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Abstract  

Data and information intensive industries require advanced data management ca- 

pabilities incorporated with large capacity storage. Performance in this environ- 

ment is, in part, a function of individual storage and data management system 

performance, but most importantly a function of the level of their integration. 

This paper focuses on integration, in particular on.the issue of how to use shared 

metadata to facilitate high performance interfaces between Mass Storage Systems 

(MSS)  and advanced data management clients. Current MSS interfaces are based 

on traditional file system interaction. hcreasing functionality at the interface can 

enhance performance by permitting clients to influence data placement, generate 

accurate cost estimates of I/O, and descri.ke impending 1/0 activity. Flexible 

mechanisms are needed for providing this functionality without compromising the 

generality of the interface; we are proposing active metadata sharing. .We present 

an architecture that details how, the shared metadata fits into the overall system 

architecture and control structure, along with a first cut a t  what the metadata 

model should look like. 
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1 Introduction 

It is becoming commonplace for large enterprises to be considering mining, analyzing or 

visualizing datasets of terabyte sizes today, with plans to store and access petabytes in 

the near future. The sheer size of the data alone requires cost effective storage solutions 

to be based in part on tertiary storage. These storage solutions must provide high 

performance access to data in order to support analysis tasks over the huge amounts 

of data involved. A necessary element in achieving high performance is fast individual 

storage and data management systems. However, the overall system performance will be 

driven by the level of integration between these two pieces. Currently, interfaces to Mass 
Storage Systems (MSS) are limited to the traditional file system style of interaction. 

The data management client is forced to view storage as a black box that gives up 

no control or information beyond what is required for basic I/O. Interfaces like this 

unbalance high performance solutions because no matter how advanced either endpoint 

is (data management: or storage), overall system performance will be dragged down to 

the capabilities of the interface bebeen the two. 

This paper focuses on integration - how to use shared metadata to facilitate high 

performance interfaces between mass storage systems and advanced data management 

clients. Examples of these clients include DBMSs, analysis-oriented object stores, in- 

telligent layout tools, and high level applications. A flexible mechanism is needed for 

sharing information between these clients and the storage system. We present an ar- 

chitecture based on active metadata sharing that details how the shared metadata fits 

into the overall data management system architecture and control structure. An initial 

metadata model is included at the end of the paper. 

One of the drivers for this effort arises out of a collaboration sponsored by NASA 
for its Earth Observing System, Distributed Information System (EOSDIS). EOSDIS 

requires massive amounts of diverse data to be stored, organized, distributed, visualized 

and analyzed. The collaboration as a whole considers the end-to-end system from the 

mass store to the desktop; storage, networking, distributed file systems, extensible data 

base management, and visualization. Good end-to-end performance requires that the 

various subsystems be well integrated, includidg the EOSDIS client DBMS and tertiary 

storage. The use of shared metadata as a focal point for subsystem integration is- a 

controllable, flexible method for enabling integration and the applicability extends well 

beyond the specific NASA effort. 

added to the interface to mass storage. Section 3 introduces the major features ef the in- 

terface and describes an architecture based on an active metadata model that transforms 

the metadata system into an active part of data management. The central component 

of this architecture is the Interface Data Repository (IDR). The IDR safely and accu- 

rately describes to any client where its data objects are stored and the costs associated 

with manipulating those objects. It also permits some control over the placement and 
movement of data in the MSS. Section 4 discusses several of the key issues involved with 

' 

The paper discusses several topics. Section 2 motivates the new functionality being . 
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this work. Section 5 closes with a brief statement of future work. An initial metadata 

model can be found in the Appendix. 

2 Motivating the Interface Functionality 

The interface between the MSS and advanced data management clients plays a critical 

role in the performance of the overall system. We claim there are four functionalities 

that will significantly enhance that performance. 

0 Flight plans: The MSS needs information on the current and near term 1/0 plans 

of the client in order to effectively schedule internal operations across all clients 

(for example, pre-fetching client data). 

