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Abstract

The complexity of computationally-intensive scientific research poses great challenges 

for both research data management and research reproducibility. What metadata needs 

to be captured for tracking, reproducing, and reusing computational results is the 

starting point in developing metadata models to fulfil these functions of data 

management. This paper reports the findings from interviews with gravitational wave 

(GW) researchers, which were designed to gather user requirements to develop a 

metadata model. Motivations for keeping documentation of data and analysis results 

include trust, accountability and continuity of work. Research reproducibility relies on 

metadata that represents code dependencies and versions and has good documentation 

for verification. Metadata specific to GW data, workflows and outputs tend to differ 

from those currently available in metadata standards. The paper also discusses the 

challenges in representing code dependencies and workflows.
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Introduction

Data-driven, computationally-intensive scientific research often involves complex 

workflows that contain entangled dependencies and relationships. Such complexities in 

computationally intensive science pose great challenges for both research data 

management and research reproducibility. On the one hand, there are data sources and 

codes as well as their ‘footprints’ to be captured and documented, which is often time-

consuming and not considered part of doing science. On the other hand, highly 

automatic processes of data generation and analysis make it even more important for 

scientists to be able to track an analysis all the way back to the raw data and original 

configurations for reproducibility.

Although metadata standards have been created in major disciplinary fields, they are 

mostly designed and used for describing the end products of a research lifecycle either 

in the form of datasets or publications. As such, information important for provenance 

purposes generated during the research lifecycle is often either missed or skipped and 

needs to be recreated after the fact. Provenance metadata and other documentations 

created in this style are not only prone to errors and inaccuracies, but also expensive due 

to the time and expertise taken to track them down and enter into the system. In 

addition, data and the parameters and procedures used in processing data vary greatly 

from discipline to discipline, hence the metadata standards designed for one discipline 

may not be suitable in another. This is the case for Gravitational Wave (GW) research 

data management.

GW research is computationally intensive and the pipelines constructed for analysis 

runs may be split, derived, or merged to produce new workflows to be used for 

execution on computing grids. GW data go through a series of processing (segmenting, 

calibration, and registering) stages before they can be used for analysis. Along the way 

metadata describing these processes, codes, and resulting outputs must be captured and 

made discoverable and accessible so that the data and code used in an analysis can be 

tracked, verified, shared, reused, and/or reproduced. For example, detector 

characterization is a process involving the use of parameters and algorithms to cross 

check data quality and ensure the accuracy and validity of data to be fed into workflows. 

The data generated from detector characterization would need to be able to tell the 

source (interferometric detector), sample rate, latency, time covered, number of 

channels, and so on, all of which are unique to this research field. Given the nature of 

GW research lifecycle and disciplinary idiosyncrasies, current metadata standards 

developed for end-product description do not offer the level of granularity nor the kind 

of semantics needed for tracking, verifying, and reproducing GW analyses.

To address this need, several questions must be answered first: What metadata is 

needed for GW researchers to track components in an analysis/search project? What 

metadata functions do researchers consider the most important in supporting GW 

research? How should the metadata model represent the needs for tracking, verification, 

and reproduction of GW science? We recognize the role of current metadata standards 

such as the Resource Metadata for the Virtual Observatory (IVOA, 2007) and 

Astronomy Visualization Metadata (AVM) (Hurt, Christensen, and Gauthier, 2008) in 

describing astronomy data. However, the validity and usefulness of existing standards 

has yet to be proven through formal evaluation. It would be risky to blindly adopt any 
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metadata standard or develop a metadata model for a complex research domain without 

an in-depth understanding of the needs for metadata.

Motivated by the questions raised above, we conducted interviews with GW 

researchers and examined the research artefacts (configuration files, code files, 

workflows, and outputs) as well as their dependencies and other relationships. This 

paper reports the findings from interviewing GW researchers and approaches used to 

develop a metadata model with a focus on provenance metadata and research 

reproducibility. The following sections will first review publications on provenance and 

reproducibility of scientific research and then describe the characteristics of GW 

research lifecycle and the impact of these characteristics on the desired metadata 

functions. A summative report of the themes that emerged from the interviews will 

provide evidence to support the metadata function framework. The last section will 

discuss a framework of metadata for reproducibility of scientific research based on our 

project experience.

