codei4;lib

JOURNAL

Issue 19, 2013-01-15 ISSN 1940-5758

Metadata Analysis at the Command-Line

Over the past few years the University of North Texas Libraries’ Digital Projects Unit (DPU) has developed a set of
metadata analysis tools, processes, and methodologies aimed at helping to focus limited quality control resources on the
areas of the collection where they might have the most benefit. The key to this work lies in its simplicity: records harvested
from OAI-PMH-enabled digital repositories are transformed into a format that makes them easily parsable using traditional
Unix/Linux-based command-line tools. This article describes the overall methodology, introduces two simple open-source
tools developed to help with the aforementioned harvesting and breaking, and provides example commands to demonstrate
some common metadata analysis requests. All software tools described in the article are available with an open-source
license via the author’s GitHub account.

by Mark Phillips

Introduction

The UNT Libraries’ Digital Libraries Division is responsible for the creation and quality review of the majority of metadata
records in the UNT Libraries’ Digital Collections. These collections contain items of similar format to other university library
collections of comparable size. ltems in the collections include digitized and born-digital photographs, letters, documents,
maps, ledgers, technical reports, and theses and dissertations. The size and scope of these collections continue to grow
at an increasing rate for the past three years measuring 83,000, 93,000, and 120,000 items added per year for the fiscal
years 2010, 2011, and 2012. The continued growth in these collections means that there are a greater number of
metadata records created by an increasing number of metadata creators, which in turn causes a wider variance in quality.
The need to analyze and report statistics for these metadata records has lead the UNT Libraries to develop new tools and
processes to ensure that high quality metadata records are used throughout its digital library collections.

This article describes an approach in use atthe UNT Libraries for harvesting metadata records from an OAI-PMH
repository and then transforming them into a simpler text format, which can easily be consumed by a number of standard
command-line tools available freely on most Unix and Linux based systems. Metadata quality, as defined for this article,
falls into three major areas.

Collection Level Analytics — How many of something are in the entire collection of metadata records? For example, how
many unique creators are represented by the collection? Which creator is associated with the most items? Whatitem in
the collection has the most creator, subject or coverage instances? These analytics are helpful in communicating metrics
about the collection to others.

Metadata Completeness — How well does the collection’s item-level metadata conform to various measures of
completeness? What are required fields for a given subset of metadata, and how well do the collection’s metadata records
adhere to these requirements? How does this collection of metadata meet both metadata creator and metadata consumer
ideals of value?

Metadata Value Quality — Based on local requirements, how well do the values within a given metadata record match
those of standard or defined metadata specifications? For example, if a collection of metadata records utilizes the
Extended Date Time Format for the date values in the collection, how well does the metadata collection meet the
requirement of that format? Which values need to be changed in order to meet more of the requirements?

The tools and methodology explained in this article provide a way of identifying these areas of metadata cleanup to focus
our attention, and help answer the question, “If there is a limited amount of time to spend on metadata cleanup, whatis the
best use of this time?”

http://journal.code4lib.org/issues/issues/issue19
http://journal.code4lib.org/

Getting_; the data to the rig_)ht tools

The command line in the Unix/Linux environment offers a number of tools which when used in different combinations
provide a useful pipeline for manipulating data. The workflow described below makes use of many standard Unix/Linux
tools:

= sort—sorteach line of a text file

= uniq - report or omit repeated lines

= wc — count the number of words or lines

= awk — pattern-directed scanning and processing language
= grep - printlines matching a supplied pattern

These tools work by having the output (standard output or stdout) of one tool act as the input (standard input or stdin) of
the next tool, and chaining these tools together by directing the output and input in a series of processes often referred to
as a pipeline.

The tools generally operate on simple text formats. The most challenging aspect of working with these tools in a metadata
analysis workflow is converting the metadata from a metadata repository into a format that can be easily consumed by the
tools.

Many repositories have adopted the Open Archives Initiatives Protocol for Metadata Harvesting (OAI-PMH) [1] as a way to
share metadata with others. At this time there are over 1,850 repositories worldwide that make metadata available with
this protocol. The methodology described in this article makes use of OAI-PMH as the way to retrieve records from a
repository.

A concise view of the methodology used by the UNT Libraries is to provide a straightforward workflow for harvesting
records with a simple OAI-PMH harvester into an xml file referred to as a “repository file,” then using another small tool to
convert this repository into a text format that is easily consumed by common command-line tools.

