
Metadata Management in Outsourced
Encrypted Databases

E. Damiani1, S. De Capitani di Vimercati1, S. Foresti1,
S. Jajodia2, S. Paraboschi3, P. Samarati1

1 University of Milan - 26013 Crema, Italy
{damiani,decapita,foresti,samarati}@dti.unimi.it

2 George Mason University - Fairfax VA 22030-4444, USA
jajodia@gmu.edu

3 University of Bergamo - 24044 Dalmine, Italy
parabosc@unibg.it

Abstract. Database outsourcing is becoming increasingly popular in-
troducing a new paradigm, called database-as-a-service, where a client’s
database is stored at an external service provider. Outsourcing databases
to external providers promises higher availability and more effective dis-
aster protection than in-house operations. This scenario presents new
research challenges on which the usability of the system is based. In par-
ticular, one important aspect is the metadata that must be provided to
support the proper working of the system.
In this paper, we illustrate the metadata that are needed, at the client
and server, to store and retrieve mapping information for processing a
query issued by a client application to the server storing the outsourced
database. We also present an approach to develop an efficient access
control technique and the corresponding metadata needed for its en-
forcement.

1 Introduction

Nowadays databases hold a critical concentration of sensitive information and
the volume of this information is increasing very quickly. Therefore, many or-
ganizations are adding data storage at a high rate. This data explosion is due
in part to powerful database applications, deployed by organizations to capture
and manage information. In such a scenario, database outsourcing is becoming
increasingly popular. A client’s database is stored at an external service provider
that should provide mechanisms for clients to access the outsourced databases.
The main advantage of outsourcing is related to the costs of in-house versus
outsourced hosting: outsourcing provides i) significant cost savings and service
benefits and ii) promises higher availability and more effective disaster protec-
tion than in-house operations. As a consequence of this trend toward outsourcing,
highly sensitive data are now stored on systems run in locations that are not un-
der the data owner’s control. Therefore, data confidentiality and even integrity
can be put at risk. These problems are traditionally addressed by means of en-
cryption [10]. By encrypting the information, the client is guaranteed that it

Sara
Line



alone can observe the data. The problem is then to perform a selective retrieval
on encrypted information. Since confidentiality demands that data decryption
must be possible only at the client side, techniques are needed enabling exter-
nal servers to execute queries on encrypted data, otherwise the whole relations
involved in the query would be sent to the client for query execution. A first
proposal toward the solution of this problem was presented in [8, 9, 12, 13, 15]
where the authors proposed storing, together with the encrypted database, ad-
ditional indexing information. Such indexes can be used by the DBMS to select
the data to be returned in response to a query. In [8, 9] the authors propose a
hash-based method for database encryption suitable for selection queries. To ex-
ecute interval-based queries, the B+-tree structures typically used inside DBMSs
are adopted. Privacy homomorphism has been also proposed for allowing the ex-
ecution of aggregation queries over encrypted data [14, 16]. In this case the server
stores an encrypted table with an index for each aggregation attribute (i.e., an
attribute on which the aggregate operator can be applied) obtained from the
original attribute with privacy homomorphism. An operation on an aggregation
attribute can then be evaluated by computing the aggregation at the server site
and by decrypting the result at the client side. Other work on privacy homo-
morphism illustrates techniques for performing arithmetic operations (+, -, ×,
/) on encrypted data and does not consider comparison operations [3, 11]. In [1]
an order preserving encryption schema (OPES) is presented to support equality
and range queries over encrypted data. This approach operates only on integer
values and the results of a query posed on an attribute encrypted with OPES is
complete and does not contain spurious tuples.

However, this scenario, called database-as-a-service (DAS), presents new ad-
ditional research challenges on which the usability of the system is based. One
challenge is to develop efficient access control techniques. As a matter of fact, all
the existing proposals for designing and querying encrypted/indexing outsourced
databases assume the client has complete access to the query result. However,
this assumption does not fit real world applications, where different users may
have different access privileges. As an example, consider a medical database that
includes information about doctors and patients. Each user (doctor/patient) or
group thereof should be granted selective access to only a specific subset of data.
Enforcing selective access with the explicit definition of authorizations requires
the data owner to intercept and process each query request (from the user to
the server) and each reply (from the server to the user) to filter out data the
requestor is not authorized to access. Such an approach may however cause bot-
tleneck because it increases the processing and communication load at the data
owner site. A promising direction to avoid such a bottleneck is represented by
selectively encrypting data so that users (or groups thereof) can decrypt only
the data they are authorized to access [7]. This solution requires defining and
maintaining, both at the client and server, additional information at the level of
metadata needed to enforce selective access.

In this paper, after a brief summary of our proposal for enforcing access con-
trol in the DAS scenario, we focus on the metadata that are needed to access the

2



Fig. 1. DAS Scenario

outsourced database according to the policies defined by the data owner. In par-
ticular, we describe the metadata and compare different storage strategies each
of which is characterized by a different usage in storage and bandwidth capacity.
The remainder of this paper is organized as follows. Section 2 describes the DAS
scenario and briefly illustrates a solution for enforcing access control through
cryptography. Section 3 presents different strategies for storing and managing
the metadata necessary to properly use the outsourced database. Section 4 illus-
trates how a query on a plaintext database is transformed into a query on the
corresponding encrypted database. Finally, Section 5 concludes the paper.

