
@ofid-'- 96S#l39
UCRL-JC- 123875
PREPRINT

Metadata for Balanced Performance

R. Musick
P. Brown
R. Troy
D. Fisher
S. Louis

J. McGraw

. This paper was prepared for submittal to the

IEEE Metuduta Conference
Washington, DC
April IS-19, I994

April 1996

This is a preprint of a paper intended for publication in a journal or proceedings.

Since changes may be made before publication, this preprint is made available

with the understanding that it will not be cited or reproduced without the
permission of the author. 1

-_-

DISTRIBUTION OF THIS DOCUMENT IS UNLlMlT

-

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor the
University of California nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or Service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States
Government or the University of California ' h e views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
Government or the University of California, and shall not be used for advertising
or product endorsement purposes.

- _
"' *

< ;,s 5 9 4 $ r l , j .] a

J r

c

Met adat a for Balanced Performance"

Paul Brown, Richard Troy

University of California at Berkeley

Computer Science Division, Berkeley, CA 94720

{ pbrown, r troy-} @p os tgres. b erkeley. edu

Dave Fisher, Steve Louis, James R. McGraw, Ron Musick

Lawrence Livermore National Laboratory

P.O. Box 808: Livermore, CA 94551

{ dsf, stlouis, jmcgraw, rmusick}@llnl.gov

Abstract

Data and information intensive industries require advanced data management ca-

pabilities incorporated with large capacity storage. Performance in this environ-

ment is, in part, a function of individual storage and data management system

performance, but most importantly a function of the level of their integration.

This paper focuses on integration, in particular on.the issue of how to use shared

metadata to facilitate high performance interfaces between Mass Storage Systems

(MSS) and advanced data management clients. Current MSS interfaces are based

on traditional file system interaction. hcreasing functionality at the interface can

enhance performance by permitting clients to influence data placement, generate

accurate cost estimates of I/O, and descri.ke impending 1/0 activity. Flexible

mechanisms are needed for providing this functionality without compromising the

generality of the interface; we are proposing active metadata sharing. .We present

an architecture that details how, the shared metadata fits into the overall system

architecture and control structure, along with a first cut a t what the metadata

model should look like.

.

'This work was funded in part by the National Aeronautics and Space Administration. (NASA)
EOSDIS grant with University of California at Berkeley, reference number 3579-IST94-0086 and un-
der contract number G4947 at Lawrence Livermore National Laboratory. Portions of this work were
performed under the auspices of the U.S. Department of Energy's Mathematical, Information and Com-
putational Sciences Program (grant KC 07-01-03)and by the Lawrence Livermore National Laboratory.
under contract number W-7405-ENG-48.

mailto:rmusick}@llnl.gov

1 Introduction

It is becoming commonplace for large enterprises to be considering mining, analyzing or

visualizing datasets of terabyte sizes today, with plans to store and access petabytes in

the near future. The sheer size of the data alone requires cost effective storage solutions

to be based in part on tertiary storage. These storage solutions must provide high

performance access to data in order to support analysis tasks over the huge amounts

of data involved. A necessary element in achieving high performance is fast individual

storage and data management systems. However, the overall system performance will be

driven by the level of integration between these two pieces. Currently, interfaces to Mass
Storage Systems (MSS) are limited to the traditional file system style of interaction.

The data management client is forced to view storage as a black box that gives up

no control or information beyond what is required for basic I/O. Interfaces like this

unbalance high performance solutions because no matter how advanced either endpoint

is (data management: or storage), overall system performance will be dragged down to

the capabilities of the interface bebeen the two.

This paper focuses on integration - how to use shared metadata to facilitate high

performance interfaces between mass storage systems and advanced data management

clients. Examples of these clients include DBMSs, analysis-oriented object stores, in-

telligent layout tools, and high level applications. A flexible mechanism is needed for

sharing information between these clients and the storage system. We present an ar-

chitecture based on active metadata sharing that details how the shared metadata fits

into the overall data management system architecture and control structure. An initial

metadata model is included at the end of the paper.

