
SCHWERPUNKTBEITRAG

https://doi.org/10.1007/s13222-023-00448-z
Datenbank-Spektrum (2023) 23:97–105

Metadata Extraction from User Queries for Self-Service Data Lake
Exploration

Jonas Gunklach1 · SvenMichalczyk2 · Mario Nadj3 · Alexander Maedche1

Received: 1 March 2023 / Accepted: 18 May 2023 / Published online: 26 June 2023
© The Author(s) 2023

Abstract
Data catalogs represent a promising solution for semantically classifying and organizing data sources and enriching raw
data with metadata. However, recent research has shown that data catalogs are difficult to implement due to the complexity
of the data landscape or issues with data governance. Moreover, data catalogs struggle to enable business analysts to
find the data they need for their use cases. Against this backdrop, we develop a self-service system that automatically
extracts metadata from a data lake and enables business analysts to explore the metadata through an easy-to-use interface.
Specifically, instead of implementing the data catalog top-down, our system derives metadata from user queries bottom-up.
Hereby, we conduct 15 interviews with business analysts to derive the underlying requirements of the system and evaluate
its features with a focus group. Our findings illustrate that participants especially value the possibility to reuse queries
from other users and appreciated the support in query validation as data preparation is a complex and time-consuming
endeavour.

Keywords Metadata Management · Data Lake · Data Catalog · Self-Service · Data Exploration

1 Introduction

To cope with the large amounts of heterogeneous data as
well as the multitude of different use cases (e.g., forecast-
ing demands, optimizing storage, estimating delivery times,
etc.), data lakes have emerged in recent years as a new
concept for storing, integrating and analyzing all types of
data [14]. Data lakes are becoming increasingly popular
in practice and are used in various industries and orga-

� Jonas Gunklach
jonas.gunklach@kit.edu

Sven Michalczyk
sven.michalczyk@de.bosch.com

Mario Nadj
mario.nadj@tu-dortmund.de

Alexander Maedche
alexander.maedche@kit.edu

1 Human-Centered Systems Lab, Karlsruhe Institute of
Technology, Karlsruhe, Germany

2 Robert Bosch GmbH, Stuttgart, Germany

3 Business & Information Systems Engineering, TU Dortmund
University, Dortmund, Germany

nizations [8]. Ideally, the data lake infrastructure and its
tools support both, dedicated experts such as data engi-
neers, as well as less technical users such as business ana-
lysts through open up the data on the lake for self-service
applications [20]. Self-Service applications aim to enable
non-technical users to prepare and analyze data with an
easy-to-use interface without being reliant on expert users
to perform analytical tasks easier and faster than before [3].

However, to leverage data from data lakes, metadata
management including comprehensive documentation is
required [6]. Metadata management constitutes activities
which involve managing an organizations’ knowledge on
its data [11]. Data catalogs are seen as a means to ad-
dress this problem by collecting, creating, and maintaining
metadata [18], but organizations struggle with the imple-
mentation because of the complexity of data landscapes or
issues with data governance [5]. In addition to the imple-
mentation, involving business analysts to use data catalogs
is challenging. [13] identified that due to a variety of pur-
poses and roles, current data catalogs do not successfully
enable business analysts to explore data in data lakes and
thus do not increase overall data usage [13].

Data exploration is a tedious process because users must
“navigate large datasets by means of sequences of analyt-
ical queries” [4]. In this regard, research has investigated

K

https://doi.org/10.1007/s13222-023-00448-z
http://crossmark.crossref.org/dialog/?doi=10.1007/s13222-023-00448-z&domain=pdf
http://orcid.org/0000-0002-2608-2679


98 Datenbank-Spektrum (2023) 23:97–105

Table 1 Related Work

Studies Supported Task Artifact Source Target User

[4] Query Creation Recommender System Interests of BI Users Analysts

[12] Query Creation Query Search Engine Executed Queries Researcher

[17] Data Visualization Architecture Existing Reports Business Users

[19] Data Exploration Metadata Extraction Architecture Technical Queries Researcher

[22] Query Creation Query Designer Business Ontologies Business Users

[23, 24] Data Analysis Sidebar in BI System Analysis Paths Business Users

architectures, technical approaches, and systems support-
ing the extraction and exploration of data in data lakes. For
instance, [19] present an approach that creates a metadata
model from heterogenous data sources by detecting the data
types and parsing its components. Furthermore, [12] dis-
cussed the general potential of reusing existing user queries
to support students in writing new queries.