2 DAS Scenario

We briefly introduce the considered DAS scenario, the encrypted database struc-
ture, and a solution for enforcing an access control policy on which the following
metadata analysis is based.

2.1 Data Organization

The DAS scenario involves four entities (see Figure 1):

– Data owner : an organization that produces data to be made available for
controlled external release;

– User : human entity that presents requests (queries) to the system;
– Client : front-end that transforms the user queries into queries on the en-

crypted data stored on the server;
– Server : an organization that receives the encrypted data from a data owner

and makes them available for distribution to clients.

Clients and data owners are assumed to trust the server to faithfully maintain
outsourced data. Specifically, the server is relied upon for the availability of

3



Patients

PatientId Surname Name Disease Doctor

125YP894 Carter Andrew Tonsillitis Wayne
5896GT26 Rogers Mark Gastritis Becker
654ED231 Wise Paul Hypertension Wayne
442HN718 Brown Luke Hypertension Lean
942MD745 Fisher Robert Tonsillitis Becker
627IF416 Rogers Alice Arthritis Wayne
058PI175 Brown Mark Hypertension Lean
305EJ186 Rogers Paul Gastritis Morris
276DL557 Fisher Luke Hypertension Lean
364UK784 Rogers Laura Tonsillitis Wayne

(a)

Patientsk

Counter Etuple IdKey I1 I2 I3 I4 I5

1 r*tso/yui+ AC ω γ δ π η
2 hai4de-0q1 AB ϑ α λ π µ
3 nag+q8*L C ω γ ε ρ η
4 K/ehim*13- BCD τ β δ ρ µ
5 3gia*ni+aL BD ω β λ π µ
6 F0/rab1DW* BCD ϑ α ε ρ η
7 Bid2*k1-l0 AB ϑ β λ ρ µ
8 /bur21/*-D BC τ α ε π η
9 O/c*yd-q2+ C ω β δ ρ µ
10 bew0”!DE1a ACD ϑ α λ π η

(b)

Fig. 2. An example of plaintext relation(a) and encrypted relation (b)

outsourced databases. However, the server is assumed not to be trusted with the
confidentiality of the actual database content. That is, we want to preserve the
server from making unauthorized access to the data stored in the database. To
this purpose, the data owner encrypts her data and gives the encrypted database
to the sever.

Note that database encryption may be performed at different levels of granu-
larity: relation level, attribute level, tuple level, and element level. Both relation
level and attribute level imply the communication to the user of the whole rela-
tion involved in a query. On the other hand encrypting at element level would re-
quire an excessive workload for data owner and clients in encrypting/decrypting
data. For balancing the client workload and query execution efficiency, we as-
sume that the database is encrypted at tuple level.
The main effort of current research in this scenario is the design of a mechanism
that makes it possible to directly query an encrypted database [12]. The existing
proposals are based on the use of indexing information associated with each rela-
tion in the encrypted database [9, 15]. Such indexes can be used by the server to
select the data to be returned in response to a query. More precisely, the server
stores an encrypted table with an index for each attribute on which a query can
include a condition. Different types of indexes can be defined, depending on the
supported queries. For instance, hash-based methods are suitable for equality
queries [15, 18] and B+-tree based methods support range queries [9]. For sim-
plicity, in the remainder of this paper we assume that indexes have been created
through a hash-based method and that there is an index for each attribute in
each relation. Formally, each relation ri over schema Ri(Ai1, Ai2, . . ., Ain) in
a plaintext database B is mapped onto a relation rki over schema Rki(Counter,
Etuple, I1, I2, . . ., In) in the encrypted database Bk where, Counter is the pri-
mary key; Etuple is an attribute for the encrypted tuple whose value is obtained
using an encryption function Ek (k is the key); Ii is the index associated with
the i-th attribute. For instance, given relation Patients in Figure 2(a), the cor-

4



responding encrypted relation is represented in Figure 2(b).4 As it is visible from
this table, the encrypted table has the same number of rows as the original one.
The query processing is then performed as follows (see Figure 1): each query
(1) is mapped onto a query on encrypted data (2) and is sent to the server
that is in charge for executing it. The result of this query is a set of encrypted
tuples (3), that are then processed by the client front-end to decrypt data and
discard spurious tuples that may be part of the result. The final result (4) is
then presented to the user. We will discuss the query processing in more details
in Section 4.