0 Information on data access costs: The MSS client needs estimates of how long. 

1/0 operations will take in order to intelligently schedule operations. 

0 Influence over data layout: The client must have some degree of control over 

how the data is laid out in the storage system. The client should also be able to 

specify the criticality of directives, from “must comply” to kggested advice”. 

0 Transaction semantics: The interface should provide ACID semantics, to pro- 

tect client and MSS data and operations. 
I 

Flight Plans 
Flight plans allow the MSS to more intelligently schedule internal operations. The MSS 
is the only entity that is completely “aware” of its own resources, and of the current 

1/0 requests that it must satisfy from all clients. If the.MSS has access to information 

about jobs that will be requested in the near future, then its scheduler will be better 

able to optimize overall system throughput’, and by doing so improve overall system 

performance. For example, a DBMS client could alert the MSS that it is now beginning 

a specified sequence of 1/0 operations in response to a query. Seeing the entire sequence 

in advance, the MSS could minimize the numger of tape mounts performed during the 

course of the query by pre-staging the data that will be used at a later point in the query 

before that tape is unmounted. This will reduce the total time and effort spent on the 

. job. Without the flight plan such optimization is not possible. 

‘ Data access costs 

The ability to make cost estimates is particularly valuable to DBMS clients. Tradition- 

ally, DBMSs that need high performance put all data on fast random access disks. DBMS. 
query optimizers plan out how to most efficiently retrieve information to minimize the 

resource cost of a query (space, cpu, I/O, time) [6], based on the easily computed perfor- 

mance characteristics of the disks. A DBMS that can produce the same quality of time 

‘There,are other potential metrics’ that an MSS might optimize for instead, e.g. minimum response’ 
times. Site policy will determine which metric is in effect. 

2 



cost information running on top of an MSS with tertiary storage would gain substantial 

capacity, without sacrificing much in terms of performance. However, traditionally MSSs 
do not even provide the most basic information - whether specific data is on a disk or a 

tape. The differences between the two classes of media (average transfer rates, latency, 

seek rates, difference between the transfer times in best and worst cases) are significant 

and have a large impact on optimizer performance. An MSS interface that provides good 

information on the time cost of datz access throughout its storage hierarchy is necessary 

to enable effective query optimization. This kind of interface meshs well with current 

* query optimization research [5, 71 that is adapting the algorithms to deal with tertiary 

device characteristics. 

Data Placement  

The case for being able to infiuence data placement in the MSS is best made from the 

viewpoint of an intelligent data layout client. Briefly, tape-based mediums in tertiary 

storage are linear access devices. By far the most efficient way to sequentially access 

two objects on tape is to put them on the same tape, one after another. Intelligent 

data layout is based on the principle that data should be stored on these devices in the 

order that it is most likelg t o  'be retrieced, which is not necessarily the order in which 

it was stored. Optimass ['SI implement.ed this concept in global climate data modeling 

and has shown performance improvements of 2 to 15 times faster 1/0 speeds over a 

sec of 70 queries against the data. Optimass determines better layouts for the data 

automatically, however: the actual tapes that get built according to the layouts must 

be built by hand. This is because currently clients can not influence data placement in 

mass storage systems. 

Beyond enabling raw performance improvements, providing this functionality in the 

interface is crucial for controlling error. Certain client data (e.g. DBMS indexes) have 

a zero tolerance for bit-level errors, which translates to a zero-tolerance for the use of 

most tape-based storage devices. With no mechanism to influence this situation, the 

robustness of certain M S S  clients is significantly degraded. 

Transact ion Semantics 

Finally, the interface must provide good transaction semantics. There are four important 

.properties of all transactions: Atomicity, Consfstency, Isolation, and Durability (ACID) 

[4]. Atomicity requires that each transaction (e-g., 1/0 operation) be "all-or-nothing." 