In this paper we present requirements and an implemen-
tation of a self-service data lake exploration system that
follows a bottom-up approach to create relevant metadata
and provides business analysts with an easy-to-use interface
to explore it [4]. By implementing the system in a real-
world environment with our industry partner, we show that
it is feasible to extract metadata from user queries following
a bottom-up approach.

2 RelatedWork

To identify related work, we relied on the systematic lit-
erature review on self-service Business Intelligence and
Analytics by [15]. After scanning the identified papers,
we identified two papers [22, 24] that discussed the con-
cept of self-service data exploration. We extracted the key-
words “query creation”, “knowledge transfer”, “knowledge
management”, “recommender system”, “data exploration”,
“data identification”, and “data preparation”. Using Google
Scholar, we combined the keywords with “self-service” and
identified three more papers [4, 12, 19]. Finally we con-
ducted a forward backward search and identified two ad-
ditional papers [17, 23]. We grouped related work into (1)
supported task, (2) artifact, (3) source, and (4) target user
group (see Table 1).

[19] presented an approach creating a metadata model
from heterogenous data sources. Their approach consists of
a metadata parser that detects data types and parses its com-
ponents to extract metadata. They further discussed the pos-
sibility of annotating metadata with semantic information.
For future work, they envisioned the metadata to support
query creation. [24] used analysis paths of expert users, de-
fined as a sequence of analysis steps stored in a knowledge
repository. A sequence matcher finds similar sequences to
predict the subsequent analysis steps based on what the

user has already conducted. Drushku et al. [4] suggested
an approach for data preparation using a sequence of ex-
ecuted queries to recommend queries to users with simi-
lar interests relying on collaborative filtering. Further, [17]
suggested a self-service business intelligence architecture
that assisted users in building their reports, thus support-
ing the task of data visualization. The architecture includes
a knowledge base and collaboration rooms for report cre-
ation. A unified access layer should simplify data access.
They follow the rationale of a high likelihood that other
departments have already created the required reports and
can then be reused.

To support self-service data exploration, [23] used
a knowledge repository to offer users “guided recom-
mendations” in a sidebar of a business intelligence system.
The sidebar supports the entire analytical investigation pro-
cess. [22] developed an ontology browser with visual query
creation functionalities on top of a business ontology. The
ontology is based on technical metadata that is extracted
from database schemas. Tables are represented as concepts,
columns as attributes of concepts, and foreign keys as
relationships between concepts. For simplification, [22]
suggested omitting technical but important attributes for
query creation like key columns. The ontology is displayed
as a graph presenting concepts as nodes and relations
between concepts as directed edges. In addition, queries
can be created by a drag-and-drop of nodes, executed re-
turning a data preview, exported to Excel, and deployed
directly. [12] also supported data preparation by offer-
ing a full-text search in executed queries; however, they
targeted researchers. Their study found that query reuse
could accelerate and facilitate data preparation and query
creation significantly. A session-based search is developed
since queries are usually created iteratively, with a high
likelihood that queries at the end of a user session will be
the final ones with the highest quality.

After analyzing related work, we identified that no study
supported the exploration of data lakes, the data identifica-
tion, and preparation simultaneously in one holistic system
(gap 1). Moreover, no study investigated query validation,
a complex and time-consuming sub-task of data prepara-
tion (gap 2). As gap 3, we identified a lacking approach for
creating and enriching business terminologies with techni-

K



Datenbank-Spektrum (2023) 23:97–105 99

cal metadata from the bottom-up automatically. We identi-
fied paper creating business ontologies based on technical
metadata [22], however they do not necessarily reflect the
business terminologies used by analysts. In this regard, ex-
ecuted queries of expert users were enriched with a full-text
search, a first attempt to provide business terminologies in
conjunction with technical data preparation scripts in the
form of queries [12]. However, queries cannot be searched
by explicitly specifying contained tables or columns. Fur-
ther, only one paper targeted analysts [4] by offering a rec-
ommendation approach but did not offer a concrete system
(gap 4).

