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Abstract—Efficient namespace metadata management is in-
creasingly important as next-generation file systems are designed
for peta and exascales. New schemes have been proposed;
however, their evaluation has been insufficient due to a lack of
appropriate namespace metadata traces. Specifically, no Big Data
storage system metadata trace is publicly available and existing
ones are a poor replacement. We studied publicly available traces
and one Big Data trace from Yahoo! and note some of the dif-
ferences and their implications to metadata management studies.
We discuss the insufficiency of existing evaluation approaches and
present a first step towards a statistical metadata workload model
that can capture the relevant characteristics of a workload and is
suitable for synthetic workload generation. We describe Mimesis,
a synthetic workload generator, and evaluate its usefulness
through a case study in a least recently used metadata cache for
the Hadoop Distributed File System. Simulation results show that
the traces generated by Mimesis mimic the original workload and
can be used in place of the real trace providing accurate results.

Index Terms—metadata; HDF'S; storage; MDS; Big Data

[. INTRODUCTION

Large-scale file systems in the Internet services and high-
performance computing communities already handle Big Data:
Facebook has 21PB in 200M objects and Jaguar ORNL has
5PB [2]. Stored data is growing so fast that exascale storage
systems are expected by 2018-2020, by which point there
should be over five hundred 10PB deployments [11].

Large-scale storage systems frequently implement a sep-
aration between data and metadata to maintain high per-
formance [6]. With this approach, the management of the
metadata is handled by one or more namespace or metadata
servers (MDSs), which implement the file system semantics;
clients interact with the MDSs to obtain access capabilities
and location information for the data [21]. Larger I/O band-
width is achieved by adding storage nodes to the cluster, but
improvements in metadata performance cannot be achieved
by simply deploying more MDSs, as the defining perfor-
mance characteristic for serving metadata is not bandwidth
but rather latency and number of concurrent operations that
the MDSs can handle [6, 10]. For this reason, novel and
improved distributed metadata management mechanisms are
being proposed [14, 15, 21]. However, realistic validation and
evaluation of these designs is not possible as no adequate
traces or workload models are available (see § III).

1 Also affiliated with Facultad de Ingenieria en Electricidad y Computacién
(FIEC), Escuela Superior Politécnica del Litoral (ESPOL), Campus Gustavo
Galindo, Km 30.5 Via Perimetral, Guayaquil-Ecuador.
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We argue for the need of Big Data traces and workload
models to enable advances in the state-of-the-art in metadata
management. Specifically, we consider the case of namespace
metadata traces. We define a namespace metadata trace
as a storage system trace that contains both a snapshot of
the namespace (file and directory hierarchy) as well as a
set of events that operate atop that namespace (e.g., open a
file, list directory contents, create a file). I/O operations need
not be listed, making the trace smaller. Namespace metadata
traces can be used to evaluate namespace management sys-
tems, including their load balancing, partitioning, and caching
components. Our methodology is presented in § II.

We focus on namespace metadata management because
it is an important problem for next-generation file systems.
However, other types of research that need information about
realistic namespaces and/or realistic workloads or data access
patterns in Big Data systems could benefit significantly from
access to these traces and models: job scheduling mechanisms
that aim to increase data locality [22], dynamic replication [1],
search in large namespaces [12], schemes that want to treat
popular data differently than unpopular data [7], among others.

Publicly available storage traces do not meet our definition
of a namespace metadata trace since they do not contain a
snapshot of the namespace. Due to the heavy-tailed access
patterns observed in Big Data workloads, this means that the
trace-induced namespace will not contain a large portion of
the namespace (i.e., that portion that was not accessed during
the storage trace). More importantly, existing traces are not
representative of Big Data workloads and are frequently scaled
up through ad-hoc poorly documented mechanisms (see § III).

In § IV, we present a new (work-in-progress) statistical
model for namespace metadata workloads and describe Mime-
sis, a synthetic workload generator based on our model.
Preliminary results (§ V) suggest that our model can be used to
generate synthetic traces that mimic the original workload: the
results obtained using Mimesis have a low root mean squared
error (within 5.82%), outperforming other prior approaches.

In § VI, we discuss the related work; in § VII we conclude.