Consistency requires that the information about the state of the system always remain 

in a consistent state. For example, part of the information cannot show that data 

has been moved, while other parts show the move has not been completed. Isolation 

requires that two different operations cannot interfere with each other, even though they 

may be running concurrently. Durability requires that once a transaction commits, its 

changes survive, even if there is a subsequent system crash. The interface is the focal 

point for the metadata that drives both the data management clients, and the storage 

system. Without these four properties, both the safety of the data being stored and the 

correctness of the applications .being run would be at stake. 

. 

. 

. 
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3 Approach 

The Interface Data Repository provides the functionality described above through the 

following key features: 

0 A n  abstract  view of MSS resources. Clients can gather information about 

their stored data through abstractions of MSS stores. The abstractions describe 

performance characteristics of logical stores and the locations of data objects on 

those stores. Data management clients can use these abstractions to determine the 

expected I j O  costs of different data movements (which is a critical component of 

query optimization). The MSS can change the physical devices in its domain and 

create new storage services with minimal impact on the external clients. These 

abstractions permit the IDR to be implemented across different MSSs with many 

different kinds of storage hardware. 

. 

0 Data movement specifications by clients. Clients can directly request all 

types of data movement, including I/O, caching;and migration. Clients can also 

recommend relative placement strategies for data blocks being moved. Class of 

service directives allow for keeping certain critical dataon the most reliable devices, 

and for specifying the degree of criticality of hints. 

0 Advanced notice of impending data movement requests. Clients can choose 

to provide this type of information. It gives the MSS greater latitude in its!opti- 

mization of resource usage, which should further enhance performance. ' . 

By appropriately structuring the metadata that is shared between the clients and. the 

MSS, a general-purpose interface can be defined that provides the needed high .degree 

of functionality to the data management clients. This section introduces the interface 

architecture. Section 3.1 gives an operational overview of the Interface Data Repository, 

and describ.es how it interacts with the MSS and MSS clients. Section 3.2 describes the 

metadata contained in the IDR; the parties responsible for maintaining the tables, and 

the access privileges to various portions of thgdata. Section 3.3 identifies a few .active 

triggers within the IDR for notifying various parties of relevant changes to the IDR. 

. 
, 

Section 3.4 provides a simple example of using the IDR. 
. .  

3.1 Operational Overview 

The interface architecture is pictured in Figure 1. The figure shows three major software 

components: an MSS, an IDR and a client. The heavy lines represent the movement 

of data to/from the stores. These data paths are separate from the control paths to 

avoid the need for the IDR to store and forward all of the data coming from the MSS 
(third party transfer). The narrow lines in the figure represent pathways for specify- 

ing commands and responses between these components. The IDR contains metadata 
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Figure 1: Proposed Interface Architecture 

which describes the holdings of an .MSS, along with data representing clients' requests, 

and is implemented in a relational DBMS . (RDBMS). Typically, an RDBMS includes 

fu,nctionality such as a query language, active database features (e.g., rules and trig- 

gers), ACID transaction semantics, and security. For. the IDR design, we assume that 

the query language used to access and modify the content of the IDR is SQL92 [l]. The 

M S S  manages its stores, implements site policy, and honors requests as best it can given 

what it knows about its entire work load. A client focuses on optimizing the requests 

it makes based on what it knows about the available stores, and the data objects that 

currently reside there. 

Normal operation of the system distributd responsibility for actions between the 

MSS and its clients. The MSS has. primary responsibility for maintaining most of the 

information in the IDR. It keeps a mapping of all data objects to their current virtual 

stores. As the MSS migrates objects to different stores, it updates the IDR to reflect 

these moves. The MSS also maintains the performance characteristics for each of the 

virtual stores. The client's responsibility is to post information to the IDR to request 1/0 
activity, issue directives, or to announce an intent to request future 1/0 activity. With 

this information, an MSS .may better optimize its overall performance. For example, 

an MSS may decide to pre-stage data to a more favorable location in anticipation of 

future 1/0 requests. Through standard SQL queries, a client can acquire information. 

needed to make cost estimates for executing various 110 operations as a part of its 

query optimization activities. Clients can access only those portions of information in 

> - 
- 
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the IDR related to their own objects. Finally, DBMS triggers are used to provide the 

active interface and notify the various components of changes in the IDR metadata that 

require attention (e.g., notifying the MSS of new 1/0 requests). 