3 Requirements

To identify requirements for a self-service system for ex-
ploring data in data lakes, we first conducted 15 semi-struc-
tured interviews [21] with business analysts of our industry
partner, a leading global supplier of technology and ser-
vices. Via snowball sampling, we acquired users from vari-
ous business functions (see Table 2). Interviews took place
virtually and at different company sites and lasted between
0:56h to 1:38h. We conducted, recorded, and transcribed
the interviews in the participants’ native language. The in-
terviews were three-parted: (1) First, we asked participants
about their daily tasks, used tools, and current job role. (2)
Furthermore, we asked more specifically about the source
systems used and if they have experience with the data lake
in their area of responsibility. In this regard, we also raised
questions about how they analyze data and what are the
most complex and time-consuming tasks. (3) We collected
the requirements they have for a self-service system that
supports exploration of data in data lakes. Specifically, we
requested to sketch out possible inputs and outputs.

We observed that business analysts have difficulties ex-
ploring data in data lakes, but are pretty familiar with the
underlying business domain and processes. Thus, the sys-
tem should render the data in the data lake in business ter-
minology (R1) as used in the common source systems (e.g.,
SAP). This requirement seems critical since the data lake
contains mainly raw data described with technical column
names, which does not directly correspond to the view that
business analysts are used to. Moreover, users requested to
ease the tedious search for data. For instance, they often
go back and forth between source systems and an internet
search to identify technical names, which can be found in
the data lake. In this regard, users requested an enriched
search in the data lake to ease this process. The system
should provide a search for column and table names in the
data lake (R2). In this regard, they raised the third require-
ment that the system should indicate how tables in the data
lake can be joined (R3). Furthermore, users reported that it

Table 2 Participants of Semi-Structured Interviews

PNo. Domain Duration

P01 Logistics 01:32:02

P02 Logistics 01:28:57

P03 Logistics 01:30:16

P04 Manufacturing 01:38:26

P05 Purchasing 01:37:54

P06 Controlling 01:26:06

P07 Logistics 00:56:52

P08 Logistics 01:35:03

P09 Logistics 01:31:57

P10 Logistics 01:18:42

P11 Purchasing 01:28:29

P12 Logistics 00:59:35

P13 Manufacturing 00:58:43

P14 Controlling 01:20:22

P15 Purchasing 01:22:02

would be helpful to reuse queries from other users because
multiple plants work on similar use cases. One participant
explained, “we could copy the SQL code from other de-
partments and use it for our use cases”. Currently, users
miss an option to efficiently share queries within the or-
ganization. As users find the creation of queries complex
and time-consuming, starting with an existing query would
ease the creation. In this line, the system should recommend
queries for reuse (R4). To further support users in the cre-
ation of the query, the system should embed a SQL editor
with syntax highlighting and auto-completions for syntax,
column, and table names (R5). Next, users reported that the
validation of queries is one of the most complex and time-
consuming tasks. As many users lack detailed knowledge
about the source systems, they validate queries in small in-
crements. To support them in query validation, several users
indicated that the system should provide a preview of the
query results using a random result sample of rows (R6).

4 Implementation

Based on the requirements identified, we developed and in-
tegrated the system into the industry partner’s existing data
lake architecture. The underlying data lake architecture fol-
lows the architecture proposed by [7] and is composed of
four layers: data source layer, data integration layer, anal-
ysis and optimization layer, and data consumer layer. The
metadata extraction and exploration system proposed con-
sists of three main layers that interact with the data lake
(see Fig. 1): (1) the logging layer accesses the active session
history and logs the active session history of the databases.
This layer saves the active sessions including SQL full-text
queries in the active session data store. (2) Next, the extrac-

K



100 Datenbank-Spektrum (2023) 23:97–105

Fig. 1 Architecture

tor layer consists of two modules, the metadata parser, and
the data processing workflow. The metadata parser parses
the user queries and the data processing workflow extracts
their metadata (e.g., columns, tables, or joins used in the
query). (3) The presentation layer accesses the metadata
information and provides a web interface for the user.