One of the drivers for this effort arises out of a collaboration sponsored by NASA
for its Earth Observing System, Distributed Information System (EOSDIS). EOSDIS

requires massive amounts of diverse data to be stored, organized, distributed, visualized

and analyzed. The collaboration as a whole considers the end-to-end system from the

mass store to the desktop; storage, networking, distributed file systems, extensible data

base management, and visualization. Good end-to-end performance requires that the

various subsystems be well integrated, includidg the EOSDIS client DBMS and tertiary

storage. The use of shared metadata as a focal point for subsystem integration is- a

controllable, flexible method for enabling integration and the applicability extends well

beyond the specific NASA effort.

added to the interface to mass storage. Section 3 introduces the major features ef the in-

terface and describes an architecture based on an active metadata model that transforms

the metadata system into an active part of data management. The central component

of this architecture is the Interface Data Repository (IDR). The IDR safely and accu-

rately describes to any client where its data objects are stored and the costs associated

with manipulating those objects. It also permits some control over the placement and
movement of data in the MSS. Section 4 discusses several of the key issues involved with

'

The paper discusses several topics. Section 2 motivates the new functionality being .

1

.

this work. Section 5 closes with a brief statement of future work. An initial metadata

model can be found in the Appendix.

2 Motivating the Interface Functionality

The interface between the MSS and advanced data management clients plays a critical

role in the performance of the overall system. We claim there are four functionalities

that will significantly enhance that performance.

0 Flight plans: The MSS needs information on the current and near term 1/0 plans

of the client in order to effectively schedule internal operations across all clients

(for example, pre-fetching client data).

0 Information on data access costs: The MSS client needs estimates of how long.

1/0 operations will take in order to intelligently schedule operations.

0 Influence over data layout: The client must have some degree of control over

how the data is laid out in the storage system. The client should also be able to

specify the criticality of directives, from “must comply” to kggested advice”.

0 Transaction semantics: The interface should provide ACID semantics, to pro-

tect client and MSS data and operations.
I

Flight Plans
Flight plans allow the MSS to more intelligently schedule internal operations. The MSS
is the only entity that is completely “aware” of its own resources, and of the current

1/0 requests that it must satisfy from all clients. If the.MSS has access to information

about jobs that will be requested in the near future, then its scheduler will be better

able to optimize overall system throughput’, and by doing so improve overall system

performance. For example, a DBMS client could alert the MSS that it is now beginning

a specified sequence of 1/0 operations in response to a query. Seeing the entire sequence

in advance, the MSS could minimize the numger of tape mounts performed during the

course of the query by pre-staging the data that will be used at a later point in the query

before that tape is unmounted. This will reduce the total time and effort spent on the

. job. Without the flight plan such optimization is not possible.

‘ Data access costs

The ability to make cost estimates is particularly valuable to DBMS clients. Tradition-

ally, DBMSs that need high performance put all data on fast random access disks. DBMS.
query optimizers plan out how to most efficiently retrieve information to minimize the

resource cost of a query (space, cpu, I/O, time) [6], based on the easily computed perfor-

mance characteristics of the disks. A DBMS that can produce the same quality of time

‘There,are other potential metrics’ that an MSS might optimize for instead, e.g. minimum response’
times. Site policy will determine which metric is in effect.

2

cost information running on top of an MSS with tertiary storage would gain substantial

capacity, without sacrificing much in terms of performance. However, traditionally MSSs
do not even provide the most basic information - whether specific data is on a disk or a

tape. The differences between the two classes of media (average transfer rates, latency,

seek rates, difference between the transfer times in best and worst cases) are significant

and have a large impact on optimizer performance. An MSS interface that provides good

information on the time cost of datz access throughout its storage hierarchy is necessary

to enable effective query optimization. This kind of interface meshs well with current

* query optimization research [5, 71 that is adapting the algorithms to deal with tertiary

device characteristics.

Data Placement

The case for being able to infiuence data placement in the MSS is best made from the

viewpoint of an intelligent data layout client. Briefly, tape-based mediums in tertiary

storage are linear access devices. By far the most efficient way to sequentially access

two objects on tape is to put them on the same tape, one after another. Intelligent

data layout is based on the principle that data should be stored on these devices in the

order that it is most likelg t o 'be retrieced, which is not necessarily the order in which

it was stored. Optimass ['SI implement.ed this concept in global climate data modeling

and has shown performance improvements of 2 to 15 times faster 1/0 speeds over a

sec of 70 queries against the data. Optimass determines better layouts for the data

automatically, however: the actual tapes that get built according to the layouts must

be built by hand. This is because currently clients can not influence data placement in

mass storage systems.

