 . . . cn3

. . . . . . . . . . . . . . .

Fm c1m c2m . . . cnm

nonlinear regression analysis of environmental factors and

corresponded visualization. Herein, we introduce each

statistical analysis option in the following paragraphs.

Multivariate statistics

MetaComp employs principal component analysis (PCA)

and clustering approaches (e.g. k-means clustering and

hierarchical clustering) to present an overview of the dif-

ferences among the given sets of meta-omics samples

and highlight main features for each sample. Though

it is a descriptive statistical function, these results are

indispensable visualizations of meta-omics features. For

example, enterotypes is illustrated by PCA figure.

Statistical hypothesis tests

Statistical hypothesis tests for comparative meta-omics

are provided in MetaComp through three test modes:

• Mode of two-sample test: As the amount of meta-

omic features is usually huge, we choose z-test instead
of t-test as our default method to assess statistical

significant differences between two individual

samples. Thus z-score for the feature Fi is read as

zi =

(

ci1

Ni1
+

ci2

Ni2

)

/

√

P(1 − P)

(

1

Ni1
+

1

Ni2

)

,

(1)

where Ni1 =
∑m

i=1 ci1, Ni2 =
∑m

i=1 ci2 and

P = (ci1 + ci2)/(Ni1 + Ni2). Since z-test is not valid if

the feature size is insufficient, the prerequisite of

z-test ismin(ci1, ci2) � z2i . When the sample size is

small or user demands a more strict hypothesis

testing method, MetaComp also offers Fisher’s exact

test as an alteration (see the user guide of MetaComp

for detailed recommendation).
• Mode of multi-sample test: In this mode, pairwise

tests between all conceivable pairs of samples are

executed by z-test. The p-value of a specific feature i
is the minimum of all conceivable p-values. Thus we
can identify that the selected feature is significantly

different in at least one pair of samples.
• Mode of two-group sample test: During this test, all

samples are classified into two groups. In MetaComp,

we provide four statistical hypothesis test methods

(t-test, paired t-test, Mann-Whitney U test and

Wilcoxon signed-rank test) to assess whether a

specific feature is significantly different between two

groups of samples. Users can choose a proper

method themselves or let MetaComp determine the

most suitable test method according to the criterion

shown in Table 3.

If MetaComp judges that input data follow a Gaussian

distribution, parametric hypothesis testing should be

introduced. Otherwise when sample size is small or
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Table 3 Criterion for selecting appropriate test

Parametric Non-parametric

Independent t-test Mann-Whitney U test

Correlated Paired t-test Wilcoxon signed-rank test

normality assumption is violated, nonparametric

hypothesis testing should be conducted. If two groups

of samples are consist of matched pairs for resemble

units, or one group of units that has been tested

twice, it indicates that two groups of samples are

correlated. This automatical selection will be helpful

for users lacking of adequate statistical training.

Moreover, odds ratio (OR) test was also implemented

to evaluate the relative abundance for each feature as

Table 4 demonstrated.

Here, G1 and G2 is in short for Group 1 and Group 2.

cjk denotes as counts for the j-th feature from the

k -th group samples.

Considering the possibility of unevenness between

two groups, an empirical continuity correction has

been introduced to improve the accuracy of the test.

Consequently, OR statistic for feature i is

log2OR(i) = log2

(

M11 + R
R+1

) (

M22 + 1
R+1

)

(

M12 + 1
R+1

) (

M21 + R
R+1

) .

(2)

Where R = M1/M2. According to the formula above,

features are categorized as group 1 enrichment (when

log2OR(i) > 1) or group 1 scarcity (when

log2OR(i) < 1).

Multiple test correction

As the typical meta-omics profile consists of hundreds to

thousands of features (e.g. Pfam/COG functional profiles),

direct application of statistical method described above

may probably lead to large numbers of false positives.

For example, choosing a threshold of 0.05 will introduce

500 false positives in a profile contains 10000 features.

Therefore, two correction methods are implemented in

the MetaComp software to solve this problem, includ-

ing false discovery rate (FDR) as the default option and a

stricter option Bonferroni correction.