2.2 Selective Access on Encrypted Databases

All existing proposals for designing and querying encrypted/indexing outsourced
databases focus on the challenges posed by protecting data at the server side,
and assume the client has complete access to the query result (e.g., [4, 6, 15,
21]). In other words, tuples are assumed to be encrypted using a single key;
knowledge of the key grants complete access to the whole database. Clearly, such
an assumption does not fit real world applications, which demand for selective
access by different users, sets of users, or applications. Our solution exploits
data encryption by including authorizations in the encrypted data themselves.
While in principle it is advisable to leave authorization-based access control and
cryptographic protection separate, in the DAS scenario such a combination can
prove successful. The idea is then to use different encryption keys for different
data. To access such encrypted data, users have to decrypt them, which could
only be done by knowing the encryption algorithm and the specific decryption
key being used. If the access to the decryption keys is limited to certain users of
the system, different users are given different access rights. In classical terms, the
access rights defined by the data owner can be represented by using an access
matrix A, where rows correspond to subjects, columns correspond to objects,
and entry A[s, o] is set to 1 if s can read o; 0 otherwise. Given an access matrix
A, ACLi denotes the vector corresponding to the i-th column (i.e., the access
control list indicating the subjects that can read tuple ti), and CAP j denotes
the vector corresponding to the j-th row (i.e., the capability list indicating the
objects that user uj can read). With a slight abuse of notation, in the following
we will use ACLi (CAP j , resp.) to denote either the bit vector corresponding
to a column (a row, resp.) or the set of users (tuples, resp.) whose entry in the
access matrix is 1. Let us consider a situation with four users, namely Alice, Bob,
Carol, and David, who need to read the tuples of relation Patients. Figure 3
illustrates an example of access matrix.

Different approaches can be taken to enforce the access rights reported in
the access matrix. A trivial solution consists in encrypting each tuple with a
different key and give users the keys for the tuples they can access. For instance,
with respect to the access matrix in Figure 3, user Carol should receive the

4 Here, the result of the hash function is represented as a Greek letter. Also, note that
the meaning of attribute IdKey will be discussed in Section 3.

5



t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

Alice 1 1 0 0 0 0 1 0 0 1
Bob 0 1 0 1 1 1 1 1 0 0

Carol 1 0 1 1 0 1 0 1 1 1
David 0 0 0 1 1 1 0 0 0 1

Fig. 3. An example of access matrix

∅

A

rrrrrrrrrrrr
B

¤¤¤¤¤¤¤
Ct3,t9

;;;;;;;
D

LLLLLLLLLLLL

AB

t2,t7

ªªªªªª

tttttttttt
AC

t1

kkkkkkkkkkkkkkkk
AD

9999999

kkkkkkkkkkkkkkkk
BC

t8

MMMMMMMMMMM
BD

t5

SSSSSSSSSSSSSSSS
CD

666666

JJJJJJJJJJ

ABC

555555

kkkkkkkkkkkkkkk
ABD

kkkkkkkkkkkkkkk

JJJJJJJJJ
ACDt10

MMMMMMMMMM

SSSSSSSSSSSSSSS

ttttttttt
BCD

t4,t6

©©©©©©

ABCD

<<<<<<<

LLLLLLLLLL

rrrrrrrrrr

£££££££

(a)

∅

B

{{{{{{{{
Ct3,t9

FFFFFFFFF

AB

t2,t7

±±±±±±
BD

t5

000000
AC

t1

®®®®®®
BC

t8

333333

ACD
t10

BCD
t4,t6

(b)

Fig. 4. An example of user hierarchy (a) and the corresponding tree (b)

keys used for encrypting tuples t1, t3, t4, t6, t8, t9, and t10. Obviously, this
solution is not efficient and requires the management of too many keys. We
propose an alternative solution that consists of collecting users into groups of
privileges and encrypt each tuple (set thereof) with the key associated with the
set of users who can access it. To this purpose, we base our approach on the
definition and use of a user hierarchy whose elements are all possible sets of
users and on which an order is defined corresponding to the subset relationship
between them. Formally, a user hierarchy is defined as follows.

Definition 1 (User Hierarchy) Given a set U of users, a user hierarchy, denoted
UH, is a pair (P(U), ¹), where P(U) is the power set of U and ¹ is a partial
order on P(U) such that ∀X, Y ∈ P(U), X¹Y iff Y⊆X.

The subset relationship between sets of users implies a relationship on their
rights. It is trivial to see that, given two sets of users X and Y , if Y is a subset
of X (i.e., X¹Y), then users in Y can access all tuples that users in X can access
and the vice versa is not true. With respect to our example in Figure 3, let BCD
be the set of users Bob, Carol, David, and let BC be the set of users Bob and
Carol. Users in BCD can access tuples t4 and t6 and users in BC can access
tuples t4,t6, and t8.

6



By definition the user hierarchy includes all sets of users corresponding to
ACLi. A user hierarchy can be represented through a directed acyclic graph
(DAG) having a node corresponding to each set of users and a path from node
X to node Y if and only if Y ¹ X. Figure 4(a) illustrates the user hierarchy
corresponding to the access matrix in Figure 3. Here, each node is labeled with
the set of initial letters of the users’ names belonging to the node, and each
tuple ti is depicted near node ACLi. Our solution for the determination and
assignment of keys exploits the user hierarchy together with a key generation
and assignment schema based on the idea of key derivation. Sophisticated key
derivation techniques that can be applied to DAGs have been extensively studied
in the literature [2, 17, 19, 20]. Intuitively, these key generation schemes operate
on the hierarchy computing the keys of lower-level nodes based on the keys of
their predecessors. In other words, each node X of a hierarchy is associated with
a key that can be used to derive the keys associated with all nodes Y , where
Y ¹ X and the opposite is not true. Therefore, using the user hierarchy for key
assignment, each user u needs to know only the key associated with the node
representing herself and each tuple t has to be encrypted with the key associated
with the node representing its ACL. For instance, tuple t1 is encrypted with the
key associated with node AC and Carol knows the key associated with node C
(see Figure 4(a)). In this way, Carol can derive the key associated with node
AC and can access tuple t1. Unfortunately, the key generation schemes working
on DAGs are complex and they would require a lot of key storage (whose size
grows exponentially with the nodes of the hierarchy). To avoid these problems,
we decide to apply more simple techniques that work on trees [22]. We develop a
greedy transformation algorithm from DAG to tree that converts a hierarchy in
a corresponding tree [7]. This transformation is performed by first introducing in
the tree the nodes corresponding to ACLs, and then by selecting, for each node,
the “best parent node”. This selection is performed by adopting a set of criteria
that allow to reduce the number of keys in the system. For instance, a criterion
requires the choice of the lowest candidate parent in the hierarchy, that is, the
parent node corresponding to the biggest set of users. Another criterion states
that it is better to choose as a parent, the node corresponding to an ACL. At
the end of the transformation process, the algorithm removes from the structure
obtained the nodes that are not necessary neither for encryption nor for key
derivation. The resulting user tree hierarchy is defined as follows.