Once metadata records have been collected the next step is to convert from the format presented by the OAI-PMH
repository into a format that is usable by the previously mentioned command-line tools. An example of the difference in
representation can be outlined in the following two examples:

1 <record>
2 <header>
3 <identifier>info:ark/67531/metadc97952</identifier>
4 <datestamp>2012-08-17T12:16:00Z2</datestamp>
o <setSpec>partner:UNTCAS</setSpec>
S <setSpec>collection:UNTSW</setSpec>
8 <setSpec>access rights:public</setSpec>
9 </header>
10 <metadata>
11 <oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai dc="http://www.ope:
12 <dc:title>Fenologia de Tayloria dubyi (Splachnaceae) en las turberas de la Rese:
13 <dc:title>Phenology of Tayloria dubyi (Splachnaceae) in the peatlands of the Cag
14 <dc:title>Sub-Antarctic Biocultural Conservation Program</dc:title>
15 <dc:creator>Jofre, Jocelyn</dc:creator>
16 <dc:creator>Massardo, Francisca</dc:creator>
17 <dc:creator>Rozzi, Ricardo</dc:creator>
18 <dc:creator>Goffinet, Bernard</dc:creator>
19 <dc:creator>Marino, Paul</dc:creator>
58 <dc:creator>Raguso, Robert</dc:creator>
55 <dc:creator>Navarro, Nelso P.</dc:creator>
53 <dc:subject>bryophytes</dc:subject>
24 <dc:subject>Cape Horn Biosphere Reserve</dc:subject>
25 <dc:subject>phenology reproduction</dc:subject>
26 <dc:subject>Splachnaceae</dc:subject>
27 <dc:subject>sub-Antarctic Magellanic ecoregion</dc:subject>

http://journal.code4lib.org/articles/7818#note1
http://purl.org/dc/elements/1.1/
http://www.openarchives.org/OAI/2.0/oai_dc/

28
29
30
31
32
33
34
35
36
37
38
39

O ~J o U WN -

S I I R R R R e e e e e e e e
DU WNRFRFOWOLJoU ™ WN - O W

<dc

:description>This article discusses the phenology of Tayloria dubyi

(Splachn:e

<dc:publisher>Sociedad de Biologia de Chile</dc:publisher>

<dc:date>2010</dc:date>

<dc:type>Article</dc: type>

<dc:format>12 p.</dc:format>

<dc: format>Text</dc: format>

<dc:identifier>http://digital.library.unt.edu/ark:/67531/metadc97952/</dc:ident:

<dc:identifier>ark: ark:/67531/metadc97952</dc:identifier>

<dc:source>Revista Chilena de Historia Natural, 2010, Santiago: Sociedad de Bio:

<dc:language>Spanish</dc:language>

<dc:rights>Public</dc:rights>

</oai_dc:dc>
</metadata>
</record>
»

info:ark/67531/metadc97952 {http://purl.org/dc/elements/1.1/}title Fenologia de Taylor:
info:ark/67531/metadc97952 {http://purl.org/dc/elements/1.1/}title Phenology of Taylor:
info:ark/67531/metadc97952 {http://purl.org/dc/elements/1.1/}title Sub-Antarctic Biocu!
info:ark/67531/metadc97952 {http://purl.org/dc/elements/1.1/}creator Jofre, Jocelyn
info:ark/67531/metadc97952 {http://purl.org/dc/elements/1.1/}creator Massardo, Franc:
info:ark/67531/metadc97952 {http://purl.org/dc/elements/1.1/}creator Rozzi, Ricardo
info:ark/67531/metadc97952 {http://purl.org/dc/elements/1.1/}creator Goffinet, Bernai:
info:ark/67531/metadc97952 {http://purl.org/dc/elements/1.1/}creator Marino, Paul
info:ark/67531/metadc97952 {http://purl.org/dc/elements/1.1/}creator Raguso, Robert
info:ark/67531/metadc97952 {http://purl.org/dc/elements/1.1/}creator Navarro, Nelso 1
info:ark/67531/metadc97952 {http://purl.org/dc/elements/1.1/}subject bryophytes
info:ark/67531/metadc97952 {http://purl.org/dc/elements/1.1/}subject Cape Horn Biospl
info:ark/67531/metadc97952 {http://purl.org/dc/elements/1.1/}subject phenology reproc
info:ark/67531/metadc97952 {http://purl.org/dc/elements/1.1/}subject Splachnaceae
info:ark/67531/metadc97952 {http://purl.org/dc/elements/1.1/}subject sub-Antarctic M
info:ark/67531/metadc97952 {http://purl.org/dc/elements/1.1/}publisher Sociedad de Bio!:
info:ark/67531/metadc97952 {http://purl.org/dc/elements/1.1/}date 2010
info:ark/67531/metadc97952 {http://purl.org/dc/elements/1.1/}type Article
info:ark/67531/metadc97952 {http://purl.org/dc/elements/1.1/}format 12 p.
info:ark/67531/metadc97952 {http://purl.org/dc/elements/1.1/}format Text
info:ark/67531/metadc97952 {http://purl.org/dc/elements/1.1/}identifier http://digit
info:ark/67531/metadc97952 {http://purl.org/dc/elements/1.1/}identifier ark: ark:/6"
info:ark/67531/metadc97952 {http://purl.org/dc/elements/1.1/}source Revista Chilena
info:ark/67531/metadc97952 {http://purl.org/dc/elements/1.1/}language Spanish
info:ark/67531/metadc97952 {http://purl.org/dc/elements/1.1/}rights Public
info:ark/67531/metadc97952 {http://purl.org/dc/elements/1.1/}description This article

14

The first example displays a common oai_dc record produced by an OAI-PMH repository. The second example shows the
way that many of the command line tools expect to receive text: flattened and consistently delimited.