Relevant Literature

Sharing and reuse of research data is a practice adopted by many scientific communities 

today. In order for data to be sharable and reusable, they must be good quality, verifiable 

and discoverable. The quality and verifiability requirements for research data in many 

ways are associated with provenance metadata, which underpins research 

reproducibility.

The concept of reproducible research has been gaining attention from research 

communities, as data-driven science is becoming the norm over the last couple of 

decades. Reproducible research is considered as ‘the practice of distributing, along with 

a research publication, all data, software source code, and tools required to reproduce 

the results discussed in the publication’ (Shulte, Davison and Dye, 2013). This means 

that reproducible research requires the support of the methods for performing, 

preserving, and transmitting research, methods for storing analysis of data, and tools for 

storing papers and performing analysis (Thompson and Burnett, 2012).

Whether research can be reproduced is determined by many factors. Scientists’ 

behaviour and practices in conducting science, the documentation of data, methods, and 

procedures, and the infrastructures supporting such documentation can all affect the 

reproducibility of research. For research to be reproducible the results must be 

verifiable, that is, datasets and code must contain information necessary for tracking, 

quality control, and reuse purposes. However, creating necessary documentation for 

data and code to be verifiable and reusable takes a great deal of effort and time, which 

has been cited as the ‘biggest barrier’ for scientific data sharing and reuse (Stodden, 

2010).

Depending on the nature of the research, there may be different kinds of 

reproducibility. Empirical reproducibility, as Stodden (2013) puts it, refers to ‘the 

traditional scientific notion of experimental researchers capturing descriptive 

information about (non-computational) aspects of their research protocols and methods.’ 

Computational reproducibility emphasizes verifiable computing results that facilitate 

search, amalgamation, and tweaking of data and code (Gavish and Donoho, 2012).

Metadata describing data, code, and results is considered as critical in the 

reproducibility of research because it provides the provenance ‘information that helps 

determine the derivation history of a data product, starting from its original sources’ 
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(Simmhan et al., 2005). In scientific computing, provenance is considered as a process 

in which ‘all the derivations, datasets, parameters, software and hardware components, 

computational processes, digital or non-digital artefacts’ were used to derive and 

influence the data product (Deelman et al., 2010). Provenance metadata therefore 

documents the history of how a data product came into being. Many functions of data 

management, such as controlling data quality, tracing audit trails, replicating data and 

results, attributing to creators and contributors, and discovering data, are dependent on 

the provenance metadata.

Provenance metadata has been studied extensively and a good deal of literature has 

been published on the subject. Bose and Frew (2005) conducted a thorough review of 

standards, types of data processing, techniques, and technologies related to data lineage, 

otherwise known as data provenance. Workflow management tools such as Pegasus are 

being used and augmented to address the provenance questions (Miles et al., 2008). The 

Open Provenance Model developed by an international collaboration led by Luc 

Moreau (2010) defines three nodes – Artefact, Process, and Agent – and a set of 

dependency relationships and roles in its abstract model. While it is designed to be 

generic and applicable in computational intensive science fields, it is yet to be tested for 

its applicability in specific science research domains.

The reproducibility of research relies on metadata that documents the code, 

methods, parameters, data processing, and other artefacts important for provenance 

purposes. It is this type of metadata that makes the assessment of data quality and 

validity possible for data sharing and reuse.

The GW Data Flow

The Laser Interferometer Gravitational-Wave Observatory (LIGO) consists of two 

separate installations of interferometers in the U.S. and another one in Hanover, 

Germany. The Virgo interferometer is another installation located in Italy. These 

interferometric detectors are constructed with sophisticated engineering and technology 

and generate terabytes of data every day. Data generated from the detectors are 

transferred to a network of supercomputers for storage and archiving. Once the data are 

secured, scientists can use computer programs to process and analyse the data (LIGO 

Laboratory, 2016).

The fact that all the processing and analysis work requires computer programs to 

perform makes provenance information critical for data tracking, verifying, sharing, and 

reuse in this computationally intensive big science, big data research field. From a data 

flow point of view, the provenance metadata for GW datasets needs to consider both the 

pre-processing and the in-analysis processing. Provenance metadata generated during 

pre-processing stage is relatively straightforward, which Brown et al. (2006) has a 

detailed description. At the in-analysis processing stage, the GW analysis is performed 

through constructing and running pipelines that specify the various steps and sequence 

of execution of computation. For example, in searching for an inspiral signal, the output 

from one or two laser interferometric detectors is examined for signals of particular 

shape. This shape is called a template that specifies the process of analysis (Rana, 

2006). Typical inspiral templates contain three major components: process, data, and 

parameters (Figure 1). Each of the components contains information that can be 

modelled as provenance metadata. Figure 2 shows three blocks of metadata for 

researchers to identify the process and specify the input data source. They address 
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questions such as who created this process, which program it used, what the time 

boundaries of data source were, and where the output should be sent.