Table 4 Contingency table for odd ratio test

G1 G2 Sum

Fj,j=i M11 =
∑

j∈G1

cj1 M12 =
∑

j∈G2

cj2 n1 =
2

∑

l=1
M1k

Fj,j �=i M21 =
∑

j/∈G1

cj1 M22 =
∑

j/∈G2

cj2 n2 =
2

∑

l=1
M2k

Sum M1 =
2

∑

j=1
Mj1 M2 =

2
∑

j=1
Mj2

Regression analysis of environmental factors

MetaComp provides a novel function, regression anal-

ysis of environmental factors, which means regression

analysis of the influence exerted by environmental fac-

tors on microbial communities. This original function is

implemented by nonlinear regression analysis via the lasso

algorithm. MetaComp first normalizes the data of both

meta-omics samples and environmental factors. After

that, the ith environmental factor in jth sample (which we

shall denote by xij) is considered as independent variable,

and the jth frequency of kth feature (which we shall denote

by ykj) is considered as dependent variable. Therefore, the

regression function is:

ykj =
∑

i

αkixij +

m �=n
∑

m,n

βkmnxmj · xnj (3)

where xmj · xnj means the co-effect of environmental fac-

tor xmj and xnj to feature ykj. Then, αki and βkmn represent

the regression coefficient of the function. For any spe-

cific feature, the influence of environmental factors on

samples is appraised by coefficient value and correlation

value. Moreover, the reliability of the regression coeffi-

cient is estimated by p-value. Only when all p-values meet

the prescribed standard, the result of regression would be

accepted by MetaComp.

Visualization of statistical significance analysis

For the MetaComp software, the visualizations of the

hypothesis testing results are displayed in Fig. 4, including:

• Bar plot: Bar plot is exhibited for the top 10

significantly different features with their frequencies

in each sample.
• Hierarchical clustering dendrogram and

multi-dimensional scaling map: Hierarchical

clustering dendrogram and multi-dimensional

scaling map are presented to illustrate the clustering

and distance information of meta-omics samples

respectively. Features with significant differences

(p < 0.05) are involved in this clustering.
• Two-dimensional heat-map: Two-dimensional

heat-map is performed to investigate the relative

abundance of each feature and the similarity among

independent samples.

Moreover, our software enables to save the figures in

many formats (e.g. .eps, .pdf, .png and .jpeg etc.) that can

be used directly for publication.

Results and discussion
Analysis process

The analysis workflow of MetaComp can be described as

follows (see Fig. 2 for a graphical overview):
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Fig. 4 The visualization examples of MetaComp. a The bar plot of the top ten significantly different features. b The multi-dimensional scaling
map of samples. Each point represents an individual sample. c The hierarchical clustering dendrogram of given samples. d The heat-map of given
samples

• Meta-omics input data are loaded for the further

statistical processing through File menu. Outputs of

BLAST, HMMER, Kraken, MG-RAST, MZmine and

PhymmBL, BIOM format and APM saved as txt files

are able to load by MetaComp. Additional

environmental factors input data are required if users

intend to conduct environmental factors analysis on

APMs of samples. These environmental factors are

also arranged as APMs.
• After loading input data, users should choose an

analysis from multivariate statistics, statistical

hypothesis tests and environmental factor analysis.

The option is made through Analysis menu and

parameters is set in pop-up dialog boxes.
• The result of analysis is displayed as Excel

spreadsheet with corresponding visualization.

Application in comparison of meta-omic samples

There are four types of meta-omics data characteriz-

ing microbiota in different levels but revealing two types

of information—static composition of taxon as well as

functional gene and dynamic gene expression condition

of a microbial community. Metagenomics data includ-

ing 16S rRNA sequences provide an overview of both

phylogenetic and functional gene composition, however

metatranscriptomics, metaproteomics and metabolomics

data decipher the functional response of a micro-

biota to various environmental perturbations over spatial

and temporal scales. Particularly, metatranscriptome and

metaproteome are quite similar and aiming to reflect

the fluctuation of functional gene expression, mean-

while metabolome complement with metabolic flux vari-

ations of biological pathways via specific physiological
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biomarkers to unveil the functional gene regulation indi-

rectly. Metagenomics data provide the universe of all

possible protein coding genes and metabolic pathways,

meanwhile metatranscriptomics, metaproteomics and

metabolomics data identify a subsets of active genes and

pathways under specific environment. Besides, accord-

ing to our application of MetaComp on various types of

meta-omics data, though these techniques characterize

microbiome in different levels and may introduce concen-

tration instead of abundance or frequency, it seems not

result in differences on the features of data itself. Here-

after, we demonstrate that the application of MetaComp

in meta-omics data presenting in both compositional and

dynamical characterizations.