4.1 Logging Layer

To instantiate our approach of extracting metadata, the user
queries need to be logged and stored in a table. In our case,
the system is relying on user queries captured in the data-
base active session history . The database samples all ac-
tivities and saves the information session-based in a table.
For that, the database takes a snapshot of all active da-
tabase sessions every second. Further information, such as
the SQL full-text which is necessary to extract all metadata,
are stored in another table. To obtain them, we joined the
action session history with the SQL full-text table. After
that, we store the user queries in the active session data
store. In total, we are relying on the following columns: (1)
sampleID: every active database session is provided with
a unique sample identifier, (2) sampleTime: time at which
the sample was taken, (3) sessionID: uniquely identifies the
session, (4) userID: hash of user, and (5) sqlQuery: full-text
of the SQL query raised by the user.

4.2 Extraction Layer

The goal of the next layer is to extract metadata from SQL
full-text queries such as columns, column aliases, tables
and table joins. We implemented the data processing work-
flow in KNIME to combine different technologies, such
as Java (for the SQL parser using the library ’JsqlParser’)
and Python (for the data processing). We run the workflow
daily and analyze the queries that were run on the data lake
the previous day. Similar to the knowledge store proposed
by [17], each time the workflow is executed, the extracted
metadata is compared to the previously extracted metadata

in the query data stores to remove duplicates and update
accordingly.

First, to extract unique daily queries from the dataset, we
group the active sessions by sessionID and userID. Next,
the unique daily queries can be parsed using the meta-
data parser. For that, we developed a SQL parser relying
on “JSqlParser” [1]. The metadata parser first transforms
the full-text query into a tree structure and then walks
through the tree structure to extract the metadata from each
SQL keyword (e.g., And-Expression, Or-Expression, etc.).
The metadata parser iterates over all Select-Statements and
extracts the following information: (1) queryComplexity:
number of Select-Statements inside the query, (2) column-
Names: list of all column names in the main Select-State-
ment of the query, (3) nestedColumnNames: list of all col-
umn names in the nested queries, (4) allTables: list of all
tables, (5) tableJoins: table joins used in query, (6) coun-
tWhere: number of where-conditions used in the query. Af-
terwards, we removed non-parseable queries and queries
with more than 10 nested select statements. For the second
part, we developed a data processing workflow to create
four datasets based on the previously extracted metadata
information (see Fig. 2). The first dataset joins contain all
unique joins of the past. Second, the dataset schemas con-
tain all database schemas, and the parser matches related
projects at the industry partner. Hence, schemas enrich the
business domain structure of the industry partner. Third,
the columns dataset contains all unique columns, including
their descriptions and associated database schemas. Fourth,
the query dataset consists of all unique queries executed;
calculated query attributes like the number of nested se-
lect statements and the number of used where clauses. The
query dataset contains a time series about when, by whom,
and which query was executed. To create this dataset, we
implemented a deduplication routine in the parser. Personal
information is anonymized. The datasets are saved in the
query data store and can be accessed by the presentation
layer.

K



Datenbank-Spektrum (2023) 23:97–105 101

Fig. 2 Exemplary extraction of
SQL query into four datasets

4.3 Presentation Layer

The presentation layer consists of two parts (see Fig. 3).
The left side contains a sidebar for navigation and global
filtering options. The content depends on the main page
selected at the top of the sidebar navigation. For that, we
implemented (1) Columns and Tables and (2) Joins.