Definition 2 (User Tree Hierarchy) Given a set Uof users, a set T of tuples,
and an access matrix A, the user tree hierarchy, denoted UTH, is a pair (N, ¹),
such that:

– N ⊆ P(U);
– ∀t ∈ T , ACLt ∈ N ;
– ∀X,Y ∈ N , X ¹ Y iff Y ⊆ X;
– ∀X,Y, Z ∈ N , X ¹ Y and X ¹ Z ⇒ Z ¹ Y or Y ¹ Z.

The user tree hierarchy uses the same partial order relation as the one defined
for the user hierarchy. The data owner has to communicate to each user u ∈ U

7



the key associated with element V ∈ N such that u ∈ V and u /∈ W , where
W is the parent of V in the UTH. Note that to avoid accesses from untrusted
users, the data owner has to check the users’ identities before assigning them
a key. Figure 4(b) illustrates the UTH corresponding to the user hierarchy in
Figure 4(a). As an example, consider now user Carol: she knows key {kC} and
can directly derive {kAC , kBC} that in turns allows her to derive keys {kACD,
kBCD}. By using these keys, Carol can decrypt the set {t1, t3, t4, t6, t8, t9, t10}
of tuples corresponding to CAPCarol.

3 Metadata Management in the DAS Scenario

To properly access and manage the outsourced databases, the users, the data
owners, and, possibly, the servers have to store some additional information that
we call metadata. The client and server use these metadata to interpret and ex-
ecute SQL statements, and to properly manage stored data. The distribution
of metadata should follow two principles: i) users should know any additional
metadata necessary to access the data for which they have a privilege, and ii)
users should be able to efficiently search and query metadata by saving on band-
width costs. To this purpose, metadata are stored in relational tables that can
be accessed by SQL queries just like any other type of data. Metadata may be
as simple as one keyword, or as complex as a derivation path for computing
keys. There are three main types of metadata: authorization metadata, descrip-
tive metadata, and key management metadata. Authorization metadata include
information about the access control policy defined by the data owner (i.e., the
access matrix). Basically, the authorization metadata contain the following ta-
bles (as usual, we underline the primary key of each relation).

– TabUser(IdUser, Surname, Name) maintains information about each user
in the system. The schema of this table depends on the information needed
by the data owner. For simplicity we assume that each user is identified by
a unique identifier (attribute IdUser) and has a name (attribute Name) and
surname (attribute Surname).

– AccessMatrix(ERelation, Counter, IdUser) maintains information
about who (attribute IdUser) can access what (attributes ERelation and
Counter).

These tables are very sensitive and therefore they have to be stored at the
data owner’s site. As an example, consider the access matrix in Figure 3: the
corresponding authorization metadata are illustrated in Figure 5.

Descriptive metadata are data descriptors and are similar to the system cat-
alogs automatically maintained by relational database systems. Basically, de-
scriptive metadata describe the structure of the encrypted database. The main
tables of the descriptive metadata are the following.

– TabRelation(Relation, EncryptedRel) maintains the correspondence be-
tween the name of a plaintext relation (attribute Relation) and the name
of the corresponding encrypted relation (attribute EncryptedRel).

8



– TabIndex(Relation, Attribute, Index, IdMethod) maintains the corre-
spondence between the name of an attribute (attribute Attribute) in a
plaintext relation (attribute Relation) and the name of the correspond-
ing index (attribute Index) together with the index method (attribute
IdMethod).

– TabMethod(IdMethod, Function, IdParameter, Value) maintains infor-
mation about the hash function (attribute Function) used with a specific in-
dex method (attribute IdMethod) together with the value (attribute Value)
of the corresponding parameters (attribute IdParameter).

– EncryptAlgo(Algorithm, IdParameter, Value) maintains information
about the encryption function (attribute Algorithm) used to encrypt data
together with the value (attribute Value) of the corresponding parameters
(attribute IdParameter).

The disclosure of these tables makes it possible for a malicious user to access
the encrypted database. Therefore, the descriptive metadata should never be
stored on the server. Note that each user only knows the portion of the descriptive
metadata corresponding to the relations for which she has a read privilege in
the access matrix; the data owner has instead a complete knowledge of these
metadata. For instance, Figure 5 illustrates the descriptive metadata associated
with Carol and the data owner. Here, we assume that the indexing method is
a hash function implemented through the modular operator, that is, I=A mod
M , where I is the index value corresponding to attribute A and M is a prime
number stored in table TabMethod. We use this specific hash function because
we need collisions.