Beyond enabling raw performance improvements, providing this functionality in the

interface is crucial for controlling error. Certain client data (e.g. DBMS indexes) have

a zero tolerance for bit-level errors, which translates to a zero-tolerance for the use of

most tape-based storage devices. With no mechanism to influence this situation, the

robustness of certain M S S clients is significantly degraded.

Transact ion Semantics

Finally, the interface must provide good transaction semantics. There are four important

.properties of all transactions: Atomicity, Consfstency, Isolation, and Durability (ACID)

[4]. Atomicity requires that each transaction (e-g., 1/0 operation) be "all-or-nothing."

Consistency requires that the information about the state of the system always remain

in a consistent state. For example, part of the information cannot show that data

has been moved, while other parts show the move has not been completed. Isolation

requires that two different operations cannot interfere with each other, even though they

may be running concurrently. Durability requires that once a transaction commits, its

changes survive, even if there is a subsequent system crash. The interface is the focal

point for the metadata that drives both the data management clients, and the storage

system. Without these four properties, both the safety of the data being stored and the

correctness of the applications .being run would be at stake.

.

.

.

3

3 Approach

The Interface Data Repository provides the functionality described above through the

following key features:

0 A n abstract view of MSS resources. Clients can gather information about

their stored data through abstractions of MSS stores. The abstractions describe

performance characteristics of logical stores and the locations of data objects on

those stores. Data management clients can use these abstractions to determine the

expected I j O costs of different data movements (which is a critical component of

query optimization). The MSS can change the physical devices in its domain and

create new storage services with minimal impact on the external clients. These

abstractions permit the IDR to be implemented across different MSSs with many

different kinds of storage hardware.

.

0 Data movement specifications by clients. Clients can directly request all

types of data movement, including I/O, caching;and migration. Clients can also

recommend relative placement strategies for data blocks being moved. Class of

service directives allow for keeping certain critical dataon the most reliable devices,

and for specifying the degree of criticality of hints.

0 Advanced notice of impending data movement requests. Clients can choose

to provide this type of information. It gives the MSS greater latitude in its!opti-

mization of resource usage, which should further enhance performance. ' .

By appropriately structuring the metadata that is shared between the clients and. the

MSS, a general-purpose interface can be defined that provides the needed high .degree

of functionality to the data management clients. This section introduces the interface

architecture. Section 3.1 gives an operational overview of the Interface Data Repository,

and describ.es how it interacts with the MSS and MSS clients. Section 3.2 describes the

metadata contained in the IDR; the parties responsible for maintaining the tables, and

the access privileges to various portions of thgdata. Section 3.3 identifies a few .active

triggers within the IDR for notifying various parties of relevant changes to the IDR.

.
,

Section 3.4 provides a simple example of using the IDR.
. .

3.1 Operational Overview

The interface architecture is pictured in Figure 1. The figure shows three major software

components: an MSS, an IDR and a client. The heavy lines represent the movement

of data to/from the stores. These data paths are separate from the control paths to

avoid the need for the IDR to store and forward all of the data coming from the MSS
(third party transfer). The narrow lines in the figure represent pathways for specify-

ing commands and responses between these components. The IDR contains metadata

4

Real (or Virtual)
Data Transmission
Path

~ =I Client

Requesls for VO.

Direaives (Sal)

Interface Data
Repository

Updates to Mapping
from Data lo Stores (Sal)

VO and Directive
Requests (Triggers)

Mass Storage
System

Figure 1: Proposed Interface Architecture

which describes the holdings of an .MSS, along with data representing clients' requests,

and is implemented in a relational DBMS . (RDBMS). Typically, an RDBMS includes

fu,nctionality such as a query language, active database features (e.g., rules and trig-

gers), ACID transaction semantics, and security. For. the IDR design, we assume that

the query language used to access and modify the content of the IDR is SQL92 [l]. The

M S S manages its stores, implements site policy, and honors requests as best it can given

what it knows about its entire work load. A client focuses on optimizing the requests

it makes based on what it knows about the available stores, and the data objects that

currently reside there.