By utilizing OAI-PMH for this workflow, the concepts, methods, and tools are more portable and work with any repository
that supports this protocol. This approach can therefore be more broadly applied than a workflow tightly integrated into an
individual platform’s infrastructure.

The tools developed for this workflow are described below with examples of common metadata analysis operations
following the tool description.

Introduction to the tools

OAI-PMH Harvester

The first tool is an OAI-PMH harvester written in Python and based significantly on the Two Page OAIl Harvester from
OCLC Research [2]. The harvester, while simple, offers a set of options that cover many standard use cases for harvesting
metadata records from an OAI-PMH repository. The harvester takes as input the URL for an OAI-PMH repository and the
name of the output file for storing the results of the harvest. The output of the OAI-PMH response is stored as a single xml
file enclosed in a set of <repository> tags.

http://journal.code4lib.org/articles/7818#note2
http://digital.library.unt.edu/ark:/67531/metadc97952/
http://purl.org/dc/elements/1.1/
http://purl.org/dc/elements/1.1/
http://purl.org/dc/elements/1.1/
http://purl.org/dc/elements/1.1/
http://purl.org/dc/elements/1.1/
http://purl.org/dc/elements/1.1/
http://purl.org/dc/elements/1.1/
http://purl.org/dc/elements/1.1/
http://purl.org/dc/elements/1.1/
http://purl.org/dc/elements/1.1/
http://purl.org/dc/elements/1.1/
http://purl.org/dc/elements/1.1/
http://purl.org/dc/elements/1.1/
http://purl.org/dc/elements/1.1/
http://purl.org/dc/elements/1.1/
http://purl.org/dc/elements/1.1/
http://purl.org/dc/elements/1.1/
http://purl.org/dc/elements/1.1/
http://purl.org/dc/elements/1.1/
http://purl.org/dc/elements/1.1/
http://purl.org/dc/elements/1.1/
http://digital.library.unt.edu/ark:/67531/metadc97952/
http://purl.org/dc/elements/1.1/
http://purl.org/dc/elements/1.1/
http://purl.org/dc/elements/1.1/
http://purl.org/dc/elements/1.1/
http://purl.org/dc/elements/1.1/

1 mphillips$ python pyoaiharvest.py -1 http://digital.library.unt.edu/explore/collections/T

The above command will harvest all records from the OAI-PMH repository available at the url

14

http://digital.library.unt.edu/explore/collections/lUNTSW/oai/ and save them as a file named untsw.dc.xml. The default
metadata format of oai_dc is requested from the repository and transmitted back to the harvester. For a full list of command

line options see the help screen for the script:

1 mphillips$ python pyoaiharvest.py -h

2 Usage: pyoaiharvest.py [options]

3

4 Options:

5 -h, --help show this help message and exit

6 -1 LINK, --1ink=LINK URL of repository

7 -0 FILENAME, --filename=FILENAME

8 write repository to file

9 -f FROMDATE, --from=FROMDATE
10 harvest records from this date yyyy-mm-dd
11 -u UNTIL, --until=UNTIL
12 harvest records until this date yyyy-mm-dd
13 -m MDPREFIX, --mdprefix=MDPREFIX
14 use the specified metadata format
15 -s SETNAME, --setName=SETNAME
16 harvest the specified set

The tool supports requesting a specific setSpec, a different metadata format, or limiting to a date range for updating

collections of existing records.

Repository Breakers

Once a set of metadata records have been harvested, the next step of processing metadata records is converting them
into a text format that can act as input to common command line tools. The tool dc_breaker.py is used for this function. This
tool efficiently consumes the output format from the pyoaiharvester.py script as input and provides a set of options for

converting this into formats easily used by other command-line tools.