3.2 IDR Metadata Schema 

The IDR metadata is organized as a standard relational schema. At present we have iden- 

tified six tables that need to be maintained: Bundles, Stores, Blocks, Block-Equivalency, 

Movement, and Movement-Associations. This section describes the content and main- 

tenance of these tables in an informal form. For those familiar with RDBMS notation, 

the Appendix contains a formal relational schema. 

The Bundles table associates names of data bundles (names understood by the client) 

with. unique MSS identifiers. A DBMS client will likely view a bundle as equivalent to 

a relation or a class. On the other hand, non-DBMS clients may prefer to view bundles 

as an uninterpreted strings of bytes of arbitrary length &e., files). Client operations 

on bundles can use client domain names and bundle-related offsets and lengths. This 

relieves clients of having to know more about the internal 1/0 operations of the MSS 
than they need or want to know. Bundles are divided into blocks of equal length. Block 

length is represented in the Bundle table as "BlockSize". The M S S  is responsible for 

maintaining the content of the Bundles table. 

The Stores table represents an abstracted model of a physical device (called a virtual 

store) that provides physical storage. The physical media underlying a row in this table 

maj7 be a discreet unit, or a collection of units. For example, a virtual store could be an 

individual tape, a set of tapes managed in striped fashion, or even a hierarchy of hetero- 

geneous stores. Among other things, this table contains the performance characteristics 

of these virtual stores. This table associates a unique "StoreId" with service and per- 

formance information such as capacity, default block size, cost of storage, mount time, 

access time, transfer rate, reliability level. We refer to this collection of performance 

information as "Class of Service (COS)." The key point for a client is that the service 

and performance information reflect as accurately as possible the costs for using each 

A more advanced feature of the Stores table is a second type of entry that is managed 

by each client. The IDR schema treats portions of main memory as a type of virtual 

storage device. Each client may allocate some main memory storage that it will use 
as space for moving data between itself and the MSS. It then places information about . 

this memory into the Stores table. The information. within the IDR about this memory 

is adequate for formulating any necessary 1/0 commands to and from these locations. 

By making portions of main memory part of the logical storage hierarchy, the IDR can 

represent all forms of I/O, data caching, and data migration in a uniform manner. How 

exactly to best operate within this new storage model is still a research issue. 

The Blocks table describes the mapping from bundles to stores. Each bundle can be 

divided into an arbitrary number of blocks of uniform size. The blocks table can be used 

kind of store. 6' 
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I 
to find the sequence of blocks that make up a bundle. In addition, the table indicates 

the virtual store and location on that store where the block is located. The Blocks table 

reflects the possibility that different portions of an object may reside on different types 

or instances of storage media. All portions of the Block table are maintained by the 

MSS. 
The Block-Equivalency table represents situations where a block is stored more than 

once. This table allows the M S S  and the owner of the blocks to locate redundant copies 

of a block. The MSS is responsible for maintaining this table. Both the MSS and the 
client (depending on policy) can use it. for specific optimization purposes. Equivalent 

blocks may have different performance characteristics if located on different stores. 

.The Movement table contains requests for the movement of data between Stores. The 
data object to be moved is identified as a particular block. The place to which data is 

moved can be specified generically in terms of a desired class of service or specifically as . 

a "DesiredStorageId': and "DesiredAddressOnStore" pair. In the latter case, the address 

is a virtual address that permits different Movement table entries to relatively position 

blocks in a manner deemed favorable by a client. A movement can either be a "copy" 

or a "move.': At present, bhis table has one field describing the priority of the proposed 

move, which is intended to cover a number of movement issues. A low priority number 

would indicate this move is mild advice to the MSS about the expected use of the data. 