Key management metadata include information about the key derivation
method, the value of keys directly communicated by the data owner to users,
and the key derivation paths. There are different strategies for storing these
metadata: on clients, on server, or partially on clients and partially on server.
While the client-side strategy saves network bandwidth but uses more client’s
memory, the server-side strategy requires more network bandwidth and saves
client’s storage capacity. We discuss these three strategies more in details in the
following subsections.

3.1 Client-Side Key Metadata Storage

Key management metadata stored at each client include information about the
portion of the user tree hierarchy associated with the corresponding user. Such a
sub-hierarchy allows a user to derive the keys necessary for decrypting the data
for which she has a read privilege. For instance, with respect to the user tree
hierarchy in Figure 4(b), user Carol has to know the portion of the hierarchy
rooted at node C. The relational tables stored at the client-side are therefore
the following.

– TabKey(IdKey, Value) maintains the value of the keys (attribute Value)
directly communicated to a user.

9



Authorization Metadata
TabUser

IdUser Surname Name

A Harris Alice
B Drew Bob
C Martin Carol
D Muller David

AccessMatrix(1)

ERelation Counter IdUser

Patientsk 1 A
Patientsk 1 C
Patientsk 2 A
Patientsk 2 B
Patientsk 3 C
Patientsk 4 B
Patientsk 4 C

AccessMatrix(2)

ERelation Counter IdUser

Patientsk 4 D
Patientsk 5 B
Patientsk 5 D
Patientsk 6 B
Patientsk 6 C
Patientsk 6 D
Patientsk 7 A

AccessMatrix(3)

ERelation Counter IdUser

Patientsk 7 B
Patientsk 8 B
Patientsk 8 C
Patientsk 9 C
Patientsk 10 A
Patientsk 10 C
Patientsk 10 D

Descriptive Metadata and Key Metadata
TabRelation

Relation EncryptedRel

Patients Patientsk

TabIndex

Relation Attribute Index IdMethod

Patient PatientId I1 M1
Patient Surname I2 M2
Patient Name I3 M1
Patient Disease I4 M3
Patient Doctor I5 M2

TabDerivation

IdKey IdParent PublicData

∅ / Owner
B ∅ Bob
C ∅ Carol

AB B AliceBob
BD B BobDavid
AC C AliceCarol
BC C BobCarol

ACD AC AliceCarolDavid
BCD BC BobCarolDavid

TabKey

IdKey Value

∅ gapvv

EncryptAlgo

Algorithm IdParameter Value

One time pad Start point 273

TabMethod

IdMethod Function IdParameter Value

M1 Modular Module 13
M2 Modular Module 7
M3 Modular Module 11

KeyDerivationMethod

IdDerivMethod MethodDescr IdParameter Value

F1 Family of one-way encryption Vigenère
functions function

F1 Family of one-way key secret
functions

Data Owner

Descriptive and Key Metadata
TabRelation

Relation EncryptedRel

Patients Patientsk

TabIndex

Relation Attribute Index IdMethod

Patient PatientId I1 M1
Patient Surname I2 M2
Patient Name I3 M1
Patient Disease I4 M3
Patient Doctor I5 M2

TabDerivation

IdKey IdParent PublicData

C / Carol
AC C AliceCarol
BC C BobCarol

ACD AC AliceCarolDavid
BCD BC BobCarolDavid

TabKey

IdKey Value

C uetfp

EncryptAlgo

Algorithm IdParameter Value

One time pad Start point 273

TabMethod

IdMethod Function IdParameter Value

M1 Modular Module 13
M2 Modular Module 7
M3 Modular Module 11

KeyDerivationMethod

IdDerivMethod MethodDescr IdParameter Value

F1 Family of one-way encryption Vigenère
functions function

F1 Family of one-way key secret
functions

Carol’s Client

Fig. 5. Metadata associated with the data owner and Carol’s client

– TabDerivation(IdKey, IdParent, PublicData) maintains, for each key
(attribute IdKey) in the considered sub-hierarchy, the identifier of its parent
(attribute IdParent) and the public information (attribute PublicData)

10



necessary to derive the key; if a key corresponds to the root of the sub-
hierarchy, attribute IdParent is conventionally set to /.

– TabDecryption(EncryptedRelation, Counter, IdKey) maintains, for
each encrypted relation (attribute EncryptedRelation) and each tuple in
the relation (attribute Counter), the identifier (attribute IdKey) of the de-
cryption key associated with that tuple.

– KeyDerivationMethod(IdDerivMethod, MethodDescr, IdParameter,
Value) maintains information about the key derivation method used for
deriving the keys associated with the nodes in the user tree hierarchy.5

While users have to store the complete sub-hierarchy to which they can ac-
cess, the data owner may decide to keep track of the information associated with
each node of the hierarchy (i.e., the identifier and the public parameters used by
the key derivation method) without storing the relationship parent-child. That
is, the data owner can decide to store a simplified version of the TabDerivation
table that includes only attributes IdKey and PublicData. Although this solu-
tion allows the data owner to save storage capacity, it requires to recompute the
user tree hierarchy whenever the data owner needs to access the data. Moreover,
if the access matrix changes (e.g., a user cannot access a tuple anymore) and the
user tree hierarchy is updated without using the transformation algorithm, the
new version of the hierarchy could be different from that obtained by applying
the algorithm. In this case, also the data owner has to store the TabDerivation
table as defined above.