Figure 1. Components and their relationships in a GW TEMPBANK file.

Figure 2. Provenance metadata for the process component in a template.

The ways that GW workflows are constructed make the provenance metadata 

inherently complex and challenging. As Brown et al. point out, ‘workflows may be 

parallelized by splitting the full parameter space into smaller blocks or parallelizing 

over the time intervals being analyzed. The individual units are chained together to form 

a data analysis pipeline. The pipeline starts with raw data from the detectors, executes 

all stages of the analysis, and returns the results to the scientist’ (Brown et al., 2006). 

Although analyses of GW workflows and pipelines will help to model the metadata for 

managing the data and reproducing results, it is necessary to understand scientists’ 

practices in documenting and managing data, code, and output of analyses to generalize 

requirements and represent such requirements accurately in metadata models.
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Gathering User Requirements

The LIGO Scientific Collaboration (LSC) community has established data practices and 

infrastructure for managing the data and code, as well as results from data processing 

and analysis. Understanding scientists’ data practices and priorities is necessary for two 

reasons. First, producing verifiable computing results requires subtle adjustment to the 

work habits of scientists (Gavish and Donoho, 2012). Second, any adjustment to their 

work habits and practices must be based on a thorough understanding of research 

workflows, data flows, and priorities at each stage of the research lifecycle. The process 

of obtaining such an understanding is used to gather user requirements for the metadata 

model.

A number of sources are available for gathering initial information, including the 

LSC-Virgo website and wiki pages of working groups, configuration files and 

corresponding intermediate outputs and final results, metadata descriptions at the LSC 

document centre, and documentations for databases. We also had meetings with 

scientists to gather input for designing a formal interview protocol. These sources were 

carefully examined and analysed to derive concepts and components involved in GW 

research lifecycle, which are categorized based on their roles and uses in the GW 

research.

We also conducted a formal interview with eight members of the LSC community. 

The interview was designed to:

 Understand research data and analysis needs and habits of GW scientists;

 Learn about the requirements for discovering, tracking, documenting, and 

archiving data and analysis products, including workflows, input data, 

intermediary and final data products, software and its versions, as well as other 

computational artefacts;

 Define types of entities and relationships among the entities, as well as current 

systems used for identification management of these entities; and 

 Collect vocabularies, including category lists, terminology for instruments, 

parameters, data status and operations, analysis methods and techniques.

The first group of questions collected information about the interviewee’s status, 

experience, involvement in GW research, and motivations for keeping documentation. 

Each interviewee was asked to answer following questions:

1. What is your current position, and how long have you been in it?

2. How long have you been in your field of study?

3. Please briefly describe your role in the research group.

4. What motivates you to keep good documentation on the data and workflows you 

generated/used?

The second part of the interview asked the subjects to describe their work habits and 

practices through the following questions:

1. Please briefly describe the process of conducting an analysis.

2. How do you usually start an analysis project?
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3. What are the most useful search options when you need to find data and/or 

workflows?

4. If you were to reproduce the same analysis, how much effort does it take to 

perform it?

5. What would you need to know in order to trust that you could reuse someone 

else’s workflows?

6. Do you usually make extra documentation on your analysis data or products 

besides the system provided information about analysis input, output, 

parameters, etc.?

7. What aspects of managing data analysis workflows take most of your time?

8. If you are to rank the importance of a workflow management system, what 

would the top three features be?

9. In your mind, what should a data management system facilitate for your research 

a) when starting a project? b) during the project? c) at the end of the project?

The eight interviewees were recruited on site at the LSC-Virgo meeting during 

March 16-18, 2015. Recruitment took place through convenience and snowball 

sampling. Eligibility criteria included active LSC-Virgo membership, and particularly, 

affiliation with the Compact Binary Coalescence (CBC) subgroup. Since the priority of 

the interview was to identify emerging concepts and validate those that have been 

identified earlier from research on GW data and workflow samples and wiki pages, final 

subject selection included consideration of the interviewee’s role and specialty in order 

to cast a wide coverage of different areas of GW research. IRB approval was sought and 

obtained before the start of the interviews.