X high priority number is essentially an 1/0 .directive that should be carried out exactly 

as specified if at all possible. Another field in the table, "EquivalentBlockOk", .permits 

the client to specify whether or not the MSS may use an equivalent block to the-block 

specified for satisfying this request. Finally, the "Sta tu~)~  field indicates the completion 

status of this requested movement. All fields in the Movement table (except the Status 

field) are managed by the client. 

The Movement-Associations table permits the client to logically group related Move- 

ment entries. This grouping conveys to the MSS that all movements within a group 

are part of a larger plan. This knowledge of groupings may assist the MSS in making 

improved scheduling decisions for optimizing performance. 

3.3 IDR Rules and Triggers 

The functionality of the IDR extends beyond simply maintaining the metadata described 

above. The IDR is responsible for informing the MSS and the clients when interesting .. 

events occur; thus the IDR is an active interface that participates in the overall data 

management solution. 

An RDBMS implementation of the IDR permits the definition of various rules and 

triggers (or alerts) that govern the actions that can be taken when certain events occur. 

This section briefly describes a few examples of rules and triggers, making it possible to 

illustrate the expected use of the IDR in practice. 

DBMS rules describe actions that must be taken when specific access to a database 

match pre-defined conditions. For example, "on insert to ,Movement do ...'I Such rules 
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are executed in all cases on behalf of all applications accessing a given database. A 

trigger, or alerter, on the other hand, is used for application specific communications, 

and can be raised under very exacting conditions. An alert may be "fired" by a rule, or 

"raised" by an application. In either case, what occurs depends on "who" is listening 

for the alert. In essence, an alert is a notification mechanism. 

This triggering system can be used in numerous useful'.ways, such as implementing 

new, tailored interface schemes. For example, a Commands table could contain high- 

level commands that operate on Bundles (or portions of Bundles) instead of Blocks. A 
specific alert could translate the original high-level request into appropriate inserts into 

Movements rows for each Block. Examples of other rules and trigger concepts we expect 

to include in the IDR schema include alerting the M S S  when new entries are made in 

the Movement table, and alerting the relevant client DBMS when a Movement status 

changes. 

3.4 Simple Example of IDR Use 

We can illustrate how this interface architecture works by studying a simple problem. 

Take the client to be a. DBMS. When a client connects with the IDR, it must establish its 

identity and at that time receives the capability to view the portions of the IDR metadata 

that it manages. The client may then issue SQL commands to acquire information on the 

general location of its Bundles and attributes about the Stores on which those Bundles . 
reside. At this time, the client may add into the Stores table information about the 

location of main memory space that the b1SS may use for moving data, as described in 

Section 3.2. 

When the client DBMS receives a query from one of its users, it begins to formulate 

possible execution plans to satisfy the query. As a part of query optimization, the client 

is likely to issue further SQL queries to the IDR to calculate the costs of various data 

movements associated with each plan. After evaluating some number of possible plans, 

a query execution plan is chosen. The client DBMS then posts in the IDR Movement 

table the specific 1/0 operations needed, along. with any appropriate grouping of these 

moves represented in the Movement- Associatidn table. 

Inserting the 1/0 requests in the Movement table will set off a trigger for the MSS to 

begin executing the plan. The MSS can then view the new 1/0 requests with all other 

pending requests from other clients, and optimize the execution of all. requests according 

to its established site policies. As the steps in the plan are carried out, the MSS can use 

SQL transactions to update the state of the data mappings and indicate the completion 

status of those operations. These changes to the IDR will then set off trigger(s) for the 

client DBMS to be notified of progress. 

Using the IDR schema, a MSS may have additional opportunities for optimiza- 

tion, beyond intelligent ordering of data movements from the Movement table. The. 

Movement-Association table allows an MSS to understand that a set of moves are related 

toward a common goal. Assume a group of movements reads 'data from two different 
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tapes in a staggered fashion (as might be required in a sort-merge algorithm). Further 

assume that only one tape drive is available. The MSS could decide to cache one of the 

tapes contents to disk to minimize mount time. If at a later time another tape drive 

becomes available, the MSS can decide to dispense with the caching and revert to direct 

moves from tape to memory. 