II. DATASETS AND METHODOLOGY

We support our arguments through an analysis of: a Big
Data namespace metadata trace from Yahoo and two traces
used in prior work (Home02 and EECS in Tables I-1I; which
are the most recent public traces used in the papers we
surveyed [2]). The Big Data trace comes from the largest
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TABLE I
TRACES USED BY RECENT PAPERS THAT PROPOSE NOVEL METADATA MANAGEMENT SCHEMES; REFERENCES AVAILABLE IN [2].

| Trace name | Year [ Source description |
Sprite 1991 One month; multiple servers at UC Berkeley.
Coda 1991-3 | CMU Coda project, 33 hosts running Mach.
AUSPEX 1993 NEFS activity of 236 clients, during one week in UC Berkeley.
HP, INS (HP), RES (HP) 2000 Hp-UX traces, 10+ days, 13+ clients, 500GB, 94.7 million requests, 0.969 million files.
Home02 (Harvard) 2001 From campus general-purpose servers; 48GB.
EECS (Harvard) 2001 NFS trace; home directory of computer science department; 9.5GB.
TABLE II

TRACES ANALYZED IN THIS PAPER; AOA: AGE AT TIME OF ACCESS.
# FILES INCLUDES FILES CREATED OR DELETED DURING THE TRACE.

Trace # Files Used Mean interarrival AOA (median,
storage time (milliseconds) in seconds)
Yahoo 150M 39PB 1.04 267
Home02 > IM 48 GB 243.80 4682
EECS > IM 9.5 GB 27.20 1228
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Fig. 1.  Cumulative distribution function of the popularity of namespace
objects (files/directories) in Yahoo trace, for those accessed (metadata event)
at least once during trace; 3.28% of objects account for 80% of accesses.

Hadoop cluster at Yahoo (4000+ nodes, HDES); this is a
production cluster running data-intensive jobs like processing
advertisement targeting information. The namespace metadata
trace has a snapshot of the namespace (04/30/2011) obtained
with Hadoop’s Offline Image Viewer tool, and a 1-month
trace of namespace events (05/2011) obtained by parsing the
namenode (MDS) audit logs. See [3] for workload details.

Storage system workloads are multi-dimensional [8, 19] and
can be defined by several characteristics like namespace size
and shape, arrival patterns, and temporal locality patterns. In
this paper, we discuss of some of these dimensions where
appropriate. One of these dimensions is the temporal locality
present in the workload, which we measure through the
distribution of the age of a file at the time it is accessed
(AOA). For every operation (namespace metadata event), we
calculate how old the file is and use this information to
build a cumulative distribution function (CDF) that represents
the workload in this dimension. We chose this dimension
because it is one that is very relevant to namespace metadata
management, since the temporal locality of the workload has
an incidence in mechanisms like load balancing, dynamic
namespace partitioning/distribution, and caching.

In this paper, an access to an object refers to an access
through a namespace metadata event. For example, getting
the attributes of a file constitutes a metadata access.

ITI. LIMITATIONS OF EXISTING APPROACHES

We surveyed the papers published in the last five years that
propose novel namespace metadata management schemes and
identified their evaluation methodology. The approaches fall
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into one of three categories listed in Table III. We focus on
approach (iii), but briefly discuss (i) and (ii) first.

(i) Metadata-intensive microbenchmarks: While many
I/O benchmarks exist, they do not evaluate the metadata
dimension in isolation [18], making them inadequate for meta-
data management studies. Mdtest and metarates are metadata-
intensive microbenchmarks; however, they do not attempt to
model real workloads. For example, one can use mdtest to
issue a high-rate of creates (of zero-sized files) in a random
namespace, but not to do creates modeled after real workloads
and atop a realistic namespace.

(ii) Application benchmarks: Synthetic benchmarks exist
and real non-interactive applications can be used too. However,
the full workload of a system is typically a combination of
different applications and client usage patterns that, as a whole,
can differ from the individual application workloads.

A. Limitations of existing traces

We analyzed the traces used in prior papers (Table I), as
well as the storage traces available for download at the Storage
Networking Industry Association (SNIA) trace repository, and
identified these limitations in the context of namespace meta-
data management studies for next-generation storage systems:

1) No public petascale traces are available: Sub-petascale
traces are often scaled up in some way; the modification
of the traces, if done through ad-hoc poorly documented
mechanisms, makes the results difficult to reproduce and raises
questions about the validity of the results. Working at a
smaller scale is not always adequate since inefficiencies in
design/implementation may only be evident at scale.