In the sidebar, users can select a project they are work-
ing for or have an initial indication that the data they need
will be used in that project. Next, they can specify to which
database schema the data might belong. If this is unclear,
users can also select all schemas. In the three input fields,
users can search on a detailed level for technical column
names, column descriptions, or table names. Multiple se-
lections within and across fields are possible and desirable
since they narrow down the search. In the default state, the
system will only search for column names and alias in the

Fig. 3 View 1: Columns and Tables including Sidebar, Query Table, Query Editor, and Query Results

highest order of the query’s select statement, or the entire
query by toggling on the switch search in complete query.
The sidebar supports the exploration of the data lake by
providing a search in the data lake’s metadata. By adjusting
the filters in the sidebar, respective queries were displayed
in the system’s body. Further, the sidebar has the function-
ality like a query and hide the sidebar, which is useful for
small screens. To support query validation, users can exe-
cute queries (with the run query button in the sidebar) after
entering their data lake user and password. Subsequently,
users can select query result visualizations through the se-
lect graph presentation dropdown.

The query table lists queries according to the sidebar’s
search result. In this regard, the system recommends queries
to users for their use case. The query table displays all used
columns and tables per query. It offers various sorting crite-
ria to ease the selection of a suitable query. First, users can

K



102 Datenbank-Spektrum (2023) 23:97–105

Fig. 4 View 2: Joins including Sidebar, Join View, and Join Attributes

sort queries by likes and number of used times. These cri-
teria indicate whether a query was identified as applicable
and might reach a certain quality level. The column “Used”
displays the number of executions of a query. Hence, users
can sort by the latest executed queries. The following three
columns, “Selects”, “Joins”, and “Where”, are extracted
from the query and count how many of the respective SQL
keywords are used. For instance, a query using more than
one select keyword is nested. A query containing more than
one join keyword combines several tables. Thus, the counts
indicate how complex a query is and, therefore, how dif-
ficult to understand. Finally, the column “Last used date”
indicates when the query was last used. The query is shown
in the query editor by clicking on a row in the query table.
The query is formatted with SQL syntax highlighting and
indented to increase readability. Users can edit the query ac-
cording to their needs, supported by syntax and names auto-
completion. Further, line numbers are shown. The system
guides users with the syntax highlighting, code indention,
and auto-completion functions. Subsequently, users can run
the query for final validation. We offer several previews of
the query results. Users can either rely on the complete
query result or aggregations per column, the frequency of
each column value. Users can access the aggregations per
column through navigation tabs generated for each column.
In the sidebar, users can select whether they would like
to inspect the value frequencies in a table, through a tree
map, or a pie chart. Hence, the system supports query val-
idation, with the option to preview adapted query results.
The results can be shown as a complete table or as fre-
quencies of values per column. The system displays 1.000
rows randomly to account for fast query execution. In sum-

mary, users can use the first page of the system to search
for technical column names, in column descriptions, and
table names. Subsequently, users can preview, adjust, and
validate queries.

The second view of the system (see Fig. 4) accounts
for the inspection of performed table joins. Therefore,
users specify a project and schema like before. We adapted
the sidebar and removed the column search fields. Once
projects and schemas are selected, all tables joined in the
past are displayed as a graph with the tables as nodes and
joins as edges. Users can zoom in the graph and explore
table connections. Users can search a table in the table
input field of the sidebar. Afterward, the table is marked
red in the graph. Users can click on a node in the graph
to identify join columns respectively keys in a relation.
The join attributes table on the right shows the relationship
details. Multiple entries are shown if a table was joined
with multiple other tables.

5 Evaluation

To evaluate our system, we conducted a focus group eva-
luation [16] with four experts from our industry partner.
Specifically, we included two analysts from quality ma-
nagement, one from logistics and an architect from global
governance. We showed participants the features of the sys-
tem and asked them to assess their usefulness.

Participants described the core strength of the system as
providing a quick, graphical overview of schemas, tables,
and columns. They liked that columns can be identified
through their technical name and descriptions (R2). This in

K



Datenbank-Spektrum (2023) 23:97–105 103

turn would save time and create transparency in the data
models used, making the system not only beneficial for
business analysts, but also for source system experts and
data engineers. Source system experts, for instance, who
typically have less experience with data lakes, would be
enabled to identify schemas in the data lake. The join view
of the system might be even more helpful as the underly-
ing table joins of transactional views are not identifiable
through source systems (R3).