3.2 Server-Side Key Metadata Storage

The client-side approach for storing the key management metadata has the great
advantage that each user directly knows the information she needs to properly
access the encrypted database. However, by analyzing these data more in de-
tails, it is easy to see that this approach requires a duplication of information:
the association between a tuple t and the identifier of the key used to encrypt
the tuple is duplicated for each user that can access t (table TabDecryption).
The same applies for the key derivation paths: two users with non-disjoint user
tree sub-hierarchies have a portion of the key derivation paths replicated in table
TabDerivation.6 The only sensitive information that should never be stored on
the server is table TabKey. Therefore, to avoid data duplication and to allow
the sharing of information among users, the user tree hierarchy and the asso-
ciation tuple-key identifier can be stored on the server. To this purpose, table
TabDerivation containing the whole user tree hierarchy is maintained on the
server and attribute IdKey defined in the relational schema of an encrypted re-
lation (see Section 2) is used to maintain the association tuple-key identifier. To

5 The schema of this relation may change depending on the key derivation method
adopted.

6 Note that the data inconsistency problem can be avoided by applying the traditional
techniques developed in the distributed database area [5].

11



ensure metadata integrity, message authentication codes, that involve a secret
key in the computation of the digest, are used. Obviously, the key used should be
known by all users in the system. The main drawback of this solution, however,
is that the user tree hierarchy traversal can only be performed by the client.
This means that, to derive a key, the client has to perform a sequence of queries
that retrieve tree nodes on a derivation path. Another minor drawback of this
solution is that, due to the additional attribute IdKey, the result size returned to
clients is greater than the result size obtained with the client-side strategy. How-
ever, the impact of attribute IdKey on the result size is minimal and therefore
can be ignored.

3.3 Client-Side and Server-Side Combined Solution

A hybrid solution for storing the key management metadata can also be adopted
thus combining the advantages of the two previous strategies. For instance, the
association between tuple-key identifier can be stored on the server by using
attribute IdKey as previously discussed, and the information used for the key
derivation (i.e., the user tree hierarchy, the derivation method, and the public
information associated with each element of the hierarchy) can be stored on the
clients. In this way, we avoid a duplication of information and the key derivation
process is more efficient because the client can execute it without querying the
server.

The choice between a client-side, server-side, or a hybrid solution depends on
the storage and bandwidth capacity available to clients. For instance, if the stor-
age capacity is a more critical resource than the bandwidth capacity, a server-side
solution is preferable. Otherwise, if the bandwidth capacity is a more critical re-
source than the storage capacity, a client-side or a hybrid solution is preferable.
Note that when specific key derivation methods are used (e.g., the key deriva-
tion methods working on tree as in our approach), the size of the public data
stored on clients is minimal and therefore the impact on the storage capacity
is neglectable. For instance, the key derivation methods based on one-way hash
functions [22] require, as public information, a unique name associated with each
node of the hierarchy. The size of the public information is therefore of order
O(n log n), where n is the number of elements in the user tree hierarchy. The key
derivation methods working on DAGs and based on the modular exponentiation
technique [2, 20] use as public data associated with an element n of the hierar-
chy, the product of the prime numbers associated with the nodes in the hierarchy
that are not dominated by n. Therefore, in the worst case (i.e., for a leaf of the
hierarchy) the size of the public information is of order O(n(n− 1)k) = O(n2k),
where n is the number of elements in the hierarchy and k is the number of bits
for representing a prime number.

The computational cost of the derivation mechanism could be reduced if each
client keeps a cache of the keys already computed. In this way, if the result of a
query includes a tuple encrypted with such a key, it is not necessary recompute
the decryption key. Obviously, this cache mechanism requires additional storage
capacity on clients. It is also important to note that whenever there is a change

12



Original Clause (Q) Transformed Clause (Qs)

select A1, . . ., An select Counter, Etuple, IdKey
from R1, . . ., Rm from Rk1, . . ., Rkm
where Aj = val where IAj = f(val)

Ak = Aw IAk =IAw

Fig. 6. Query transformation

in the access matrix, the cache should be cleared because the keys could be
changed. Figure 5 illustrates the metadata associated with user Carol and the
data owner by using a hybrid solution.

4 Query Processing

We now address the issue of evaluating client queries in the DAS scenario where
a hybrid solution for storing the metadata is adopted. For simplicity, we as-
sume that the encrypted database Bk consists of a single relation Patientsk (see
Figure 2(b)), and that queries are selection-project expressions.7 Based on the
metadata stored, a query Q on a plaintext relation is split into a query Qs on
the corresponding encrypted relation that is executed on the server, and a client
query Qc for post-processing result of the server query. The transformation be-
tween query Q and query Qs is performed as illustrated in Figure 6. As it is
visible from this table, the list of attributes in the select clause is replaced
by attributes Counter, Etuple, and IdKey: due to the fact that relations are
encrypted at the tuple level, a server can only return the whole encrypted tu-
ple Etuple, and therefore the projection operation cannot be executed on the
server. Attribute IdKey is necessary to identify the decrypting key. The list of
relations in the from clause is replaced by the list of corresponding encrypted
relations (table TabRelation) and conditions in the where clause are trans-
formed according to the index techniques. More precisely, each attribute Aj in
the where clause is replaced by the corresponding index (table TabIndex) and
constant values are transformed by applying the appropriate index technique
(table TabMethod).