2) No traces include both a namespace snapshot and a
trace of operations on that namespace: If no namespace
snapshot is included with trace, the researcher must rely
on the trace-induced namespace' (i.e., that portion of the
namespace that is accessed during the trace). The trace-
induced namespace can be significantly smaller—due to the
heavy-tailed access patterns in which some files are rarely, if
ever, accessed (see Figure 1)—and may have a different form
than the full namespace (see Figures 2 and 3). In other words,
the trace-induced namespace is a bad predictor of the actual
namespace, and the omission of a significant portion of the
files and directories in an evaluation could affect its results.

Additionally, any study that requires knowledge only avail-
able in the snapshot (e.g., file age or size) would be limited or
biased if no snapshot is available. For an example, consider
the significant difference in AOA when calculated with full

1Or, create a namespace from a model [4], if available.



TABLE III
EVALUATION APPROACHES USED IN PRIOR NAMESPACE METADATA MANAGEMENT PAPERS; LIST OF REFERENCES AVAILABLE IN [2].

Evaluation mechanism

Description

(i) Metadata-intensive microbenchmarks

Test a specific part of the system and do not attempt to represent a realistic workload.

mdtest
metarates
self-designed

Multiple processes create/stat/delete files/directories in shared or separate directories.
MPI program that coordinates file system accesses from multiple clients.
Non-standard scripts/programs that perform some sequence of namespace operations.

(ii) Application benchmarks

Provide real or synthetic application-based workloads.

Checkpoint, SSCA, IMAP build, mpiBLAST

Multi-process real or pseudo-real applications, typically metadata intensive.

(iii) Trace-based approaches

Aim at looking at the full workload of the system.

Simulation Simulator designed by authors; traces may be scaled up.
Replay Replay of real traces, scaled up to simulate a larger system.
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a high percentage of files are stored at depth 4 but

rarely accessed. in snapshot.

knowledge of the ages of the files and with partial knowledge
of the ages (without a snapshot, we can only know the age of
the files created during the trace of events) shown in Figure 4.

3) No Big Data traces are available?: Big Data workloads
may differ considerably from more traditional workloads. For
example, consider the age of a file at the time it is accessed,
which is a measure of the temporal locality on a trace based on
previous Big Data observations. Figure 4 shows the difference
in temporal locality between two traditional traces and a Big
Data trace®. In the Yahoo trace, most of the accesses to a file
occur within a small window of time after the file is created;
this is typical of MapReduce pipelines. In contrast, in Home02
and EECS files remain popular longer.

B. Lack of metadata workload models

When adequate traces are not available, workload models
can be useful by enabling researchers to generate synthetic
traces or modify existing traces in a meaningful way. While
several models have been proposed to describe certain stor-
age system properties (e.g., directory structure in namespace
snapshots [4]), to the best of our knowledge no work has been
published that proposes a model that combines a namespace
structure and a (metadata) workload on that trace. This lack of
adequate models make it hard for researchers to design their
own synthetic workloads or to modify existing traces to better
fit access patterns of large scale storage systems.

2 Application workloads exist, such as Hadoop’s Gridmix for MapReduce
and the simulation traces from Sandia National Labs. While these traces are
useful, they do not represent the full load observed by the storage system.

3For traces without a namespace snapshot (Home02 and EECS), it is not
possible to know the age of files that were created before the trace of events.
To enable comparison between traces, for the Yahoo trace we plotted the AOA
with full information of the file ages (with snapshot) and after ignoring those
files that were not created during the trace (without snapshot).

subdirectories appear to have fewer children than
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and two enterprise storage traces; there’s significant
difference in temporal locality between workloads.

IV. TOWARDS A METADATA WORKLOAD MODEL

We present a model for namespace metadata traces that
captures the relevant statistical characteristics of the workload
and is suitable for synthetic workload generation.

We begin the description of our model by formalizing our
definition of a namespace metadata trace as follows.

Definition 1: In a distributed file system that separates
metadata management from data storage, a namespace event
is a client request received by the namespace metadata man-
agement subsystem, which corresponds to a namespace re-
quest. Typical requests include those to create, open, or delete
a file, creating or deleting a directory, and listing the contents
of a directory. The format of each event record in a trace may
vary between systems, but its simplest form is: <timestamp,
operation, operation parameters>.