Participants saw another strength in the visibility of the
data lake’s entire metadata (R1). Moreover, they agreed that
the join graph is compelling but challenging to use. One
participant suggested to highlight related tables in a differ-
ent color and not only the selected table. Furthermore, the
query table should be enriched with information about key
columns and column types.

Next, participants recognized and liked the system’s ra-
tionale that less savvy users could learn and reuse queries
from more savvy ones (R4). For instance, they discussed
that users could learn the use of advanced SQL keywords
(e.g., group by) at the example of queries based on their
data. In this regard, they emphasized the strength of copy-
and-paste queries and were optimistic about their adoption
within the organization. Furthermore, users might also learn
to write optimized queries by inspecting frequently exe-
cuted ones (R5). Participants discussed that the system still
requires some skill in data engineering to create queries
and basic knowledge of the data lake structure is also re-
quired (e.g., how schemas are used). Participants concluded
that frequently executed queries might be scheduled, hence,
being part of productive processes and optimized for effi-
ciency. However, they pointed out that knowledge sharing
can potentially lead to problems when users just copy the
query and do not validate the result.

Participants liked the functionalities for query validation
(R6). Because the system supports query execution and pre-
views the query result in different forms, no sub-queries
with group by or windowing and counts are necessary to
validate them. Furthermore, they liked that the aggregated
column values can be filtered. Hence, participants praised
that the system saves additional and manual effort for query
validation. Finally, it was emphasized that the tooltips are
suitable for quickly providing support. In particular, partic-
ipants found the last used date and the likes of other users
most useful when identifying queries.

6 Discussion

Due to the paucity of codified information about the pur-
pose, value, and provenance of data stored in a data lake,
data tends to disappear into silos within organizations, re-
sulting in significant lost productivity and opportunity, du-

plication of effort, and mishandling of data [10]. In the-
ory, data catalogs provide support in data discovery, in-
ventory, governance, documentation and collaboration [25].
However, data collaboration is often overlooked by current
data catalogs but can provide the most benefits for end-
users [13]. In software development, reusing code frag-
ments has a long tradition [9]. As software is typically
based on many pre-existing components, software engineers
benefit from sharing code through public repositiories like
Github. To support data collaboration and organizational
knowledge management (i.e., process of aquiring, organiz-
ing, and communicating knowledge of employees in a way
that other employees can use it to increase their produc-
tivity [2]), we argue that reusing queries from other users
is a promising endeavor to support query creation. In this
line, we envision our system to be used in addition to cur-
rent data catalogs to further optimize the time needed for
data identification and preparation. As data lakes evolve in
the future and potentially include further features, we think
that our system and data catalogs can benefit from each
other.

To implement our system, the queries of users need to be
logged and saved to extract metadata. We estimate the con-
cept of logging queries and extracting metadata also to be
transferable to a wide range of mono to multi-zone data lake
architectures including data lakes that base on the Hadoop
distributed file system. To be more concrete, this approach
can also be transfered to NoSQL databases or simple data
warehouses. In addition, this approach only makes sense
when there are enough data lake users or queries available.
Our evaluation further showed that users benefit most from
the system if data from various source systems or tables has
to be joined.

In our system, we focus on extracting business metadata
(e.g., where can I find specific business metadata such as
vendor number and what are the descriptions of cryptic col-
umn names such as “BWTTY”) to help business analysts
explore and prepare data for their use cases. In general,
however, our presented approach can extract all types of
metadata from SQL queries. This mainly depends on the
purpose of the query (e.g., find all suppliers in a specific
plant or create a new table for additional supplier informa-
tion). According to [20], there are three types of metadata in
a data lake: (1) technical metadata for data type, format and
data structure, (2) operational metadata for process history
and (3) business metadata for the descriptions of business
objective. To support technical and operational metadata,
only the data processing workflow needs to be adjusted –
as the metadata parser extracts all types of metadata used
in the query. For example, when data engineers create new
tables in the data lake, they specify the columns and data
types for them in the query – so our metadata parser can
extract all the metadata used (including technical metadata

K



104 Datenbank-Spektrum (2023) 23:97–105

such as the data type used). To extract the technical meta-
data, the data processing workflow then needs to be ex-
tended to create an additional table with the table columns
and their data types.