Normal operation of the system distributd responsibility for actions between the

MSS and its clients. The MSS has. primary responsibility for maintaining most of the

information in the IDR. It keeps a mapping of all data objects to their current virtual

stores. As the MSS migrates objects to different stores, it updates the IDR to reflect

these moves. The MSS also maintains the performance characteristics for each of the

virtual stores. The client's responsibility is to post information to the IDR to request 1/0
activity, issue directives, or to announce an intent to request future 1/0 activity. With

this information, an MSS .may better optimize its overall performance. For example,

an MSS may decide to pre-stage data to a more favorable location in anticipation of

future 1/0 requests. Through standard SQL queries, a client can acquire information.

needed to make cost estimates for executing various 110 operations as a part of its

query optimization activities. Clients can access only those portions of information in

> -
-

5

the IDR related to their own objects. Finally, DBMS triggers are used to provide the

active interface and notify the various components of changes in the IDR metadata that

require attention (e.g., notifying the MSS of new 1/0 requests).

3.2 IDR Metadata Schema

The IDR metadata is organized as a standard relational schema. At present we have iden-

tified six tables that need to be maintained: Bundles, Stores, Blocks, Block-Equivalency,

Movement, and Movement-Associations. This section describes the content and main-

tenance of these tables in an informal form. For those familiar with RDBMS notation,

the Appendix contains a formal relational schema.

The Bundles table associates names of data bundles (names understood by the client)

with. unique MSS identifiers. A DBMS client will likely view a bundle as equivalent to

a relation or a class. On the other hand, non-DBMS clients may prefer to view bundles

as an uninterpreted strings of bytes of arbitrary length &e., files). Client operations

on bundles can use client domain names and bundle-related offsets and lengths. This

relieves clients of having to know more about the internal 1/0 operations of the MSS
than they need or want to know. Bundles are divided into blocks of equal length. Block

length is represented in the Bundle table as "BlockSize". The M S S is responsible for

maintaining the content of the Bundles table.

The Stores table represents an abstracted model of a physical device (called a virtual

store) that provides physical storage. The physical media underlying a row in this table

maj7 be a discreet unit, or a collection of units. For example, a virtual store could be an

individual tape, a set of tapes managed in striped fashion, or even a hierarchy of hetero-

geneous stores. Among other things, this table contains the performance characteristics

of these virtual stores. This table associates a unique "StoreId" with service and per-

formance information such as capacity, default block size, cost of storage, mount time,

access time, transfer rate, reliability level. We refer to this collection of performance

information as "Class of Service (COS)." The key point for a client is that the service

and performance information reflect as accurately as possible the costs for using each

A more advanced feature of the Stores table is a second type of entry that is managed

by each client. The IDR schema treats portions of main memory as a type of virtual

storage device. Each client may allocate some main memory storage that it will use
as space for moving data between itself and the MSS. It then places information about .

this memory into the Stores table. The information. within the IDR about this memory

is adequate for formulating any necessary 1/0 commands to and from these locations.

By making portions of main memory part of the logical storage hierarchy, the IDR can

represent all forms of I/O, data caching, and data migration in a uniform manner. How

exactly to best operate within this new storage model is still a research issue.

The Blocks table describes the mapping from bundles to stores. Each bundle can be

divided into an arbitrary number of blocks of uniform size. The blocks table can be used

kind of store. 6'

6

I
to find the sequence of blocks that make up a bundle. In addition, the table indicates

the virtual store and location on that store where the block is located. The Blocks table

reflects the possibility that different portions of an object may reside on different types

or instances of storage media. All portions of the Block table are maintained by the

MSS.
The Block-Equivalency table represents situations where a block is stored more than

once. This table allows the M S S and the owner of the blocks to locate redundant copies

of a block. The MSS is responsible for maintaining this table. Both the MSS and the
client (depending on policy) can use it. for specific optimization purposes. Equivalent

blocks may have different performance characteristics if located on different stores.