Definition 2: Let S; be a snapshot of the namespace at time
t and E = {e;...e;} be the list of all the namespace events
as observed by the namespace server(s). Then, a namespace
metadata trace, T}, 42, iS a trace that contains a snapshot
St1 of the namespace at a time ¢1, and a set F;;_;o of events
et1...er2, Where t2 = t1 +0, 6 > 0 and e; € Epj_4o iff
e;j € B, j>1tl and j < ¢2.

Given T} 42, we can model its workload as a set of param-
eters that together define the namespace (modeled after Sy, )
and the workload of metadata events (modeled after Fy1_49).
Our current implementation contains the statistical parameters
listed in Table IV, which is the set of probability distributions
(empirical or fit to a known distribution) that describe the most
relevant* statistical properties of the namespace, namespace as
used in the workload, and of the workload itself.

4Set of parameters chosen after a literature review in storage namespace
and workload modeling; other parameters can be added in the future.
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Fig. 5. Block diagram of our synthetic workload generator, Mimesis.

We have an implementation, called Mimesis (see Figure 5),
that contains a format in which the model can be stored, pro-
cessed and shared, and two subcomponents: (1) the Statistical
Analysis Engine (SAE), that takes 7}; 2 and generates a con-
figuration file with the model parameters, and (2) the Workload
Generation Engine (WGE), that takes the configuration file and
generates a synthetic metadata trace based on the model.

A. Parameters

Two sets of parameters characterize the workload, regard-
ing: namespace structure and workload characteristics, includ-
ing access patterns and trace-induced namespace (Table IV).

The namespace structure is extracted from S;; and describes
the shape and size of the namespace hierarchy tree. The num-
ber of directories and files describe the size of the namespace.
The shape of the hierarchy tree is described by the following
distributions: files at each depth, directories at each depth,
files per directory and subdirectories per directory. The file
size distribution is also extracted, which can be relevant to
problems involving data block replication and placement.

The access patterns describe the relationship between the
operations and the age of the files, which indirectly describe
temporal locality. This is important, for instance, to namespace
partitioning or metadata caching. The distribution of the file
age at time of access (AOA) and age at time of deletion (AOD)
are extracted and reproduced in synthetic workloads.

The workload-induced namespace describes the hierarchy of
objects accessed in the trace. The shape of the hierarchy tree
induced by the workload can be different from the snapshot
when there is a long tail of rarely accessed files. The hierarchy
of the accessed objects is relevant to metadata caching, for
instance. In addition, the fraction of operation types and
interarrival rate distribution are also extracted.

Two main contributors to locality of reference in file request
streams are the popularity distributions and temporal locality
present in the requestsIn our current implementation, we
capture the temporal locality of the references, and keep track
of file accesses to favor frequently accessed ones (except for
deletes), as described later in this section.
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TABLE IV
STATISTICAL PARAMETERS CAPTURED BY OUR MODEL.

Namespace characterization

Number of directories and number of files

Distribution of files at each depth in namespace hierarchy
Distribution of directories at each depth in namespace hierarchy
Distribution of number of files per directory

Distribution of number of subdirectories per directory
Distribution of file sizes (in MB)

Distribution of ages of the files at ¢1

Workload characterization

Percentages of operation type in trace

Interarrival rate distribution

Distribution of operations observed at each depth in namespace
Distribution of files per depth in namespace, as observed in trace
Distribution of dirs. per depth in namespace, as observed in trace
Distribution of number of files per directory, as observed in trace
Distribution of number of subdirs. per dir., as observed in trace
Distribution of file age at time of access

Distribution of file age at deletion (i.e., file life span)

TABLE V
MIMESIS INPUT AND OUTPUT FORMATS.

(a) HDFS namenode log record example
2011-5-18 00:00:00,134 INFO FSNamesystem.audit: ugi=USERID
ip=<IP> cmd=listStatus src=/path/to/file dst=null perm=null

(b) Input/output format: namespace
File creation time stamp, full path, file size (-1 for directories)

(c) Input format: metadata operations
Time stamp, metadata operation, source, destination (for renames)

(d) SAE output format for empirical distributions
Item (discrete) or bin (continuous), count, fraction, CDF

(e) WGE output format; stamp is relative to beginning of trace.
Time stamp, metadata operation, source, destination (for renames)

Input Format and Parameter Extraction: The SAE takes
a format shown in Table V. We first convert a namespace
metadata trace to this format before the SAE can process it.