7 Summary and Conclusion

In this paper, we presented and developed a self-service
system that extracts metadata from a data lake and enables
business analysts to explore the metadata through an easy-
to-use interface (addressing gap 1-4). Hereby, we conducted
15 interviews with business analysts to derive the underly-
ing requirements of the system and evaluated its features
with a focus group. Our results showed that participants
especially liked the possibility to reuse queries from other
users and appreciated the support in query validation as data
preparation is a complex and time-consuming endeavour.

In conclusion, we have shown through the productive
implementation of our system in a real-world environment
with our industry partner that it is feasible to extract meta-
data from user queries following a bottom-up. This ap-
proach has the advantage that metadata does not need to be
maintained manually. Therefore, we believe that organiza-
tions with data lakes could use this approach as an efficient
way to create data catalogs. The proposed architecture and
prototype can be used as a guideline for implementing such
a system. Finally, our focus group evaluation showed that
the system is useful for data exploration tasks.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Declarations

Conflict of interest The authors have no conflicts of interest to declare
that are relevant to the article.

Open Access This article is licensed under a Creative Commons At-
tribution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included
in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view
a copy of this licence, visit http://creativecommons.org/licenses/by/4.
0/.

References

1. (2023) JSqlParser (4.5 Stable or 4.6 Snapshot). JSQLParser
2. Alavi M, Leidner DE (2001) Review: knowledge management

and knowledge management systems: conceptual foundations and

research issues. MISQ 25(1):107. https://doi.org/10.2307/3250961
(https://arxiv.org/abs/3250961)

3. Alpar P, Schulz M (2016) Self-service business intelligence. Bus
Inf Syst Eng 58(2):151–155. https://doi.org/10.1007/s12599-016-
0424-6

4. Drushku K, Aligon J, Labroche N et al (2019) Interest-based rec-
ommendations for business intelligence users. Inf Syst 86:79–93.
https://doi.org/10.1016/j.is.2018.08.004

5. Ehrlinger L, Schrott J, Melichar M et al (2021) Data catalogs: a sys-
tematic literature review and guidelines to implementation. In: Da-
tabase and expert systems applications – DEXA 2021 workshops,
S 148–158 https://doi.org/10.1007/978-3-030-87101-7_15

6. Eichler R, Giebler C, Gröger C et al (2020) HANDLE – A generic
metadata model for data lakes. In: Big data Analytics and know-
ledge discovery, S 73–88 https://doi.org/10.1007/978-3-030-
59065-9_7

7. Gröger C (2018) Building an industry 4.0 Analytics platform:
practical challenges, approaches and future research directions.
Datenbank Spektrum 18(1):5–14. https://doi.org/10.1007/s13222-
018-0273-1

8. Gröger C, Hoos E (2019) Ganzheitliches metadatenmanagement im
data lake: Anforderungen, IT-werkzeuge und herausforderungen in
der praxis. BTW. https://doi.org/10.18420/BTW2019-26

9. Haefliger S, Von Krogh G, Spaeth S (2008) Code reuse in open
source software. Manage Sci 54(1):180–193

10. Halevy AY, Korn F, Noy NF et al (2016) Managing Google’s data
lake: An overview of the Goods system. IEEE Data Eng Bull
39(3):5–14

11. International D (2017) DAMA-DMBOK: data management body
of knowledge. Technics Publications, LLC

12. Khoussainova N, Kwon Y, Liao WT et al (2011) Session-based
browsing for more effective query reuse. Sci Stat Database Manag.
https://doi.org/10.1007/978-3-642-22351-8_47

13. Labadie C, Legner C, Eurich M et al (2020) FAIR enough? Enhanc-
ing the usage of enterprise data with data catalogs. In: 2020 IEEE
22nd Conference on Business Informatics (CBI), S 201–210 https://
doi.org/10.1109/CBI49978.2020.00029