As an example, suppose that Carol wants to find the name, surname, and
doctor of patients who disease is “Tonsillitis”. The SQL query is as follows.

select PatientId, Surname, Name, Doctor
Q ≡ from Patients

where Disease= “Tonsillitis”

The query processor module retrieves from the metadata the name of the
encrypted relation corresponding to Patients, the name of the index corre-
sponding to attribute Disease and the hash function (with its parameters) used
7 Note that more complex queries can also be supported (e.g., range queries can be

supported by means of indexes based on B+-trees [9]). Details for this, however, are
beyond the scope of this paper.

13



Counter Etuple IdKey

1 r*tso/yui+ AC
2 hai4de-0q1 AB
5 3gia*ni+aL BD
8 /bur21/*-D BC
10 bew0”!DE1a ACD

(a)

PatientId Surname Name Doctor

125YP894 Carter Andrew Wayne
364UK784 Rogers Laura Wayne

(b)

Fig. 7. Encrypted query result (a) and final result returned to Carol (b)

for creating the index. In this phase, it is also necessary to retrieve both the
encryption function and the key derivation method, together with their param-
eters. To this purpose, the following SQL queries are executed (here, we use an
embedded SQL syntax).

select EncryptedRel into :R select Index, IdMethod into :I, :M

from TabRelation from TabIndex

where Relation = “Patients” where Relation = “Patients”
and Attribute= “Disease”

select Function into :h select Value into :P

from TabMethod from TabMethod

where IdMethod = :M where IdMethod = :M

select Algorithm, Value into :E, :Pe select MethodDescr, Value into :DM, :Pm

from EncryptAlgo from KeyDerivationMethod

By assuming that the value of variable R is Patientsk, the value of variable
I is I4, and the index value corresponding to “Tonsillitis” is π, the original
plaintext query Q is translated as follows:8

select Counter, Etuple, IdKey
Qs ≡ from Patientsk

where I4= “π”

Figure 7(a) illustrates the query result returned to the client. The client has to
decrypt all tuples that Carol can access (a tuple is accessible by a user when the
corresponding IdKey value appears in table TabKey or table TabDerivation) and
to filter out those not matching the actual query predicates in Q. In our example,
Carol can access tuples t1, t8, and t10 and tuples t2 and t5 are discarded.
The keys to be used for decrypting the tuples are computed as follows. First,
for each tuple t of the query result, if table TabKey contains a tuple t′ where
t′[IdKey] = t[IdKey], then the decryption key is already available. Otherwise,
the decryption key is obtained by following the key derivation path stored in
table TabDerivation.
8 Note that Qs is a dynamic embedded SQL statement that is built at run time and

placed in a string host variable. For simplicity, we report the final format of the
query executed at the server side.

14



Algorithm 1 (Key derivation path)

KeyDerivationPath(t[IdKey])
/* Initializes some variables */
i:=1; Path[i]:= t[IdKey]
While Path[i] 6= / do

i := i + 1
select IdParent into :Path[i]
from TabDerivation

where IdKey=:Path[i− 1]
return Path

Fig. 8. Algorithm for computing the key derivation path

Figure 8 illustrates the procedure for computing the key derivation path.
Intuitively, for each tuple t, by starting from the leaf (i.e., t[IdKey]) of the path,
table TabDerivation is queried to determine the parent of the current node of
the path. The procedure terminates when root / is reached. Array Path stores
the key derivation path in reverse order. For instance, consider tuple t10: it is
encrypted with key kACD that can be obtained by following the path Path[3] =
kC → Path[2] = kAC → Path[1] = kACD. The decryption key is computed by
applying the key derivation method DM along Path. Then, the client has to: (1)
decrypt the tuples using function E, (2) apply the original condition to discard
possibly spurious tuples that do not belong to the result set, and (3) execute the
requested projections. Spurious tuples are discarded by applying the following
query:

select PatientId, Surname, Name, Doctor
Qc ≡ from Result

where Disease= “Tonsillitis”

Figure 7(b) reports the final set of tuples that user Carol can read. Note that
these tuples are a subset of the tuples for which Carol has the read privilege
(see the access matrix in Figure 3).

As the server returns to the client also tuples that she cannot read, data
may be subject to inference attacks. The inference problem in the DAS scenario
has been considered in [6, 9], where the authors gave a quantitative model for
evaluating the robustness of the indexes obtained by applying either the direct
encryption or a hash-based method. In summary, they shown that to achieve
a higher degree of protection against inference, it is convenient to use a hash
function to encode indexes values.