Each of the distributions in Table IV takes value as either
a known distribution or an empirical CDF. When extracting
parameters, the SAE attempts to fit a known distribution to the
measured values using R (MASS package). If the values pass
the goodness-of-fit test (Kolmogorov-Smirnov), the known
distribution becomes the value of the parameter; otherwise,
an empirical distribution is built using the CDF obtained from
the input data. If multiple distributions pass the goodness-of-fit
test, the one with the smallest test statistic (D) is chosen.

B. Generating synthetic traces

The WGE has two modules: namespace creation and work-
load generation. The former is used to generate a namespace
hierarchy that maintains the same structure as the original. The
latter is used to generate a synthetic trace that maintains the
desired workload characteristics, operates on the namespace
generated by the namespace module, and preserves the data
access patterns extracted from the original trace.

1) Namespace creation module: Creates the namespace in
two phases: the directory hierarchy is created in the first phase,
the files in the second. The naive approach, creating files and
directories in parallel, leads to a bias towards locating more
files in the lower depths of the hierarchy (which would natu-
rally be created first) [4]. Output format detailed in Table V(b).



a) Creating the directory hierarchy: The simplest ap-
proach is to iteratively create the directories starting from
depth = 1, where numTargetDirs x percDirsAtDepthl
directories are created; to decide how many directories to
create in depth + 1 we can sample from the distribution of
subdirectories per directory, once per every directory at the
current depth; the iterative process continues until the current
depth has zero directories. Unfortunately, the output of this
approach does not accurately model the input namespace. Due
to the high percentage of directories with O or 1 subdirectories
(68% and 27%)°, this iterative process creates a small shallow
hierarchy in which the distribution of directories at each
depth is not maintained (except for depth 1). Alternatively,
we can: (a) use two independent distributions (directories at
each depth and subdirectories per directory) and try to match
both constraints at the same time, or (b) model them as a joint
distribution in which both random variables are defined on
the same probability space. We chose approach (a) because it
generates a smaller, simpler model, favored by the principle of
parsimony; the accuracy of this approach is studied in § TV-C.

With approach (a), we need to satisfy two constraints
simultaneously: directories at each depth and subdirectories
per directory. We model this as a bin packing problem:

o There’s one bin for each depth of namespace hierarchy.

o The capacity of each bin is defined by multiplying the
target number of subdirectories (by default, the same
number of directories as in the input namespace) by the
fraction of directories at each depth.

« The items being packed is a list of subdirectory counts
obtained by sampling from the distribution of subdirecto-
ries per directory until the sum of the samples is greater
or equal than the target number of subdirectories. If we
exceed the target, the last sample is adjusted so that the
sum of the samples does not exceed it.

Bin packing is a classic NP-complete problem. We use a
greedy approach in which we first sort (in descending order)
the list of subdirectory counts per directory that we want to
pack. Each of these counts is packed as a single item with
some specific weight (number of subdirectories); we refer to
these as a set of sibling directories. We then pack each set
of sibling directories in the worst bin (i.e., the one with the
most free space). Obtaining a solution using a greedy approach
would not typically work out; however, given the high percent-
age of directories with 0 or 1 subdirectories/children, which
we pack last, finding a solution with this approach is feasible.

Once the bins have been packed, we iteratively assign sub-
directory counts at each depth starting from depth 1 (the root
of the hierarchy is created at the beginning of the process). The
process then proceeds as follows: at depth d we assign a parent
to all the sets of sibling directories packed in the corresponding
bin. For each set, a childless parent from depth — 1 is chosen.
If no childless parent exists, a random parent at depth — 1 is
chosen. Using this method, the distribution of directories per

5A 5-year study of file system metadata also found a high percentage (>
80%) of directories with 0-1 subdirectories [5].
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subdirectory may differ slightly from the target (see § IV-C).

b) Creating the files: The workload generation module
chooses files to access according to their age. For this mech-
anism to work, every file should have a creation time stamp.
When creating the namespace, each file is assigned an age
randomly sampled from the distribution of file ages; the age
is converted to a creation stamp at the end of the file creation
process (time stamp = max(sampled ages) — age).