1 mphillips$ python dc breaker.py untsw.dc.xml

2 1000 records processed

3

4 {http://purl.org/dc/elements/1.1/}contributor: | \ 1032/1835
5 {http://purl.org/dc/elements/1.1/}coverage: |== | 172/1835
6 {http://purl.org/dc/elements/1.1/}creator: |======= \ 1834/1835
7 {http://purl.org/dc/elements/1.1/}date: |======= \ 1807/1835
8 {http://purl.org/dc/elements/1.1/}description: |======= \ 1832/1835
9 {http://purl.org/dc/elements/1.1/}format: |=== \ 1835/1835
10 {http://purl.org/dc/elements/1.1/}identifier: |=== \ 1835/1835
11 {http://purl.org/dc/elements/1.1/}language: |=== \ 1835/1835
12 {http://purl.org/dc/elements/1.1/}publisher: |========= \ 681/1835
13 {http://purl.org/dc/elements/1.1/}relation: |==== \ 351/1835
14 {http://purl.org/dc/elements/1.1/}rights: |=== \ 1671/1835
15 {http://purl.org/dc/elements/1.1/}source: |=== == \ 1426/1835
16 {http://purl.org/dc/elements/1.1/}subject: |=== \ 1835/1835
17 {http://purl.org/dc/elements/1.1/}title: |=== \ 1835/1835
18 {http://purl.org/dc/elements/1.1/}type: |=== \ 1835/1835
19
20 dc_completeness 79.258856
21 collection completeness 84.250681
22 wwww_completeness 99.604905
23 average completeness 87.704814

4

The example above runs the tool without any options selected. This will generate an output that can be helpful for seeing
the overall utilization of fields within a collection of metadata records. It shows the fifteen elements of the oai_dc metadata
scheme, as well as a visualization of the percentage of records in the repository file which have at least one value in this
element. Next, the output presents a column showing the number of records in the repository that contain this field related
to the total number of records in the collection and, finally, a percentage of utilization of this field in the collection.

http://digital.library.unt.edu/explore/collections/UNTSW/oai/
http://digital.library.unt.edu/explore/collections/UNTSW/oai/
http://purl.org/dc/elements/1.1/
http://purl.org/dc/elements/1.1/
http://purl.org/dc/elements/1.1/
http://purl.org/dc/elements/1.1/
http://purl.org/dc/elements/1.1/
http://purl.org/dc/elements/1.1/
http://purl.org/dc/elements/1.1/
http://purl.org/dc/elements/1.1/
http://purl.org/dc/elements/1.1/
http://purl.org/dc/elements/1.1/
http://purl.org/dc/elements/1.1/
http://purl.org/dc/elements/1.1/
http://purl.org/dc/elements/1.1/
http://purl.org/dc/elements/1.1/
http://purl.org/dc/elements/1.1/

Next, the tool provides a set of completeness scores, which give another type of overview of the collection. The first score
is a percentage of completeness assuming that all fifteen of the oai_dc elements are required, the second is a measure of
completeness as a collection. This percentage takes into account the fields used within the collection and generates a
percentage of completeness based on those fields being present. For example, if a collection of metadata records uses
the fields title, creator, description, and data exclusively, only these fields are used in the calculation of collection
completeness. Finally, the percentage of completeness is based on the recommendation by the Kernel Metadata and
Electronic Resource Citations (ERCs) [3] community, which state that the who, what, where, when of an item are required
for adequate access and citation of an item. In this case who is mapped to creator, what is mapped to title, where is
mapped to identifier and when is mapped to date. In addition to these completeness values there is an average of the
three scores presented. These completeness measures are useful as an overview of collection level metadata and in
showing improvement resulting from metadata cleanup activities.

Other sample uses of this tool are printing to standard output each value of a specific element either by itself or in the
format of identifier <tab> value.

mphillips$ python dc breaker.py -e creator untsw.dc.xml

1

2

3 Tummala, Dinesh

4 Li, Xinrong

5 Nguyen, Son

6 Akl, Robert G.

7 Garlick, Ryan

8 Akl, Robert G.

9 Li, Wenming

10 Kavi, Krishna

11 Akl, Robert G.

12 Alhabsi, Amer H.
13 Al-Rizzo, Hussain M.
14 Akl, Robert G.

15 Akl, Robert G.

16 Parvez, Asad

17 Nguyen, Son

18 Akl, Robert G.

19 Naraghi-Pour, Mort
20 Hegde, Manju
21 Haidar, Mohamad
22 Akl, Robert G.
23 Al-Rizzo, Hussain
24 Chan, Yupo
25 e

This example shows each instance of the creator elementin the repository with one instance per line.

1 mphillips$ python dc breaker.py -e creator -i untsw.dc.xml
2

3 info:ark/67531/metadc30827 Tummala, Dinesh

4 info:ark/67531/metadc30827 Li, Xinrong

5 info:ark/67531/metadc30820 Nguyen, Son

6 info:ark/67531/metadc30820 Akl, Robert G.

7 info:ark/67531/metadc30828 Garlick, Ryan

8 info:ark/67531/metadc30828 Akl, Robert G.

9 info:ark/67531/metadc30824 Li, Wenming
10 info:ark/67531/metadc30824 Kavi, Krishna
11 info:ark/67531/metadc30824 Akl, Robert G.
12 info:ark/67531/metadc30829 Alhabsi, Amer H.
13 info:ark/67531/metadc30829 Al-Rizzo, Hussain M.
14 info:ark/67531/metadc30829 Akl, Robert G.