14. Mathis C (2017) Data lakes. Datenbank Spektrum 17(3):289–293.
https://doi.org/10.1007/s13222-017-0272-7

15. Michalczyk S, Nadj M, Azarfar D et al (2020) A state-of-the-Art
overview and future research avenues of self-service business intel-
ligence & analytics

16. Paetsch F, Eberlein A, Maurer F (2003) Requirements engineering
and agile software development. In: WET ICE 2003. Proceedings.
Twelfth IEEE International Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises, S 308–313 https://doi.
org/10.1109/ENABL.2003.1231428

17. Passlick J, Lebek B, Breitner MH (2017) A self-service support-
ing business intelligence and big data analytics architecture. In:
Wirtschaftsinformatik und angewandte Informatik

18. Quimbert E, Jeffery K, Martens C et al (2020) Data cataloguing.
In: Towards Interoperable research infrastructures for environmen-
tal and earth sciences. Springer, Berlin Heidelberg, S 140–161

19. Quix C, Hai R, Vatov I (2016) Metadata extraction and manage-
ment in data lakes with GEMMS. CSIMQ. https://doi.org/10.7250/
csimq.2016-9.04

20. Ravat F, Zhao Y (2019) Data lakes: trends and perspectives. In:
Database and expert systems applications, S 304–313 https://doi.
org/10.1007/978-3-030-27615-7_23

21. Seaman C (1999) Qualitative methods in empirical studies of soft-
ware engineering. IEEE Trans Softw Eng 25(4):557–572. https://
doi.org/10.1109/32.799955

22. Spahn M, Kleb J, Grimm S et al (2008) Supporting business in-
telligence by providing ontology-based end-user information self-
service. In: Proceedings of the first international workshop on on-
tology-supported business intelligence, S 1–12

K

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.2307/3250961
https://arxiv.org/abs/3250961
https://doi.org/10.1007/s12599-016-0424-6
https://doi.org/10.1007/s12599-016-0424-6
https://doi.org/10.1016/j.is.2018.08.004
https://doi.org/10.1007/978-3-030-87101-7_15
https://doi.org/10.1007/978-3-030-59065-9_7
https://doi.org/10.1007/978-3-030-59065-9_7
https://doi.org/10.1007/s13222-018-0273-1
https://doi.org/10.1007/s13222-018-0273-1
https://doi.org/10.18420/BTW2019-26
https://doi.org/10.1007/978-3-642-22351-8_47
https://doi.org/10.1109/CBI49978.2020.00029
https://doi.org/10.1109/CBI49978.2020.00029
https://doi.org/10.1007/s13222-017-0272-7
https://doi.org/10.1109/ENABL.2003.1231428
https://doi.org/10.1109/ENABL.2003.1231428
https://doi.org/10.7250/csimq.2016-9.04
https://doi.org/10.7250/csimq.2016-9.04
https://doi.org/10.1007/978-3-030-27615-7_23
https://doi.org/10.1007/978-3-030-27615-7_23
https://doi.org/10.1109/32.799955
https://doi.org/10.1109/32.799955


Datenbank-Spektrum (2023) 23:97–105 105

23. Sulaiman S (2019) Knowledge transfer-based recommendations to
enable self-service business intelligence. Shaker, Aachen

24. Sulaiman S, Gómez JM (2018) Recommendation-based business
intelligence architecture to empower self service business users. In:
Multikonferenz Wirtschaftsinformatik

25. Zaidi E, De Simoni G, Edjlali R et al (2017) Data catalogs are the
new black in data management and analytics. https://www.gartner.
com/en/documents/3837968, last accessed on 2023-01-10

K

https://www.gartner.com/en/documents/3837968
https://www.gartner.com/en/documents/3837968

	Metadata Extraction from User Queries for Self-Service Data Lake Exploration
	Abstract
	Introduction
	Related Work
	Requirements
	Implementation
	Logging Layer
	Extraction Layer
	Presentation Layer

	Evaluation
	Discussion
	Summary and Conclusion
	References