Creating the files has the same multiple constraint issue as
directories: distributions of files at each depth and number of
files per directory. We model this problem as a bin packing
problem in the same way as before.

Finally, the file size is assigned by sampling from the
distribution of file sizes.

2) Workload generation module: Generates the synthetic
trace from the output of the namespace module and configu-
ration parameters. It currently preserves the interarrival rates,
distribution of operations at each hierarchy depth, percentages
of operation types, and temporal locality (AOA and AOD);
and the namespace is stressed as in the original trace.

For simplicity, in this section we refer to removal operations
as deletes, creation operations as creates and other operations
as regular accesses; this classification is applied regardless of
whether the operation is performed on a file or directory.

We simulate the operations arriving at the namespace server
as events in a discrete event simulation. Interarrivals are
sampled from the interarrival distribution defined in the con-
figuration parameters. Upon arrival of an event we make a
weighted random selection of the operation based on the table
of percentages of operation types.

Next, a target depth is chosen by sampling from the distri-
bution of operations at each depth of the hierarchy. Once the
depth in the namespace hierarchy has been determined, the
specific file or directory is chosen at that depth for regular
accesses and deletes, or at the target depth — 1 for creates.

To preserve temporal locality of regular accesses, we use the
age distribution of a file at the time of access (AOA) obtained
by the SAE. We sample from the AOA distribution and obtain
a target age. We search for the objects at the desired depth and
choose the one with age closest to the target age. If more than
one file approximates the desired age within some configurable
delta (2000 milliseconds by default), we consider this to be a
tie. Mimesis uses popularity information to break the ties as
follows: the total number of accesses for each file is recorded
during the workload generation. When a tie occurs, the file
with the highest number of accesses (i.e., the most popular
file) is chosen. The reasoning is that a popular file is more
likely to keep receiving accesses than an unpopular file.

Similarly, we preserve the file life span or AOD by sam-
pling from this distribution in a delete. For the case of deletes,
we break ties in the opposite manner: when a tie occurs, we
choose the file with the least number of accesses (i.e., the least
popular file). The reasoning is that a file that is unpopular is
more likely to be deleted than a popular file.

Table V (e) shows the output format of the trace, which can
be used for simulations and for testing real implementations.
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TABLE VI
ACCURACY OF MIMESIS; TWO DIFFERENT WORKLOADS, AVERAGES
ACROSS 10 TRIALS. THE KOLMOGOROV-SMIRNOV TEST STATISTIC (D)
CONVERGES TO 0 IF SAMPLE COMES FROM TARGET DISTRIBUTION.

| Parameter | Yahoo, PROD | Yahoo, R&D |

Namespace characterization

Files at each depth 0.0001 0.0001
Directories at each depth 0.0002 0.0001
Files per directory 0.1105 0.1001
Subdirectories per directory 0.0158 0.0219
File ages 0.0478 0.0457
File sizes 0.0403 0.0419
Workload characterization

Interarrival times 0.0009 0.0008
Operations at each depth 0.0001 0.0001
Files per depth, trace-induced 0.0001 0.0001
Dirs. per depth, trace-induced 0.0001 0.0001
Files per dir., trace-induced 0.0998 0.0999
Subdirs. per dir., trace-induced 0.0106 0.0113
Age at time of access 0.0592 0.0617
Age at time of deletion 0.0444 0.0457

C. Evaluation

We evaluate our approach’s: (i) accuracy, (ii) performance,
and (iii) usefulness (see § V).

To measure the accuracy of the synthetic traces generated
by Mimesis, we use the Kolmogorov-Smirnov test statistic
(D) (or, the maximum difference between the two CDF
curves). Table VI shows the accuracy of the synthetic traces
generated using our model parametrized after two traces: the
Yahoo trace that has been described throughout this paper
(PROD), and an additional 1-month trace (05/2011) from a
1900+ research and development cluster (R&D) at Yahoo.
R&D is used for MapReduce batch jobs and ad-hoc data
analytics/business intelligence queries (for details, see [3]).
The synthetic traces Mimesis generates maintain the statistical
properties of the original trace that are captured by our model
with high accuracy (small D values).

Figure 6 shows the real and synthetic trace CDFs, for four
distributions with high D values (PROD). For the files per
directory CDF (highest D value), the error comes from the
cases for which no childless parent at depth — 1 is found and
a random parent is chosen instead.