15 info:ark/67531/metadc30826 Akl, Robert G.

16 info:ark/67531/metadc30826 Parvez, Asad

17 info:ark/67531/metadc30826 Nguyen, Son

18 info:ark/67531/metadc30823 Akl, Robert G.

19 info:ark/67531/metadc30823 Naraghi-Pour, Mort
20 info:ark/67531/metadc30823 Hegde, Manju
21 info:ark/67531/metadc30835 Haidar, Mohamad
22 info:ark/67531/metadc30835 Akl, Robert G.
23 info:ark/67531/metadc30835 Al-Rizzo, Hussain
24 info:ark/67531/metadc30835 Chan, Yupo

http://journal.code4lib.org/articles/7818#note3

25

This is very similar to the previous example but it prepends the records identifier from the oai record identifier to the
beginning of each line and separates the identifier from the value by a tab character.

When working with metadata record cleanup itis sometimes necessary to identify which records in a set do not have a
value. This can be accomplished by adding the —p flag which displays if an instance of the specified elementis presentin

the record.

1

2

3 info:
4 info:
5 info:
6 info:
7 info:
8 info:
9 info:
10 info
11 info:
12 info:
13 info:
14 info:
15 info:
16 info:
17 info:
18

mphillips$ python dc breaker.py -e creator -p untsw.dc.xml

ark/67531/metadc27055
ark/67531/metadc27052
ark/67531/metadc27051
ark/67531/metadc27057
ark/67531/metadc27050
ark/67531/metadc27058
ark/67531/metadc27054

:ark/67531/metadc27059

ark/67531/metadc27056
ark/67531/metadc27053
ark/67531/metadc27175
ark/67531/metadc27172
ark/67531/metadc27171
ark/67531/metadc27177

True
True
True
True
True
True
True
True
True
True
True
True
True
True

ark/67531/metadcl11250 False

This displays the identifier for the record followed by a True if the record has value for that element or False if the record
does not have value for the specified element.

Finally an option to dump all data in the repository file into a tab-delimited format is available by using the flag —d.

1
2
3
4
5
6
-
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22

mphillips$ python dc breaker.py -e creator -d untsw.dc.xml

info

info

info

info

info

info

info

:ark/67531/metadc27055
info:
:ark/67531/metadc27055
info:
info:
:ark/67531/metadc27055
info:
info:
:ark/67531/metadc27055
info:
info:
:ark/67531/metadc27055
info:
info:
:ark/67531/metadc27052
info:
info:
:ark/67531/metadc27052
info:

ark/67531/metadc27055

ark/67531/metadc27055
ark/67531/metadc27055

ark/67531/metadc27055
ark/67531/metadc27055

ark/67531/metadc27055
ark/67531/metadc27055

ark/67531/metadc27055
ark/67531/metadc27055

ark/67531/metadc27052
ark/67531/metadc27052

ark/67531/metadc27052

Metadata Analysis Examples

{http

://purl.
{http:
{http:
{http:
{http:
{http:
{http:
{http:
{http:
{http:
{http:
{http:
{http:
{http:
{http:
{http:
{http:
{http:
{http:

//purl.
//purl.
//purl.
//purl.
//purl.
//purl.
//purl.
//purl.
//purl.
//purl.
//purl.
//purl.
//purl.
//purl.
//purl.
//purl.
//purl.
//purl.

org/dc/elements/1.
org/dc/elements/1.
org/dc/elements/1.
org/dc/elements/1.
org/dc/elements/1.
org/dc/elements/1.
org/dc/elements/1.
org/dc/elements/1.
org/dc/elements/1.
org/dc/elements/1.
org/dc/elements/1.
org/dc/elements/1.
org/dc/elements/1.
org/dc/elements/1.
org/dc/elements/1.
org/dc/elements/1.
org/dc/elements/1.
org/dc/elements/1.
org/dc/elements/1.

1/}title [handmade paper

1/}creator
1/}subject
1/}subject
1/}subject
1/}description
1/}contributor
1/}date 1987~
1/}type Artwork

Spear,
surface
laid pag
velvetes
This det
Wolfe, 1

1/} format 1 art o
1/} format Image

1/}identifier http://c¢
1/}identifier ark: ar
1/}language No Langt
1/}title [full moon in f:
1/}creator Spear, ¢
1/}subject surface
1/}subject silk (te
1/}subject laid pag

14

The examples below make use of records harvested from the UNT Scholarly Works and UNT Theses and Dissertation
collection hosted by the UNT Digital Library [4]. The OAI-PMH repository links are available at the following URLS:

UNT Scholarly Works — http://digital.library.unt.edu/explore/collections/UNTSW/oai/