5 Conclusions and Future Work

The management of metadata for accessing a remote encrypted database is of
crucial importance in the database-as-a-service scenario. In this paper, we pre-
sented the metadata that provide abstract descriptions of the data structures

15



and data formats used in the underlying system. Issues to be investigated will
include: (i) an effective implementation of the different solutions presented for
metadata storage to better evaluate the trade off between storage and band-
width consumption, and (ii) an evaluation of strategies addressing the dynamic
updates of the access rights [7].

Acknowledgments

This work was supported in part by the European Union within the PRIME
Project in the FP6/IST Programme under contract IST-2002-507591 and by the
Italian MIUR within the KIWI and MAPS projects.

References

1. R. Agrawal, J. Kierman, R. Srikant, and Y. Xu. Order preserving encryption for
numeric data. In Proc. of ACM SIGMOND 2004, Paris, France, June 2004.

2. S. Akl and P. Taylor. Cryptographic solution to a problem of access control in a
hierarchy. ACM Transactions on Computer System, 1(3):239–248, August 1983.

3. C. Boyens and O. Gunter. Using online services in untrusted environments - a
privacy-preserving architecture. In Proc. of the 11th European Conference on In-
formation Systems (ECIS ’03), Naples, Italy, June 2003.

4. R. Brinkman, J. Doumen, and W. Jonker. Using secret sharing for searching in
encrypted data. In Proc. of the Secure Data Management Workshop, Toronto,
Canada, August 2004.

5. S. Ceri and G. Pelegatti. Distributed Database Systems: Principles and Systems.
McGraw-Hill, 1984.

6. A. Ceselli, E. Damiani, S. De Capitani di Vimercati, S. Jajodia, S. Paraboschi, and
P. Samarati. Modeling and assessing inference exposure in encrypted databases.
ACM Transactions on Information and System Security (TISSEC), 8(1):119–152,
February 2005.

7. E. Damiani, S. De Capitani di Vimercati, S. Foresti, S. Jajodia, and P. Samarati.
Selective release of information in outsourced encrypted database. Technical report,
University of Milan, 2005.

8. E. Damiani, S. De Capitani di Vimercati, M. Finetti, S. Paraboschi, P. Samarati,
and S. Jajodia. Implementation of a storage mechanism for untrusted DBMSs. In
Proc. of the Second International IEEE Security in Storage Workshop, Washington
DC, USA, May 2003.

9. E. Damiani, S. De Capitani di Vimercati, S. Jajodia, S. Paraboschi, and P. Sama-
rati. Balancing confidentiality and efficiency in untrusted relational DBMSs. In
Proc. of the 10th ACM Conference on Computer and Communications Security,
Washington, DC, USA, October 27-31 2003.

10. G.I. Davida, D.L. Wells, and J.B. Kam. A database encryption system with sub-
keys. ACM Transactions on Database Systems, 6(2):312–328, June 1981.

11. J. Domingo-Ferrer and J. Herrera-Joanconmarti. A privacy homomorphism al-
lowing field operations on encrypted data. Jornades de Matematica Discreta i
Algorismica, March 1998.

16



12. H. Hacigümüs, B. Iyer, and S. Mehrotra. Providing database as a service. In Proc.
of 18th International Conference on Data Engineering, San Jose, California, USA,
February 2002.

13. H. Hacigümüs, B. Iyer, and S. Mehrotra. Ensuring integrity of encrypted databases
in database as a service model. In Proc. of the IFIP Conference on Data and
Applications Security, Estes Park Colorado, August 2003.

14. H. Hacigümüs, B. Iyer, and S. Mehrotra. Efficient execution of aggregation queries
over encrypted relational databases. In Proc. of the 9th International Conference
on Database Systems for Advanced Applications, Jeju Island, Korea, March 2004.

15. H. Hacigümüs, B. Iyer, S. Mehrotra, and C. Li. Executing SQL over encrypted
data in the database-service-provider model. In Proc. of the ACM SIGMOD’2002,
Madison, Wisconsin, USA, June 2002.

16. H. Hacigümüs and S. Mehrotra. Performance-conscious key management in en-
crypted databases. In Proc. of the 18th Annual IFIP WG 11.3 Working Conference
on Data and Applications Security, Sitges, Catalonia, Spain, July 2004.

17. L. Harn and H. Lin. A cryptographic key generation scheme for multilevel data
security. Computers and Security, 9(6):539–546, October 1990.

18. B. Hore, S. Mehrotra, and G. Tsudik. A privacy-preserving index for range queries.
In Proc. of the 30th VLDB Conference, Toronto, Canada, 2004.

19. M. Hwang and W. Yang. Controlling access in large partially ordered hierarchies
using cryptographic keys. The Journal of Systems and Software, 67(2):99–107,
July 2003.

20. S. MacKinnon, P.Taylor, H. Meijer, and S.Akl. An optimal algorithm for assign-
ing cryptographic keys to control access in a hierarchy. IEEE Transactions on
Computers, 34(9):797–802, September 1985.

21. E. Mykletun, M. Narasimha, and G. Tsudik. Authentication and integrity in
outsourced database. In Proc. of the 11th Annual Network and Distributed System
Security Symposium, San Diego, California, USA, February 2004.

22. R.S. Sandhu. Cryptographic implementation of a tree hierarchy for access control.
Information Processing Letters, 27(2):95–98, April 1988.

17