4 Issues 

There are many issues involved with building this interface. For example, with respect 

to the IDR metadata model there are questions such as: how exactly should the 1/0 
cost estimates be translated to the client, should there be quality of service guarantees, 

what types of relations between blocks in bundles should be specifiable? In this section 

we focus instead on the system architecture issues that have come up. 

There are two important policy issues. First, the interface must provide general- 

purpose access to the MSS storage facilities for all clients. This implies that only the 

M S S  should esert total control over the scheduling and use of MSS resources, and so 

client directives of the “must comply” character must have a escape options for the MSS. 
Potential options include: ”directive refused due to” or “directive delayed until”. Second, 

the int.erface must separate implementation techniques from policy. Most M S S  policies 

are site-dependent, and are based on specific performance and reliability objectives. The 

interface cannot impose specific policies, but should allow for the definition, association, 

and esecution of whatever policies a particular MSS site has chosen. For the interface 

to be broadly acceptable, it must reflect this policy-neutral position. 

One of the implementation issues is whether the control structure supports a trans- 

actional interface. As currently defined, the IDR is a reflection of the actual state of 

affairs as maintained by the MSS. The question is whether the underlying processes in 

the interface provide ACID semantics for the actual 1/0 operations. The simplest sce- 

nario (in terms of implementation) for providing the interface architecturgon top of an 

existing M S S  would be to have the IDR as a separate entity from the actual metadata 

for the data held within the MSS. In this  cas,^; assurance of the ACID properties will 

depend on the exact nature of the implementation of changes to the MSS internal data 

and the corresponding changes to the IDR. Full confidence in atomicity, consistency, 

and durability between the IDR and MSS versions of the metadata m+y be difficult to 

An alternate IDR implementation strategy avoids these uncertainties. The MSS 
could make the IDR the one and only repository of all of its metadata. This implemen- 

tation strategy would automatically provide ACID transaction properties for all updates 

to MSS tables, which would provide end-to-end assurances for all users of the IDR. 
We are taking this approach for a prototype implementation, which is depicted in 

Figure 2. The M S S  platform will be the High Performance Storage System (HPSS), 
HPSS is a collaborative development effort between IBM and four national laboratories, 

‘ ensure. 
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Figure 2: Implementation Architecture 

Repository 

M a s s  Storage 
System 
( M S S )  

including LLNL. HPSS build on standards where they exist; i t  is consistent with the 

IEEE Mass Storage Reference Model [3]. The initial implementation of the IDR will be 

accomplished using DB2 to extend the HPSS interface. We believe that DB2 provides 

the necessary performance levels required for the.IDR implementation and it does so 

through a standard interface to the SQL92 standard query language. 

We plan to develop an experimental version of HPSS (independent of the production 

versions) to implement the IDR. Our implementation will replace the tool that stores 

all of the HPSS metadata. Currently all non-volatile HPSS system metadata, including 

COS, Bitfiles, Storage Segments, and Virtual Volumes, are stored in B-tree based data 

structures controlled by Transarc’s Encina andstructured File Service .products. Access 

and update of this metadata is currently performed via the issuing of DCE RPCs to the 

HPSS Metadata Manager. The Metadata Manager is the only HPSS component that 

calls the Encina and SFS internal interfaces directly. Essentially, Encina will be replaced 

with DB2, modifying the HPSS Metadata Manager system calls to reflect this change, 

thus making it possible to move all HPSS metadata into DB2. The IDR can then be 

implemented as a view of the HPSS metadata. The scheme provides a standard security 

mechanism that will shield the client from data that is not part of the IDR abstractions, 

and data unrelated to that client. The resulting design smoothly merges MSS metadata 

with the IDR metadata, resolves any consistency issues, provides the MSS with quality 

COTS products for internal management, and provides the highest level of performance 

possible out of the IDR concept. 
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The final issue we need-to mention concerns current MSS users and how they might 

be affected by an IDR, particularly if they do not need higher performance. The im- 

plementation strategy we have chosen retains the possibility for existing MSS users to 

communicate with KPSS without any change. We do not expect the replacement of the 

HPSS metadata scheme (from flat' files to an RDBMS) to adversely affect the perfor- 

mance of HPSS for th,ese clients. 