UNT Theses and Dissertations — http:/digital.library.unt.edu/explore/collections/UNTETD/oai/

http://journal.code4lib.org/articles/7818#note4
http://digital.library.unt.edu/explore/collections/UNTSW/oai/
http://digital.library.unt.edu/explore/collections/UNTETD/oai/
http://purl.org/dc/elements/1.1/
http://purl.org/dc/elements/1.1/
http://purl.org/dc/elements/1.1/
http://purl.org/dc/elements/1.1/
http://purl.org/dc/elements/1.1/
http://purl.org/dc/elements/1.1/
http://purl.org/dc/elements/1.1/
http://purl.org/dc/elements/1.1/
http://purl.org/dc/elements/1.1/
http://purl.org/dc/elements/1.1/
http://purl.org/dc/elements/1.1/
http://purl.org/dc/elements/1.1/
http://digital.library.unt.edu/ark:/67531/metadc27055/
http://purl.org/dc/elements/1.1/
http://purl.org/dc/elements/1.1/
http://purl.org/dc/elements/1.1/
http://purl.org/dc/elements/1.1/
http://purl.org/dc/elements/1.1/
http://purl.org/dc/elements/1.1/
http://purl.org/dc/elements/1.1/

These metadata collections are saved as untsw.dc.xml and untetd.dc.xml respectively for the purpose of these examples.

Find Most Prolific Creators in a set of Records

1 mphillips$ python dc breaker.py -e creator untsw.dc.xml | sort | uniq -c | sort -n -r |
2

3 107 Mihalcea, Rada

4 93 Cundari, Thomas R.

5 90 Falsetta, Vincent

6 89 Phillips, Mark Edward

7 85 Spear, Shigeko

8 77 Moen, William E.

9 61 Marshall, James L., 1940-
10 59 Murray, Kathleen
11 58 Marshall, Virginia R.
12 57 Eve, Susan

This pipeline of commands will display back the ten most frequent creators. Here is what the pipeline is doing:
1. Firstthe dc_breaker scriptis used to extract creator elements from each record.
2. The output of all creators is sorted by the sort command.

3. The output of the sort command is then made unique by the unix unig command which is given the flag to append the
number of times that value is present.

4. The resulting setis sorted again this time by the count of each value from highest value to lowest using the —n and —r
options.

5. Finally the first ten values are returned along with their counts.

Find the number of unique creators in a dataset

1 mphillips$ python dc breaker.py -e creator untsw.dc.xml | sort | unig | wc -1
2 1592

This example extracts all of the creators in the repository, sorts the values, makes them unique and finally passes these to
the wc (word count) utility with the —I option selected to count only lines. This returns the number of unique creators in a
dataset, which can answer questions such as “How many creators have contentin the UNT Scholarly Works Repository?”

Find the number of subjects per record
mphillips$ python dc breaker.py -e subject -i untsw.dc.xml | cut -f 1 | sort | unig -c

1

2

3 24 info:ark/67531/metadcl11236
4 21 info:ark/67531/metadc29400
5 21 info:ark/67531/metadclll261
o 20 info:ark/67531/metadcll11271
7 20 info:ark/67531/metadcl11269
8 20 info:ark/67531/metadcl11200
9 17 info:ark/67531/metadc29401
10 17 info:ark/67531/metadc29393
11 17 info:ark/67531/metadcll11212
12 17 info:ark/67531/metadcl11177
13 16 info:ark/67531/metadc29399
14 16 info:ark/67531/metadclll216
15 16 info:ark/67531/metadcll11206
16

4

This example extracts all subjects in the repository with the identifier appended to the beginning of the line. This identifier

is extracted from the line using the cut utility and then sorted, made unique and finally sorted again. The resultis a list
containing the number of subjects in a record followed by that records identifier. This output is useful when a collection
has requirements pertaining to the number of subjects per record such as, “a minimum of three subjects per record, or no
more than six subjects per record”.

Find the average number of subjects per record

1 mphillips$ python dc breaker.py -e subject -i untetd.dc.xml | cut -f 1 | sort | unig -c
2
3 Average = 5.79016

This example builds on the previous by adding the use of the awk utility to calculate the average number of subjects per
record in the repository. This information is especially useful in analyzing the overall subject usage patterns across
various collections.

Find the records without any Creators

1 mphillips$ python dc breaker.py -e creator -p untsw.dc.xml | grep False
2 info:ark/67531/metadcl11250 False

The output of this example is a record identifier followed by True or False based on the presence of the specified field, this
time creator. After piping this output to grep and searching only for lines that have False in them, we can see which
records do not have any creator values. If each record in a collection should have a creator element present, this output
makes it easy to find records lacking this value.