.The Movement table contains requests for the movement of data between Stores. The
data object to be moved is identified as a particular block. The place to which data is

moved can be specified generically in terms of a desired class of service or specifically as .

a "DesiredStorageId': and "DesiredAddressOnStore" pair. In the latter case, the address

is a virtual address that permits different Movement table entries to relatively position

blocks in a manner deemed favorable by a client. A movement can either be a "copy"

or a "move.': At present, bhis table has one field describing the priority of the proposed

move, which is intended to cover a number of movement issues. A low priority number

would indicate this move is mild advice to the MSS about the expected use of the data.

X high priority number is essentially an 1/0 .directive that should be carried out exactly

as specified if at all possible. Another field in the table, "EquivalentBlockOk", .permits

the client to specify whether or not the MSS may use an equivalent block to the-block

specified for satisfying this request. Finally, the "Sta tu~)~ field indicates the completion

status of this requested movement. All fields in the Movement table (except the Status

field) are managed by the client.

The Movement-Associations table permits the client to logically group related Move-

ment entries. This grouping conveys to the MSS that all movements within a group

are part of a larger plan. This knowledge of groupings may assist the MSS in making

improved scheduling decisions for optimizing performance.

3.3 IDR Rules and Triggers

The functionality of the IDR extends beyond simply maintaining the metadata described

above. The IDR is responsible for informing the MSS and the clients when interesting ..

events occur; thus the IDR is an active interface that participates in the overall data

management solution.

An RDBMS implementation of the IDR permits the definition of various rules and

triggers (or alerts) that govern the actions that can be taken when certain events occur.

This section briefly describes a few examples of rules and triggers, making it possible to

illustrate the expected use of the IDR in practice.

DBMS rules describe actions that must be taken when specific access to a database

match pre-defined conditions. For example, "on insert to ,Movement do ...'I Such rules

7

are executed in all cases on behalf of all applications accessing a given database. A

trigger, or alerter, on the other hand, is used for application specific communications,

and can be raised under very exacting conditions. An alert may be "fired" by a rule, or

"raised" by an application. In either case, what occurs depends on "who" is listening

for the alert. In essence, an alert is a notification mechanism.

This triggering system can be used in numerous useful'.ways, such as implementing

new, tailored interface schemes. For example, a Commands table could contain high-

level commands that operate on Bundles (or portions of Bundles) instead of Blocks. A
specific alert could translate the original high-level request into appropriate inserts into

Movements rows for each Block. Examples of other rules and trigger concepts we expect

to include in the IDR schema include alerting the M S S when new entries are made in

the Movement table, and alerting the relevant client DBMS when a Movement status

changes.

3.4 Simple Example of IDR Use

We can illustrate how this interface architecture works by studying a simple problem.

Take the client to be a. DBMS. When a client connects with the IDR, it must establish its

identity and at that time receives the capability to view the portions of the IDR metadata

that it manages. The client may then issue SQL commands to acquire information on the

general location of its Bundles and attributes about the Stores on which those Bundles .
reside. At this time, the client may add into the Stores table information about the

location of main memory space that the b1SS may use for moving data, as described in

Section 3.2.

When the client DBMS receives a query from one of its users, it begins to formulate

possible execution plans to satisfy the query. As a part of query optimization, the client

is likely to issue further SQL queries to the IDR to calculate the costs of various data

movements associated with each plan. After evaluating some number of possible plans,

a query execution plan is chosen. The client DBMS then posts in the IDR Movement

table the specific 1/0 operations needed, along. with any appropriate grouping of these

moves represented in the Movement- Associatidn table.

Inserting the 1/0 requests in the Movement table will set off a trigger for the MSS to

begin executing the plan. The MSS can then view the new 1/0 requests with all other

pending requests from other clients, and optimize the execution of all. requests according

to its established site policies. As the steps in the plan are carried out, the MSS can use

SQL transactions to update the state of the data mappings and indicate the completion

status of those operations. These changes to the IDR will then set off trigger(s) for the

client DBMS to be notified of progress.

Using the IDR schema, a MSS may have additional opportunities for optimiza-

tion, beyond intelligent ordering of data movements from the Movement table. The.

Movement-Association table allows an MSS to understand that a set of moves are related

toward a common goal. Assume a group of movements reads 'data from two different

8

tapes in a staggered fashion (as might be required in a sort-merge algorithm). Further

assume that only one tape drive is available. The MSS could decide to cache one of the

tapes contents to disk to minimize mount time. If at a later time another tape drive

becomes available, the MSS can decide to dispense with the caching and revert to direct

moves from tape to memory.