5 Future Work 

The Interface Data Repository is nearing the end of the preliminary design phase, and 

we are about to begin the first prototype implementation. Some of the design decisions, 

like the control structure, are fairly stable. Other elements of the design are expected to 

undergo significant change over the next year or so. In particular, the metadata schema 

described in the Appendix is already slightly out of date, and will likely see the most 

changes as our experiences from the prototype and from interactions with the DBMS 
and MSS communit.ies are incorporated into the project. As part of demonstrating 

the performance enhancements of the prototype, one of our tasks will be to create a 

performance benchmark. The long-term goal of this project is to develop an interface 

structure and metadata schema that is powerful and flexible enough to be accepted by 

the 11SS and DBMS communities as the standard for a high performance DBMS/MSS 
interface. 
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A Appendix 

This is an SQL92 standard relational schema which represents the metadata which 

would be required for the IDR. This schema is not complete, but is included to give 

more substance to the discussion in the text. A full implementation will require a host 

of other metadata not previously mentioned, such as what users are authorized, or what 

tape drives are available. 

In keeping with its modest objectives, the naming of tables and attributes is kept 

deliberately abstract so as to avoid the confusion which would. result from attaching 

more over-loaded terms taken from a specific jargon. A rough mapping of tables to 

cpncept is included. 

Bundles: 
Bundles are the groupings of data. A Bundle is collection of blocks of no specified 

length. Bundles have Identifiers (BundleId) which are unique within the MSS. Bundles 

have Names which are used to identify them to the outside world. 

Note that Blocksize is an attribute of a Bundle, not a Block, thus fixing the block 

size for a particular bundle. This simplifies access, because each block need not be 

interrogated in order to specify which particular block a "byte offset" belongs in, and 

thus, what happens when/if a (copy of) a block is put on a store which has different 

requirements. There are other sensible solutions too. 

Storage : 

Starting with CostPerKHour we get into defining the performance costs associated 

with getting to a block. Each of the following attributes (XchTime, AccessTime, etc) is 

a record of the mean - or some other, more statistically sophisticated measure - of this 

aspect of the Store's performance. Note that t& is not necessarily an exhaustive list of 

what might be desired. 

The inclusion of a ClassOfService reference is optional. If it is included, some of the 

1/0 characteristics of a.Store could be omitted, such as DataXsferRate. The argument 

for inclusion is that it permits an easier search for stores of a given characteristic. But 

then, a COS table, describing classes of service, and an association table, could perhaps 

do better. 

The inclusion of CollectionId is intended to give a user some information about 

whether two particular Stores might be a part of different "collections", such as a tape 

robot serving a collection of 500 tapes, and hence, provide a modest insight into physical 

layout without loosing any abstraction. An implication might be that if two Stores are of 

the same CollectionId, then they are less likely to be concurrently accessed in real time. 
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This draws on the fact that the MSS must manage the metadata associated with such 

collections already (in a metadata schema we have chosen not to outline). CollectionId 

could have other uses too. It has been deliberately left undefined. 

Blocks: 

Bundles are divided into smaller units - called Blocks - for distribution among the 

Stores. This table manages the mapping of each Bundle's Blocks to the Stores. The 

situation is complicated by the fact that a Block may be stored several times. Also recall 

that Blocksize has been put as an attribute of Bundle fixing all blocks in a Bundle to 

the same size, simplifying otherwise complex operations. This need not be so, but an 

alternate scheme would need to concern itself with whether a block move from one store 

to another with different block sizes might cause problems. 