List creators sorted by creator value
mphillips$ python dc breaker.py -e creator untsw.dc.xml | sort

1
2
3 AECO Economic and Community Development Class Fall, 2009
4 Aars, Christian
5 Abel, Mickey
6 Abel, Mickey
7 Acevedo, Mitzi
8 Adada, Rami
9 Adalar, Mehmet

10 Adams, Mark

11 Adams, Mark

12 e

13 Zhang, Cankui

14 Zhang, Jubo

15 Zhang, Xue

16 Zhang, Xue

17 Zhang, Xue

18 Zhang, Xue

19 Zhang, Xue

20 Zhao, Yong

21 zhi, Miaochan

22 Zhou, Tie

23 Zhou, Tie

24 Zhou, Xin

25 Zhou, Xin

26 Zhou, Xin

27 Zhu, Yuntian

This example demonstrates a common usage of the dc_breaker tool in which all values of a field are printed to the screen
and then sorted. Itis useful for identifying slight misspellings between adjacent values. This is particularly helpful with the
creator and contributor fields when trying to normalize names values that are similar, which should be replaced with an
authoritative version.

List creator values sorted by the number of times they occur

1 mphillips$ python dc breaker.py -e creator untsw.dc.xml | sort | unig -c
2
3 1 AECO Economic and Community Development Class Fall, 2009
4 1 Aars, Christian
5 2 Abel, Mickey
6 1 Acevedo, Mitzi
7 1 Adada, Rami
8 1 Adalar, Mehmet
9 2 Adams, Mark
10 1 Aerts, Andrea
11 ce
12 2 Zeug, Nicole M.
13 1 Zhang, Cankui
14 1 Zhang, Jubo
15 5 Zhang, Xue
16 1 Zhao, Yong
17 1 Zhi, Miaochan
18 2 Zhou, Tie
19 3 Zhou, Xin
20 1 Zhu, Yuntian

This example adds the uniq tool to the pipeline from the previous example. The uniq tool with the —c (count) option takes a
sorted list (supplied by the sort command) and sums the value instances before returning a row for each unique value
preceded by the number of times it is present in the dataset. This shows the number of time each value occurs in the
dataset, from which itis possible to derive the relative importance of one value over another.

mphillips$ python dc breaker.py -e contributor untetd.dc.xml | sort | unig -c
8 Mikler, Armin
48 Mikler, Armin R.
1 Mikler, Susie
1 Ramisetty-Mikler, Suhasini
1 Ramisetty-Mikler, Susie

o U W DN

This example shows that one value is most likely incorrect based on the fact that there are so many instances of the other
version of the value (“Mikler, Armin”, 8), (“Mikler, Armin, R.”, 48).

List field values sorted by anagram hashes

Another variation on the previous models is helpful in certain situations. When comparing names in a dataset you may
come across versions of names that are inverted (Last, First) as well as natural order (First Last). When identifying
possible metadata changes based on adjacency in a list, these values would not appear next to each other based on a
normal sort order.

Mark Phillips
Phillips, Mark

By feeding these values into a simple anagram hash function and then sorting the values based on the hash itis possible
to get these values to group together and helpful to identify related problems.

aihkmlpsr Mark Phillips
aihkmlpsr Phillips, Mark

1 import sys

2 import re

3

4 def anagram string(string):

5 string = string.lower ()

6 string = re.sub("[\W\d]", "", string)
; return "".join (set (string))

7 # input comes from STDIN
10 . . .

for line in sys.stdin:

11) A .
12 # remove leading and trailing whitespace

print "%$s\t%$s" % (anagram string(line.strip()), line.strip())

1 mphillips$ python dc breaker.py -e contributor untetd.dc.xml | python example-018.txt | «
2

3 1 abeihlsru Hariss, Beulah

4 1 abeihlsru Harris Beulah

5 1 abeihlsru Harris, Beulah A.

6 6 abeihlsru Harriss, Beulah

7 1 abeihlsru Harriss, Beulah A.

38 1 abeihlsru Harriss, Beulah A

9 58 abeihlsru Harriss, Beulah A.

Field Validation

Standard Format — Extended Date Time Format (EDTF)

These tools can also be helpful in validating a given value in a record based on a list of known values, a standard format,
or a well-known feature. The following examples demonstrate the usage of these tools for this purpose:

1 mphillips$ python dc breaker.py -e date untsw.dc.xml | python valid edtf.py -
2

3 1987~ True

4 1987~ True

5 1981~ True

6 1987~ True

7 1990~ True

8 1987~ True

9 1987~ True
10 1987~ True
11 1987~ True
12 1986~ True
13 2003 True
14 2002 True
15 2002 True
16 2003 True
17 2001 True
18 2003 True
19 2002 True
20

A little background is required for this example. The UNT Libraries are moving toward the adoption of the Extended
Date/Time Format (EDTF) [5] for encoding date information in their digital library. In order to identify values that comply
with this specification a simple validator was created that compares a given string against the EDTF draft specification.
The output of this scriptis in the following format:

2012 True
2001~ True
2012-12 True
2012-15 False
2012/12/12 False

Itis then possible to filter the output to just instances that are invalid and investigate those in the dataset as examples of
values to change.