4 Issues

There are many issues involved with building this interface. For example, with respect

to the IDR metadata model there are questions such as: how exactly should the 1/0
cost estimates be translated to the client, should there be quality of service guarantees,

what types of relations between blocks in bundles should be specifiable? In this section

we focus instead on the system architecture issues that have come up.

There are two important policy issues. First, the interface must provide general-

purpose access to the MSS storage facilities for all clients. This implies that only the

M S S should esert total control over the scheduling and use of MSS resources, and so

client directives of the “must comply” character must have a escape options for the MSS.
Potential options include: ”directive refused due to” or “directive delayed until”. Second,

the int.erface must separate implementation techniques from policy. Most M S S policies

are site-dependent, and are based on specific performance and reliability objectives. The

interface cannot impose specific policies, but should allow for the definition, association,

and esecution of whatever policies a particular MSS site has chosen. For the interface

to be broadly acceptable, it must reflect this policy-neutral position.

One of the implementation issues is whether the control structure supports a trans-

actional interface. As currently defined, the IDR is a reflection of the actual state of

affairs as maintained by the MSS. The question is whether the underlying processes in

the interface provide ACID semantics for the actual 1/0 operations. The simplest sce-

nario (in terms of implementation) for providing the interface architecturgon top of an

existing M S S would be to have the IDR as a separate entity from the actual metadata

for the data held within the MSS. In this cas,^; assurance of the ACID properties will

depend on the exact nature of the implementation of changes to the MSS internal data

and the corresponding changes to the IDR. Full confidence in atomicity, consistency,

and durability between the IDR and MSS versions of the metadata m+y be difficult to

An alternate IDR implementation strategy avoids these uncertainties. The MSS
could make the IDR the one and only repository of all of its metadata. This implemen-

tation strategy would automatically provide ACID transaction properties for all updates

to MSS tables, which would provide end-to-end assurances for all users of the IDR.
We are taking this approach for a prototype implementation, which is depicted in

Figure 2. The M S S platform will be the High Performance Storage System (HPSS),
HPSS is a collaborative development effort between IBM and four national laboratories,

‘ ensure.

9

Figure 2: Implementation Architecture

Repository

M a s s Storage
System
(M S S)

including LLNL. HPSS build on standards where they exist; i t is consistent with the

IEEE Mass Storage Reference Model [3]. The initial implementation of the IDR will be

accomplished using DB2 to extend the HPSS interface. We believe that DB2 provides

the necessary performance levels required for the.IDR implementation and it does so

through a standard interface to the SQL92 standard query language.

We plan to develop an experimental version of HPSS (independent of the production

versions) to implement the IDR. Our implementation will replace the tool that stores

all of the HPSS metadata. Currently all non-volatile HPSS system metadata, including

COS, Bitfiles, Storage Segments, and Virtual Volumes, are stored in B-tree based data

structures controlled by Transarc’s Encina andstructured File Service .products. Access

and update of this metadata is currently performed via the issuing of DCE RPCs to the

HPSS Metadata Manager. The Metadata Manager is the only HPSS component that

calls the Encina and SFS internal interfaces directly. Essentially, Encina will be replaced

with DB2, modifying the HPSS Metadata Manager system calls to reflect this change,

thus making it possible to move all HPSS metadata into DB2. The IDR can then be

implemented as a view of the HPSS metadata. The scheme provides a standard security

mechanism that will shield the client from data that is not part of the IDR abstractions,

and data unrelated to that client. The resulting design smoothly merges MSS metadata

with the IDR metadata, resolves any consistency issues, provides the MSS with quality

COTS products for internal management, and provides the highest level of performance

possible out of the IDR concept.

10

The final issue we need-to mention concerns current MSS users and how they might

be affected by an IDR, particularly if they do not need higher performance. The im-

plementation strategy we have chosen retains the possibility for existing MSS users to

communicate with KPSS without any change. We do not expect the replacement of the

HPSS metadata scheme (from flat' files to an RDBMS) to adversely affect the perfor-

mance of HPSS for th,ese clients.