Participants’ backgrounds included academic degrees in physics, including areas 

like particle physics and gravitational physics. All participants were currently associated 

with academic institutions: four with institutions in the United States, and four with 

institutions in Germany. Two of the participants were professors at their institutions, 

while five were post-docs and one was a graduate student. All had years of experience 

with LSC, ranging from four years to 15 years, with an average of eight years. Within 

the LSC, participants held various and sometimes multiple roles. Three held leadership 

roles (S1, S2, S4), and were responsible for heading specific subgroups. Three were 

search specialists (S5, S6, S7), focusing on a particular type of search1. Two were 

responsible for developing code and pipelines (S3, S7), two were focused on data 

analysis (S2, S8), and two performed detector characterization work (S5, S6). All eight 

participants were male.

Each interview session ran for approximately 30 minutes and was audio recorded. 

The audio from the interviews was transcribed and, along with interviewer notes, was 

coded by two researchers with concepts derived from the aforementioned sources. The 

codes were modified and updated as new concepts and categories emerged from the 

coding process. The code list from two researchers were compared and merged to 

produce a list of themes. Each of the eight interviewees was given a code, ranging from 

S1 to S8.

Three major thematic areas emerged from the coding process: motivation for 

keeping documentation, reproducibility, and metadata that is against the grain. For each 

1 Note that the term ‘search’ in this context refers to the search for gravitational wave in the data 

generated from interferometric detectors. It is synonymous to data analysis.
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theme, several significant aspects are addressed below. Responses from each of the 

participants were considered in our exploration of each aspect, and one or two 

representative quotes are presented where possible.

Findings

Motivation for Keeping Good Documentation

Keeping good documentation of the data, code, parameters, pipelines and the changes 

made over the course of analysis is motivated by trackable, verifiable, and reusable 

results, which are all important links in the reproducibility chain. This sentiment 

resulted from several factors:

Trust

When a piece of code or a pipeline is to be reused, researchers need to first verify 

the code or pipeline to make sure it works in the way it is designed to run and turns out 

the results as documented.

‘…a page somewhere that documents what they did. And then for the code 

that they used, verification of that has been checked-off by a committee that 

looked it over. And it’s not actually just sufficient for the committee to make 

the check mark, personally I would want to know that the tests that they did 

were sane…The best thing to do is have unit tests that check that this does 

what it does’ (S2).

Accountability

This concept has two meanings: one is closely synonymous to reproducibility, as 

one interviewee referred to as ‘exactly how you did what you did’ and the other is 

related to accountability to the funding agency. The first meaning is most relevant to the 

internal community, while the second meaning holds relevance for external parties.

‘It’s very much driven by the fact that we’re funded by the government, and 

the NSF now demands it, as well they should, and demands that the data be 

released with full documentation, and demands that every paper that we 

write, in addition to just the paper itself, words on paper, you should also 

archive the data that went into the results that are presented’ (S4).

Continuity

As with any research and educational institution, there is a constant change in GW 

research group members because new graduate students and post-doctoral researchers 

regularly enter into and leave a group due to educational and funding cycles. 

Documentation supports continuity among a dynamic community membership.

‘It’s always the new people, I guess, that you’re interested in documenting it 

for. We regularly have a turn-around of both students and post-docs coming 

in and out and if they want to get involved in running pipelines, in looking 

at data and understanding things’ (S8).
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Reproducibility

As a field of research that employs intensive computation and big data, almost every 

step in GW research involves some sort of programming code. As soon as the data are 

generated from the interferometric detectors, a series of processing is performed to 

calibrate, segment, and frame data, all of which are controlled by computer programs. A 

GW search analysis also deploys a large amount of code for parameter selection, data 

input and output specification, error handling, pipeline generation, and computing job 

scheduling and monitoring. The reproducibility of GW research is therefore essentially 

the reproducibility of the code. In this sense, it is exactly what Gavish and Donoho 

(2012) describe as computational reproducibility. From our interviews, we identified 

several themes that are useful for building the metadata model for reproducibility.

Code dependencies

The code used for a run may be stored in a GitHub repository and/or a file directory, 

which is then linked to a wiki page that contains all information and output from the 

run. Because a run often uses a large number of program codes and they are modified 

and changed frequently, it is important for anyone who is to reuse the code to know the 

dependencies between the codes in order to reuse them properly.