Example 1. eight typical environmental metagenomic

samples

Herein we analysed eight typical environmental metage-

nomic samples, including whale fall, Sargasso Sea,

Minnesota farm soil and AMD, which were originally

compared by Tringe et al. [57] (input data are listed in

Additional file 1: Table S1). The input shotgun sequenced

data was annotated by Pfam database. Though ampli-

con sequenced 16S rRNA data was not included in this

example, the processing was all the same as for shotgun

sequenced metagenomic data. So that we only focused

on comparing shotgun sequenced data in this case. Dur-

ing this analysis, we chose multi-sample test and the

results clearly illustrate that the protein family profile of a

microbial community is similar to that of other communi-

ties when their living environments are highly analogous

(illustrated in Fig. 5). According to the detailed analysis

results demonstrated in Additional file 2: Table S2, 3456

protein families are significantly different (FDR < 0.01)

among all given 11,110 compared protein families. These

different features are closely related to the living con-

ditions of metagenomic samples. For example, a large

amount of bacteriorhodopsin-like proteins (e.g. PF01036)

are found in all three Sargasso Sea samples, while these

proteins are hardly detected in other samples. This pro-

tein is involved in obtaining light energy. In addition, since

the content of potassium is apparently higher in AMD

and soil, the quantity of potassium ion channel protein

(e.g. PF03814, PF02705) in AMD andMinnesota farm soil

greatly surpasses that in other samples (shown in Table 5).

Example 2. AcidMine Drainagemetaproteomic samples

Due to similarity on characterizing dynamics of func-

tional gene expression in a microbiota, it is enough to

choose either metatranscriptomic samples or metapro-

teomic samples to test MetaComp performance. We then

take metaproteomic samples of membrane and cytoplas-

Fig. 5 Visualizations of metagenomic samples analysing results. a This bar plot displays the top ten significantly different protein families among
eight given samples. The frequencies of PF00072, PF00144, PF00872 in eight samples are dramatically fluctuated. b Hierarchical clustering
dendrogram of eight given samples. cMulti-dimensional scaling map of eight given samples. Obviously, three samples from Sargasso Sea as well as
three whale fall samples are grouped respectively; Minnesota farm soil and AMD samples are separated from Sargasso Sea samples and whale fall
samples in both phylogenetic view and multi-dimensional distance. d The heat-map of eight given samples. This figure demonstrates our
conclusion mentioned above through the similarity of relative gene abundance among eight samples
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Table 5 Part of whale fall, Acid Mine Drainage, Sargasso Sea, and Minnesota soil metagenomic samples analysis result

AMD Soil S.2a S.3 S.4 W.Boneb W.Mat W.Rib p-value q-value Function

PF01036 0 1 344 354 332 0 0 0 1.60e-35 4.67e-34 Bacteriorhodopsin-like protein

PF03814 99 17 3 4 7 0 0 1 5.22e-48 2.92e-46 Ion channel KdpA Potassium-transporting
ATPase A subunit

PF02705 0 87 15 30 30 10 0 1 2.27e-56 3.59e-54 APC K trans K+ potassium transporter

PF01077 42 4870 62 51 71 57 45 37 0 0 NIR SIR Nitrite and sulphite reductase 4Fe-4S
domain

aS=Sargasso Sea
bW=Whale Fall

mic proteins from biofilms at B-drift site of Richmond

mine as input data forMetaComp. The biofilms were clas-

sified into early (labeled as GS0), intermediate (labeled as

GS1) and late (labeled as GS2) growth stages. Significantly

correlated proteins were identified by significance analy-

sis of microarrays (SAM) or clustered by self-organizing

tree algorithm (SOTA) in previous study (see Additional

file 3: Table S3 for more details) [10]. Since MetaComp

is designed for count data which means no negative vari-

ables is allowed as input, we transformed the original

relative abundance data exponentially, with the base as 10.

Herein, we conducted two-sample z-test for these three

samples. The results agree with the previous classifica-

tion in most cases. For instance, 91.9% of early growth

stage, 93.2% of late growth stage and 83.3% of inter-

mediate growth stage expressed genes identified either

by SAM or SOTA are also recognized by MetaComp.

In addition, the rest proteins cannot provide compar-

ing result due to too low abundance among compared

samples.