5 Future Work

The Interface Data Repository is nearing the end of the preliminary design phase, and

we are about to begin the first prototype implementation. Some of the design decisions,

like the control structure, are fairly stable. Other elements of the design are expected to

undergo significant change over the next year or so. In particular, the metadata schema

described in the Appendix is already slightly out of date, and will likely see the most

changes as our experiences from the prototype and from interactions with the DBMS
and MSS communit.ies are incorporated into the project. As part of demonstrating

the performance enhancements of the prototype, one of our tasks will be to create a

performance benchmark. The long-term goal of this project is to develop an interface

structure and metadata schema that is powerful and flexible enough to be accepted by

the 11SS and DBMS communities as the standard for a high performance DBMS/MSS
interface.

References

[I] ISO/IEC 90'75. Information Technology - Database Languages - SQL 1992. American

Sational Standards Institute, NY: NY, 1992.

[2] T. Chen, R. Drach, M. Keating, S. Louis, D. Rotem, and A. Shoshani. Efficient

organization and access of multi-dimensional datasets on tertiary storage systems.

In Special Issue on Scientific Databases, Injormation Systems Journal. Pergammon

Press, 1995.

[3] IEEE Storage System Standards Working Group. Reference Model for Open Storage
Systems Interconnections: Mass Storage Reference Model, Version 5. IEEE,. 1994.

[4] T. Harder and A. Reuter. Principles of transaction-oriented database recovery. ACM
Computer Surveys, 15(4), 1983.

[5] J. Hellerstein and M. Stonebraker. Predica;te migration:. Optimizing queries with

expensive predicates. Technical Report Sequoia 2000 report 92/13, University of

California, Berkeley, 1992.

11

161 A. Rueter and J. Gray. Transaction Processing: Concepts and Techniques. Morgan

Kaufmann Publishers, Inc., San Mateo, CA, 1993.

[7] S. Sarawagi. Database systems for efficient access to tertiary memory. In Proceedings

Fourteenth IEEE Symposium on Mass Storage Systems, Monterey, CA, 1995.

A Appendix

This is an SQL92 standard relational schema which represents the metadata which

would be required for the IDR. This schema is not complete, but is included to give

more substance to the discussion in the text. A full implementation will require a host

of other metadata not previously mentioned, such as what users are authorized, or what

tape drives are available.

In keeping with its modest objectives, the naming of tables and attributes is kept

deliberately abstract so as to avoid the confusion which would. result from attaching

more over-loaded terms taken from a specific jargon. A rough mapping of tables to

cpncept is included.

Bundles:
Bundles are the groupings of data. A Bundle is collection of blocks of no specified

length. Bundles have Identifiers (BundleId) which are unique within the MSS. Bundles

have Names which are used to identify them to the outside world.

Note that Blocksize is an attribute of a Bundle, not a Block, thus fixing the block

size for a particular bundle. This simplifies access, because each block need not be

interrogated in order to specify which particular block a "byte offset" belongs in, and

thus, what happens when/if a (copy of) a block is put on a store which has different

requirements. There are other sensible solutions too.

Storage :

Starting with CostPerKHour we get into defining the performance costs associated

with getting to a block. Each of the following attributes (XchTime, AccessTime, etc) is

a record of the mean - or some other, more statistically sophisticated measure - of this

aspect of the Store's performance. Note that t& is not necessarily an exhaustive list of

what might be desired.

The inclusion of a ClassOfService reference is optional. If it is included, some of the

1/0 characteristics of a.Store could be omitted, such as DataXsferRate. The argument

for inclusion is that it permits an easier search for stores of a given characteristic. But

then, a COS table, describing classes of service, and an association table, could perhaps

do better.

The inclusion of CollectionId is intended to give a user some information about

whether two particular Stores might be a part of different "collections", such as a tape

robot serving a collection of 500 tapes, and hence, provide a modest insight into physical

layout without loosing any abstraction. An implication might be that if two Stores are of

the same CollectionId, then they are less likely to be concurrently accessed in real time.

12

This draws on the fact that the MSS must manage the metadata associated with such

collections already (in a metadata schema we have chosen not to outline). CollectionId

could have other uses too. It has been deliberately left undefined.