‘And if everything works, what you do is you go in, login to the cluster. You 

go check out that Git hash. You build the code. That’s the first terrifying 

step, because the code usually won’t build, just because the code has so 

many dependencies… we write down the Git hash of the code we use, but 

this code depends on a lot of other codes’ (S7).

Code dependency is especially important when an ‘old’ analysis needs to be 

reproduced:

‘If it’s that old, that will tell us the exact version of the code that was 

installed. We can check this version out and install it. If the code version is 

particularly old, we may have to install older dependencies as well’ (S8).

Code versions

Interviewees described how important it is to know the code version in order to 

reproduce an analysis run. Code version information is often stored in a GitHub 

repository created and maintained by a group or researcher, and is important evidence 

for determining components necessary to reproduce a run.

‘It depends on the amount of diligence you put into in the first place. For 

some – I know that – so when I first did searches as a grad student, I 

probably would not be able to reproduce that analysis if I tried, for many 

reasons. The code has changed, [and] the data has been shifted around 

and/or does no longer exist in easily accessible places. As I mentioned 

before, some of the data quality information has been either lost or no 

longer present somewhere’ (S5).
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Documentation

The importance of documentation was commonly recognized and the common 

practice of documenting is through creating wiki pages. The following quote tells what 

it is important to document and the challenges in retrieving specific information from 

the current wiki-based system of documentation:

‘…if we want to go back to an analysis that was done in 2006 and get the 

raw data, that went into it – not the raw detector data, which is all archived, 

we can get that. But the intermediate analysis data, like things that we call 

triggers where we shift through our time series of data and then look for 

excursions … He probably put some information about it in the wiki back in 

2006. Those wikis are still there, we can dig them out but it can be very 

difficult and laborious to do that...’ (S4).

Content reproducibility vs. code reproducibility

Reproducing the science content does not have to use the exactly same 

programming language. The same results may be reproduced by using another 

programming language different from the original code used to produce the results. 

Thus, GW researchers distinguish between different types of reproducibility:

‘And it’s not as easy to reproduce something exactly when you’ve got so 

many moving pieces. So it’s much easier if someone produced an analysis 

simply by compiling some C code and writing everything from scratch and 

then putting a static binary somewhere, then yes, you could probably 

reproduce everything almost exactly but that’s almost never what we do 

anymore’ (S5).

Verification

Reproducing an analysis is not as simple as taking someone’s code and rerunning it 

in the hopes of producing the same results as it did before. Codes and data must be 

verified to make sure the analysis is ‘sane.’ Wiki pages play a key role in obtaining the 

information about code, such as versions and dependencies.

‘Trust someone else’s data: need to verify code and data. There could be a 

number of possibilities: analysis by a different group, using a different 

algorithm that affects the verification and reproducibility’ (S1).

‘We usually start checking by looking at the wiki page. Need to make sure 

the wiki page is not broken’ (S1).

Metadata that is Against the Grain

During the lifecycle of GW research, metadata seems to be critical at a number of 

points: 1) when raw data have been calibrated and segmented and entered into a state of 

readiness to be used in a search, 2) when a workflow has been constructed and pipeline 
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generated, and 3) when a run is completed. At each of these stages there are different 

properties and relationships to be represented in a metadata model, many of which are 

not available in any of the existing metadata standards.

Data calibration and preparation

Prior to the start of a search workflow, raw data has been collected from the 

interferometers, as well as detector characterization data which is used to assist in 

interpretation. Metadata on the data sample rates and channels, the interferometers, and 

the data quality flags are all recorded. At the time of a search, this metadata is needed to 

help identify, request, and relate correct datasets from both sources. Accuracy is 

particularly important given the large amount of data being generated.

‘…that’s the raw data and then there is all this, like I call, intermediate data, 

like lots of triggers and things. Quite voluminous, but it’s not petabytes. It’s 

tens, hundreds of gigabytes and that’s sitting on discs somewhere in our 

clusters, and you can find it if you know where to look’ (S4).