We further observed that abundance of 65 out of 144

proteins identified previously as early stage expressed

demonstrate significantly lower (p < 0.05) in early growth

stage than intermediate stage. Meanwhile, previously

identified intermediate stage expressed proteins indicate

a p-value less than or equal to 4.18 × 10−30. With this

p-value as threshold, 19 proteins still express significantly

larger in intermediate stage than early stage, within

which 10 proteins are engaged in environmental sensing

procedure, others also correspond with specific cell pro-

cessing and metabolic processing (see Additional file 4:

Table S4 and Additional file 5: Figure S1 to S3 for more

details). For example, LeptoII_Cont_10776_GENE_10

annotated as an important heat shock protein—GroEL,

is regulated by RNA polymerase subunit σ 32 during

heat stress [58]. LeptoII_Scaffold_8241_GENE_340

annotated as Acetyl-CoA synthetase is also demanded

in stationary phase rather than exponential phase to

reduce fatty acids generated from membrane lipids

[59]. Moreover, flagella synthesis related proteins (Lep-

toII_Scaffold_8241_GENE_209 annotated as FlgD,

LeptoII_Scaffold_8241_GENE_653 annotated as FliD

and LeptoII_Scaffold_7904_GENE_5 annotated as FlhA)

are classified as intermediate expressed protein by

MetaComp. According to the previous results [10],

other flagellar proteins are expressed during intermedi-

ate and late stages of growth. We further noticed that

LeptoII_Scaffold_8241_GENE_209, LeptoII_Scaffold_82

-41_GENE_653 and LeptoII_Scaffold_7904_GENE_5

only take parts in middle procedures of flagella biosyn-

thesis other than from the beginning procedures [60].

Therefore, these genes identified as mainly expressed in

intermediate stage by MetaComp is reasonable (these

genes are listed in Table 6).

Table 6 Part of early and intermediate stage gene analysis result

Protein ID KO Early
stage

Intermediate
stage

p-value Function Annotation

LeptoII_Cont_10776_GENE_10 K04077 2.38 6.94 4.88e-32 Cellular
Processing

Chaperonin GroEL

LeptoII_Scaffold_8241_GENE_340 K01895 1.96 6.35 3.07e-30 Environmental
sensing

Acetyl-CoA synthetase

LeptoII_Scaffold_8241_GENE_209 K02389 2.57 6.78 1.72e-30 Environmental
sensing

Probable flagellar hook capping protein
(FlgD)

LeptoII_Scaffold_8241_GENE_653 K02407 1.32 7.84 1.36e-41 Environmental
sensing

Putative flagellar hook-associated protein
(FliD)

LeptoII_Scaffold_7904_GENE_5 K02400 0.77 7.63 4.51e-43 Environmental
sensing

Probable flagellar biosynthesis protein FlhA
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Example 3. human fecal metabolomic samples

Since metabolome data indirectly reflect the conditional

response of a microbial community, which is distinct with

metatranscriptome and metaproteome, it is necessary to

examine the performance of MetaComp on this data. We

applied MetaComp on metabolomics data of fecal micro-

biota detected by Raman et al. [5]. The original data

includes two groups of samples: 30 NAFLD patients for

one group and another group with an equal number of

healthy volunteers (see Additional file 6: Table S5 for more

details). In Raman’s study, researchers focused on detect-

ing volatile organic compounds (VOC) which may exert

toxic effect to human liver and secreted by human gut

microbiota [5]. VOCs were not quantitatively measured

but counted by detected or not per individual. Therefore,

by gathering this binary counts for both prevalence group

and control group, the maximum value for each type of

VOC per group is 30.

MetaComp conducted a two-sample z-test on NAFLD

and control group, and results indicate that 15 out of 220

VOCs are significantly different between two groups (see

Additional file 7: Table S6 and Additional file 5: Figure

S4 for more details). Furthermore, most VOCs identi-

fied as significantly different are included in previous

study expect indolizine and acetic acid butyl ester and it

may because of lacking of hits (only 5 hits in appeared

in healthy control samples) that makes it difficult to be

detected in previous study. It is notable that 6 out of 8

VOCs enriched in NAFLD fecal samples are short fatty

acid esters. These derivatives of short fatty acids reflect

that a relatively high concentration of hexose dietary such

as frequently drinking soft drinks with fructose, which is

a cause of NAFLD (shown in Table 7) [61].