Movement: 

The movement table is not really necessary in the schema, but we have provided it to 

simplify some operations, and to make requests easier to express and to track. Virtually 

all of the attributes which describe a Movement could instead be expressed as some set 

of SQL statements over the tables above. One exception to this is the Priority attribute. 

,This is intended to permit the user to specify whether a specific request is a "hint," to 

assist with caching if space is available: or a "demand". 

Xote that a Class Of Service table, COS, is mentioned, but not defined. The purpose 

of this table is to permit various classes of service to be defined independently of Stores, 

and let users specify Block movement to a class of service instead of a specific Store. if 

it is desired that an entire bundle be so moved, a simple SQL statement can populate 

the Movement table with requests for each block. 

Movement- Associations: 

The Movement-Associations table provides the MSS with the ability to discover what 

Novements are associated. This information is useful for interpreting the users intentions 

and in making hopefully optimal caching decisions. 

To use this ability properly, a User should associate movements which are logically 

associated, and semantically at the same "level." This would be the case, for example, 

if a database were doing a "join" and needed to concurrently read from more than 

one entity at a time. if any one of these reads were blocked, the entire operation is 

effectively blocked. When such a blockage might otherwise be inevitable, the MSS may 

cache resources as appropriate to relieve the blockage. 

The implementation of Mol-e-1 and Move-n is certainly NOT the only way in which 

this could be implemented. For systems permitting it, the attributes should be "row)) 

level pointers, TIDs, OIDs and the like, and NOT integers. Another alternative would 

be to add an attribute to the Movement table itself. There is nothing wrong with that 

idea, but we expect that many Movements will not have associations, and so do not 

need the attribute. 

- 
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CREATE TABLE Bundles 

integer BundleId 

BundleName varchar(20) 

Blocksize integer 

( 

)I 

CREATE TABLE Stores 

integer S toreId 

Capacity integer 

defaultBlockSize integer 

Reliable boolean 

Cost per ICS per Hour 

SchTime decimal( 10,5) 
.AccessTime decimal( 10,5) 

D ataXsferRate decimal( 10,5) 
Collectiodd integer 

)I 

( 

decimal( 5,3) 

CRE:ATE T.4BLE Blocks 

[ 
B lo ckId integer 

StoreId integer 

XddressonS tore integer 

BundleId integer 

B undleO ff Se t integer 

)I 

not null, Primary Key, 

not null, 

not null, 

f 

not null, Primary Key, 

not null, Foreign Key References(Stores), 

not null, 

not null, Foreign Key References( Bundles), 

not null 

f;- 

not null, Primary Key, 

not null, 

not null, /** in I< bytes **/ 
default False, 

not null, /** in dollars **/ 
not null, /** in milli-seconds +*/ 
not null, /**in milli-seconds **/ 
not null, /** I< per milli-second **/ 
not null, Foreign Key References( Collections) 

CREATE TABLE Block-Equivalency 

not null, Foreign Key References(Blocks.BlockId), CanonicalBlock 

Equivalent B lock integer not null, Foreign Key References( Blocks.BlockId) 

integer 
( 

1; 

Table 1: Metadata Schema 

- 
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CREATE TABLE Movement 

integer Movement Id 

BlockId integer 

EquivBlockOK boolean 

ClassOfService integer 

( 

DesiredStoreId integer 

DesiredAddressonStore integer 

Priority integer 

Movement T y  p e var ch ar (2 0) 

Status varcliar(20) 

1: 

not null, Primary Key, 

not null, Foreign Key References(Blocks), 

not null, 

Foreign Key References(C0S) 

check (if not null 

(DesiredStoreId is null 

AND DesiredAddressonStore is null)), 

Foreign Key References(Stores), 

check (if not null 

(DisiredAddressonStore is not null 

AND ClassOfService is null)), 

not null, 

not null, check in 'Move', 'Copy' , 
not null 

CREATE TABLE Movement-Associations 

Move- 1 integer not null, Foreign Key References(Movement.MovementId), 

Move-n integer not null, y g n  Key References(Movement.MovementId), 

A 

Table 2: Metadata Schema, continued 
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