Blocks:

Bundles are divided into smaller units - called Blocks - for distribution among the

Stores. This table manages the mapping of each Bundle's Blocks to the Stores. The

situation is complicated by the fact that a Block may be stored several times. Also recall

that Blocksize has been put as an attribute of Bundle fixing all blocks in a Bundle to

the same size, simplifying otherwise complex operations. This need not be so, but an

alternate scheme would need to concern itself with whether a block move from one store

to another with different block sizes might cause problems.

Movement:

The movement table is not really necessary in the schema, but we have provided it to

simplify some operations, and to make requests easier to express and to track. Virtually

all of the attributes which describe a Movement could instead be expressed as some set

of SQL statements over the tables above. One exception to this is the Priority attribute.

,This is intended to permit the user to specify whether a specific request is a "hint," to

assist with caching if space is available: or a "demand".

Xote that a Class Of Service table, COS, is mentioned, but not defined. The purpose

of this table is to permit various classes of service to be defined independently of Stores,

and let users specify Block movement to a class of service instead of a specific Store. if

it is desired that an entire bundle be so moved, a simple SQL statement can populate

the Movement table with requests for each block.

Movement- Associations:

The Movement-Associations table provides the MSS with the ability to discover what

Novements are associated. This information is useful for interpreting the users intentions

and in making hopefully optimal caching decisions.

To use this ability properly, a User should associate movements which are logically

associated, and semantically at the same "level." This would be the case, for example,

if a database were doing a "join" and needed to concurrently read from more than

one entity at a time. if any one of these reads were blocked, the entire operation is

effectively blocked. When such a blockage might otherwise be inevitable, the MSS may

cache resources as appropriate to relieve the blockage.

The implementation of Mol-e-1 and Move-n is certainly NOT the only way in which

this could be implemented. For systems permitting it, the attributes should be "row))

level pointers, TIDs, OIDs and the like, and NOT integers. Another alternative would

be to add an attribute to the Movement table itself. There is nothing wrong with that

idea, but we expect that many Movements will not have associations, and so do not

need the attribute.

-

13

CREATE TABLE Bundles

integer BundleId

BundleName varchar(20)

Blocksize integer

(

)I

CREATE TABLE Stores

integer S toreId

Capacity integer

defaultBlockSize integer

Reliable boolean

Cost per ICS per Hour

SchTime decimal(10,5)
.AccessTime decimal(10,5)

D ataXsferRate decimal(10,5)
Collectiodd integer

)I

(

decimal(5,3)

CRE:ATE T.4BLE Blocks

[
B lo ckId integer

StoreId integer

XddressonS tore integer

BundleId integer

B undleO ff Se t integer

)I

not null, Primary Key,

not null,

not null,

f

not null, Primary Key,

not null, Foreign Key References(Stores),

not null,

not null, Foreign Key References(Bundles),

not null

f;-

not null, Primary Key,

not null,

not null, /** in I< bytes **/
default False,

not null, /** in dollars **/
not null, /** in milli-seconds +*/
not null, /**in milli-seconds **/
not null, /** I< per milli-second **/
not null, Foreign Key References(Collections)

CREATE TABLE Block-Equivalency

not null, Foreign Key References(Blocks.BlockId), CanonicalBlock

Equivalent B lock integer not null, Foreign Key References(Blocks.BlockId)

integer
(

1;

Table 1: Metadata Schema

-

14

CREATE TABLE Movement

integer Movement Id

BlockId integer

EquivBlockOK boolean

ClassOfService integer

(

DesiredStoreId integer

DesiredAddressonStore integer

Priority integer

Movement T y p e var ch ar (2 0)

Status varcliar(20)

1:

not null, Primary Key,

not null, Foreign Key References(Blocks),

not null,

Foreign Key References(C0S)

check (if not null

(DesiredStoreId is null

AND DesiredAddressonStore is null)),

Foreign Key References(Stores),

check (if not null

(DisiredAddressonStore is not null

AND ClassOfService is null)),

not null,

not null, check in 'Move', 'Copy' ,
not null

CREATE TABLE Movement-Associations

Move- 1 integer not null, Foreign Key References(Movement.MovementId),

Move-n integer not null, y g n Key References(Movement.MovementId),

A

Table 2: Metadata Schema, continued

15