Application in regression analysis of environmental factors

Example 1. Hawaii Oceanmetagenomic samples

We applied the novel function of MetaComp, regres-

sion analysis of environmental factors, on metagenomic

samples from Hawaii Ocean [7] (see Additional file 8:

Table S7 for more details). The input reads were aligned

against COG database [45]. The selected environmen-

tal factors are dissolved inorganic phosphate (DIP) and

Table 7 Part of nonalcoholic fatty liver disease samples analysis
result

Compound Control NAFLDa p-value

Butanoic acid, propyl ester 1 14 0.0016

Ethyl acetate 0 9 0.0045

Acetic acid, pentyl ester 1 10 0.0112

Propanoic acid, propyl ester 5 18 0.0142

Butanoic acid, 3-methyl-, butyl ester 1 9 0.0183

aNAFLD=nonalcoholic fatty liver disease

oxygen content (OC) (see Additional file 9: Table S8

for more details). Concluded from the detailed analysis

results (see Additional file 10: Table S9 for more details),

we discover 102 out of 4,873 COGs which are probably

corresponding to the living environment of Hawaii Ocean

(p < 0.1). Moreover, some of the selected COG fea-

tures are related to the generation and consumption of

Adenosine Triphosphate (ATP), which is evidently related

to phosphate and oxygen. For instance, COG0378, as a

Ni2+-binding GTPase involved in regulation of expres-

sion and maturation of urease and hydrogenase, will

generate organic phosphorus as well as dehydrogenase.

Moreover, this reaction may consume oxygen. It is obvi-

ous that this COG is linked to both DIP and OC.

Details of these protein families are shown in Table 8.

Meanwhile, COGs relevant to the content of DIP (e.g.

COG0379, COG0458, COG0486, COG0849, COG1190

and COG1921) are selected by MetaComp (illustrated

in Fig. 6).

Example 2. AcidMine Drainagemetagenomic samples

A total of 40 AMD samples distinct in environmental

characteristics were previously collected across Southeast

China. Sampling procedure and data processing were

described previously [62] (see Additional file 11: Table

S10 for more details). The measured environmental fac-

tors were dissolved oxygen (DO), total organic carbon

(TOC) and SO2−
4 (see Additional file 12: Table S11 for

more details). According to the detailed analysis results

(see Additional file 13: Table S12 for more details), we dis-

cover 69 out of 142 genes which are presumably related

to the living environment (p < 0.1). Among the selected

genes, fumarate and nitrate reductase (fnr) gene is related

to the respiratory chain of bacteria and the reaction of

it requires a mass of sulfur. Therefore the abundance of

fnr is apparently linked to DO and SO2−
4 . Furthermore,

ammonia monooxygenase A (amoA) is an enzyme, which

catalyses nitration reaction. This reaction may consume

organic carbon and oxygen. It is manifestly related to the

content of TOC and DO.

Compared with other tools in differentially abundant

features detection

Variations embedded in meta-omics are always difficult to

recognize when the hit number of a feature is slightly dif-

ferent from one group of samples to another but evidently

fluctuated among samples of the same group. Since that,

to evaluate the differentially abundant features detection

ability of current comparative meta-omics methods, we

simulated two groups of count data from twin gut sam-

ples [2], of which 1,649,149 hits for 1000 COG features

was annotated through BLAST against COG database,

to reserve the complexity of true data. Then we take a

previous evaluation study for reference [63], samples are
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Table 8 Part of relationship between metagenomic samples and environmental factors analysis result

Coefficient
p-value Correlation Annotation

DIPa OCb DIP&OC

COG0378 0 0 3.303e-06 2.97e-02 9.01e-01 Ni2+-binding GTPase involved in regulation of expression and mature

COG1921 1.157e-03 0 0 8.41e-02 8.22e-01 Selenocysteine synthase [seryl-tRNASer selenium transferase]

COG0318 4.841e-03 0 0 8.97e-02 8.15e-01 Acyl-CoA synthetases (AMP-forming)/AMP-acid ligases II

aDIP=dissolved inorganic phosphate
bOxygen=oxygen content

first amplified with fold change q = 1.25 and resampled

into two equal sized groups of samples through randomly

sampling without replacement. After that, 10% of COGs

from the second group were chosen by chance and down-

sampled according to binomial distribution. Herein, we

denoted x
′

ij as hits of the j-th feature from the i-th sam-

ple and it followed binomial distribution B(xij, p), where

xij was hit number after resampling and p = 1/q to

control the alteration between two groups. Therefore, we

obtained two groups of samples with hits of 1,800,000

and 1,744,981 in total, respectively. The dataset generated

from resampling is demonstrated in Additional file 14:

Table S13.