Pipeline generated

A specific pipeline or workflow bears relationships to many other entities in LIGO 

work, including raw data, characterization data, and executables. Pipelines are created 

by a researcher for a specific type of search, and many properties of a particular pipeline 

are recorded in a configuration file written by the researcher. As entities, pipelines are 

highly interrelated within the metadata model, and thus depend on properties from a 

number of other entities. Given the complicated nature of the workflows, metadata is 

needed to help researchers fully identify the vast contents of a pipeline.

‘…they have to write a pipeline that goes through the data and looks for 

something or analyses something. That pipeline makes you some software, 

some of which has already been written, some of which you have to write. If 

you look at the LIGO scientific collaboration software repository, you’ll see 

tens of millions of lines of code’ (S4).

Run completion

When a run has been completed, output data is generated and must be identified and 

related to the originating workflow. At the same time, a vast number of intermediate 

data files have also been produced. These must be accurately located and related to 

particular processes within a workflow using accurate metadata to assist in result 

interpretation if needed.

‘At the end, things should be saved so that everything that was done is 

accessible. That any choices that were made at the time of which data to 

analyze get recorded’ (S6).
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Discussion and Conclusion

As related by the interviewees, tracking components of an analysis project in the current 

environment poses many challenges. Pipelines contain a complex series of 

interdependent executables, each producing intermediate files that may be valuable in 

verifying or reproducing a run, but which may not be easily accessible. In addition, 

understanding the executables utilized in the various steps of an analysis may require 

researcher to investigate through documentation and online code storage. The inclusion 

and utilization of provenance metadata at various stages in the research cycle can 

improve workflow tracking as well as reproducibility. Readily available provenance 

metadata concerning executable code, such as its creator, version, computing 

environment, and location could facilitate researchers in understanding and reproducing 

the steps in a workflow.

Metadata concerning output and intermediate files is also crucial in understanding 

an analysis project. Researchers may need to know the location of the files, as well as 

any workflows, specific processes, and timestamps associated with them. Throughout 

the interviews, participants stressed the importance of the configuration file, a file 

serving as base instructions for the compilation of a workflow. To reproduce a 

workflow, researchers need the original configuration file associated with it. The 

configuration file relates the workflow to data sources and executables. Describing the 

configuration file with appropriate metadata, such as its creator and purpose, and 

capturing its relationship to workflows and other entities provides a crucial link in 

tracking analysis output back to its original data sources and parameters.

Interview results also reveal the metadata types and functions that GW researchers 

consider important in supporting their work. Metadata concerning the researchers 

themselves and their relationships to workflow inputs and data products seems crucial 

in determining trust and reliability. As such, this metadata is important in enabling 

verification and reproducibility. Determining the originator of a configuration file, the 

creator of an executable’s code, or the owner of an intermediate file directory represent 

important researcher tasks that metadata should be able to support. Tracing the results of 

an analysis back to a configuration file or a piece of code represents another type of 

important task that participants described. Metadata should enable a specific workflow 

instance to be uniquely identified and associated with any of its data products. At the 

same time, metadata about the workflow should capture its relationships to 

configuration files and executable codes, thus allowing a provenance path from 

workflow products back to workflow components. As a vast amount of code may be 

used in any specific workflow, tracking and understanding code and how it may have 

changed over time is another important group of tasks described in the interviews. 

Metadata including location, version, and creator may be helpful in accessing, altering, 

and utilizing any code of interest.

Overall, findings from the interview process support the belief that GW research, 

like other computationally-intensive scientific research, involves complex, 

interdependent workflows. Provenance data needs are high during the entirety of the 

research lifecycle, and particularly so at certain stages. In considering reproducibility, 

GW researchers distinguished between reproducing code and reproducing content; 

having access to the appropriate metadata facilitates in either scenario allows 

researchers to make comparisons between computational environments even if they are 

unable to fully recreate them. Identifying all inputs, outputs, and processes, their 

provenances, and the relationships between them is challenging but vital for this 
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reproducibility. The metadata needs within this community display a level of granularity 

and specificity not provided by existing metadata models. As such, a metadata model 

specifically for GW research within the LIGO community is justified.

This metadata model is currently under development based on the user requirements 

generalized from our review of LSC research artefacts and interviews with LSC 

members. From a metadata perspective, functions of tracking and discovery rely on the 

availability of consistent identification and linking between dependency relationships 

throughout the system. The challenges in this metadata modelling lie in maintaining a 

balance between the completeness of metadata representation and the cost of scientists’ 

time in doing so. An iterative modelling process with feedback from GW scientists will 

help maintain the balance.
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