Does the creator field have a comma (Are names properly inverted)

mphillips$ python dc breaker.py -e contributor untetd.dc.xml | grep -v ", "

William. D. Deering
Jesus Rosales-Ruiz
Brian Richardson
Sue Bratton

May. Andrew

Nann Goplerud

Webb James F.
Blackburn S. A.
Harris Beulah

H O WoW-Joy Ul WN

e

http://journal.code4lib.org/articles/7818#note5

12 Harris B. B.

13 Silvey J. K. G.
14 Silvey J. K. G.
15 Sharp L. A.

16 [Silvey J. K. G.]

In many digital library metadata settings names are notated in inverted fashion, separated by a comma. For example a
name like “Mark Phillips” is notated as “Phillips, Mark” This example shows a quick way to identify values in a repository
that are not formatted in this way. It prints the instances of creator names in the metadata records, which do not have
commas. (This assumes that the presence of a comma is an indication of correct formatting.)

Longest title

Another use for this set of tools is to answer fairly obscure butimportant questions that arise in the library universe. One
question that came up in the creation of the UNT Digital Library was, “what is the length of the longest titles we have in the
system?” The user interface designer for the metadata display pages for records needed this. By using these tools it was
relatively easy to find this answer.

1 mphillips$ python dc breaker.py -e title untetd.dc.xml | awk '{ print length(S0) "
2

3 354 Greek texts and English translations of the Bible: a comparison and contrast of the
4 353 A Comparative Study of the Habits, Attitudes, and Opinions in Regard to Cigarette Sr
5 349 Synthesis and Characterization of Platinum(II) (2-(9-anthracenylylidene)-4,5-bis (dip!
6 336 A Performer's Analysis of Lili Boulanger's Clairiéres dans le ciel: Song Cycle for
7 332 Jules Massenet's Musical Prosody Focusing on His Eight Song Cycles And A Collection,
8 325 The 1986 National Endowment for the Arts Commission: An introspective analysis of tx
9 302 The Influence of Selma Meerbaum-Eisinger's Death on Xaver Paul Thoma's Composition ¢
10 282 Supplemental Studies for Mastering Extended Techniques in Three Late Twentieth-Centt
11 276 Gradus ad Parnassum of Modern Flute Technique: An Explication of Musical Intention
12 276 A Study to Determine the Characteristics of Effective Application Letters for Teachs

4

This example uses a combination of awk to append the number of characters in each title to the beginning of each line,
numerically sort the lines in reverse order with sort, and finally use the head utility to print the top 10 lines of this new list.

Conclusion

Harvesting metadata records from OAI-PMH repositories and then transforming these records into simple statements
easily consumed by common command-line tools has significantly improved the workflow for identifying problems in
metadata record collections and has allowed the UNT Libraries to utilize metadata enhancement resources in the most
beneficial way possible. We have found that maintainers of metadata collections are eager to modify metadata records
needing cleanup once identified using the methods described above. By using the methodology described in this article,
the UNT Libraries is able to focus technology development resources on tools that can easily be integrated into this
command-line environment. Currently in development are tools that help to further identify name collisions in creator,
contributor, and publisher fields as well as validators for various fields and values presentin the metadata used at the
UNT Libraries.

Obtaining code mentioned in this article

All code mentioned in this article is available freely at the author’s GitHub repository: hitp:/github.com/vphill/.

Notes

[11Open Archives Initiative — Protocol for Metadata Harvesting (OAI-PMH) http://www.openarchives.org/pmh/
[2] 2PageOAl — http://lwww.oclc.org/research/activities/oai2page.html
[3] Kernel Metadata and Electronic Resource Citations (ERCs) http://dublincore.org/groups/kernel/spec/

[41UNT Digital Library — About the Technology http://digital.library.unt.edu/about/digital-library/technology/

http://github.com/vphill/
http://journal.code4lib.org/articles/7818#ref1
http://www.openarchives.org/pmh/
http://journal.code4lib.org/articles/7818#ref2
http://www.oclc.org/research/activities/oai2page.html
http://journal.code4lib.org/articles/7818#ref3
http://dublincore.org/groups/kernel/spec/
http://journal.code4lib.org/articles/7818#ref4
http://digital.library.unt.edu/about/digital-library/technology/

[5] Extended Date/Time Format (EDTF) http://www.loc.gov/standards/datetime/

About the author

Mark Phillips is Assistant Dean for Digital Libraries at the University of North Texas Libraries.

Subscribe to comments: For this article | For all articles

This work is licensed under a Creative Commons Attribution 3.0 United States License.

(o) I

http://creativecommons.org/licenses/by/3.0/us/
http://creativecommons.org/licenses/by/3.0/us/
http://journal.code4lib.org/articles/7818#ref5
http://www.loc.gov/standards/datetime/
http://journal.code4lib.org/articles/7818/feed
http://feeds.feedburner.com/c4lj/comments