Since t-test (employed by Fantom, STAMP, Metastats,

XCMS and MetaComp in two-group sample test), paired

t-test (employed by XCMS and MetaComp in two-group

Fig. 6 Diagrams of regression. These diagrams exhibit the relationship between DIP and selected functional genes categorized by COG (COG0379,
COG0458, COG0486, COG0849, COG1190 and COG1921). It is obviously that the abundance of these genes is linear with the content of DIP
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sample test for correlated samples), non-parametric t-

test (employed by STAMP in two-group sample test),

Wilcoxon Mann-Whitney U test (employed by XCMS

andMetaComp in two-group sample test for independent

samples) and Wilcoxon signed-rank test (employed by

XCMS and MetaComp in two-group sample test for cor-

related samples) were mainly employed hypothesis testing

methods, we took these methods for camparison. The

result is listed in Table 9, and the detailed significance

detection are presented in Additional file 15: Table S14.

Under the threshold of FDR < 0.05, it is obvious that

MetaComp automatically adopted Wilcoxon signed-rank

test performed the best over other methods with the high-

est sensitivity (100.0%) and a decent specificity (99.9%).

Here, sensitivity (SN) and specificity (SP) were calculated

with true positive (TP), true negative (TN), false positive

(FP) and false negative (FN) as:

SN =
TP

TP + FN
, SP =

TN

TN + FP
. (4)

We further plotted the Receiver operating characteristic

(ROC) curve (shown in Fig. 7) to demonstrate the per-

formance of all five hypothesis testing methods as well.

This analysis indicated that area under ROC curve (AUC)

was almost 1.0 and confirmed automatical selection (other

than recommended by XCMS) of MetaComp was the

most appropriate one.

Conclusion
Compared with the previously developed tools, Meta-

Comp takes advantages in three fields.

• Our software is universally applied in all types of

meta-omics data including metagenomics,

metatranscriptomics, metaproteomics and

meta-bolomics data.
• It can be utilized in revealing the relationship between

environmental factors and meta-omic samples

directly through a nonlinear regression analysis.
• MetaComp is capable of automatically selecting the

proper statistical method in two-group sample test

thus improving experience for users that are not

expertises of statistics.

Fig. 7 ROC curve for all five methods. ROC performance of five
methods in significant feature detection

MetaComp, as comprehensive analysis software for

comparative meta-omics, takes advantages in incorpora-

tion of all types of meta-omics data, nonlinear regression

analysis on environmental factors and automatical selec-

tion of suitable tests in two-group sample situation. These

improvements meet the major demands in big data era

of all types of meta-omics data. Moreover, according to

our evaluation, MetaComp outperforms other methods

by the automatically selected hypothesis testing method

in detection of differentially abundant features. In brief,

MetaComp is an integrative comparative meta-oimcs

software designed for uncovering biological significant

differences and providing visualization of these results

for biologists. Moreover, it will throw light upon future

comparative meta-omics studies on the complicated rela-

tionship between microbes and their living environments.

Availability and requirements
Project name:MetaComp.

Project home page: Homepage: http://cqb.pku.edu.cn/

ZhuLab/MetaComp/

GitHub page: https://github.com/pzhaipku/MetaComp/

Operating system(s): Linux and Windows 7, 8 and 10.

Programming language: C# & R

Other requirements: R 3.1.3 or higher.

Any restrictions to use by non-academics: none.

Table 9 Comparison of two-group sample test methods (FDR <0.05)

Hypothesis test True positive False negative False positive True negative Sensitivity Specificity

Non-parametric t-test 65 35 0 900 65.0% 100.0%

Paired t-test 100 0 386 524 100.0% 57.6%

t-test 65 35 0 900 65.0% 100.0%

Wilcoxon rank-sum test 44 56 0 900 44.0% 100.0%

Wilcoxon signed-rank testa 100 0 1 899 100.0% 99.9%

aThis method is automatically selected by MetaComp

http://cqb.pku.edu.cn/ZhuLab/MetaComp/
http://cqb.pku.edu.cn/ZhuLab/MetaComp/
https://github.com/pzhaipku/MetaComp/
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