To evaluate performance, we generated increasingly larger
traces on a two quad-core PC (Xeon E5430, 2.66 GHz) with
16 GB RAM and a 1 TB SATA 7200 RPM disk. Mimesis is
currently a single threaded Java program. Figure 7a shows that
the namespace creation module outperforms Impressions [4]
for large namespaces. Figure 7b shows how long the workload
generation module takes to generate increasingly larger traces.

. . ;
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Fig. 7. Performance of the namespace creation and workload generation

modules; number of objects = number of directories + number of files.

V. APPLICATION: METADATA CACHE FOR HDFS

We evaluate Mimesis’ usefulness with a case study: the
need for a cache for the HDFS namespace server (MDS).

A. Background

The HDFS has reached its scalability limits in large data-
intensive systems [16]. One of the areas that can be improved
is the MDS metadata handling. HDFS’s design was inspired
by the GFS [13], and inherited its design choice of keeping
all metadata in memory. However, recent studies have shown
that the memory footprint of an MDS server grows faster
than the physical data storage [16], due to the file-count
growth problem [13] which has emerged from an (incorrect)
assumption that designing a file system with a large block size
would encourage applications and users to generate a small
number of large files. Furthermore, this design is wasteful
considering that the access patterns in HDFS can show a long
tail of infrequently accessed files (see Figure 1).

A common approach to this problem is to cache the popular
metadata in memory and keep the rest in secondary storage.
We evaluate the expected effectiveness of introducing a least
recently used (LRU) metadata cache for the HDFS.

B. LRU metadata cache

We developed a simulator that replays a metadata trace
and calculates the cache miss rate® under different eviction
policies; we implemented and evaluated a least recently used
(LRU) policy. Figure 8 shows the miss rate for varying cache
sizes’, calculated after the cache warms up.

To measure the accuracy between the expected cache miss
rate (i.e., the one obtained the real Yahoo trace) and the
predicted miss rate (i.e., using a model) we use the following
metrics: mean squared error (MSE), a classical metric used

SThe miss rate of a cache is the percentage of accesses for which the data
being looked for—in this case, metadata—cannot be located in the cache.

TCalculated assuming 1.5 blocks per file and 160 bytes per cache entry, as
documented in https://issues.apache.org/jira/browse/HDFS-1114.
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LRU metadata cache miss rates for flat (left) and hierarchical (middle) namespaces. The table shows the mean squared error (MSE) and root mean

squared error (RMSE) for each model. The synthetic trace created with Mimesis produces the most accurate results (lowest MSE).

in statistical modeling, and root mean squared error (RMSE) |
which has the same units as the quantity being estimated (in
this case, the cache miss rate is expressed as a percentage).
Results are shown in Figure 8 (right) and discussed below.
Case 1: We consider a LRU cache in which each entry
uniquely identifies an object (e.g., using a fully qualified path).
Traces that contain flat namespaces, hierarchical namespaces,
or unique file identifiers can be used to evaluate this approach.

We evaluate this cache using different 2-hour traces: Yahoo,
Mimesis, IRM and EECS. The Yahoo trace constitutes the first
two-hours of the original Yahoo (PROD) trace. The Mimesis
trace was generated using our model, with the parameters
configured using the empirical distributions that describe the
Yahoo trace, obtained by the Statistical Analysis Engine.

IRM is a trace generated using interarrivals modeled after
the interarrivals of the Yahoo trace, and object accesses sam-
pled from the popularity distribution obtained from the Yahoo
trace, assuming the Independent Reference Model (IRM)3.

We scaled up EECS to match the interarrival rate of Yahoo.
To scale up or intensify the trace, we used an approach used by
prior studies. The trace is “folded” onto itself as follows: the
trace (in this case, EECS) is divided into subtraces, then the
subtraces are all aligned to time zero while namespace objects
are appended with a unique subtrace identifier. This process
increases the number of operations per second (time) and the
namespace size (space). To match the request arrival rate of
the Yahoo workload, we folded the EECS trace 18 times (i.e.,
divided it in 18 subtraces).

Figure 8 (left) shows that using a trace from a system
with different access patterns (EECS) is a poor alternative:
the EECS miss rate is significantly smaller than the Yahoo
one (RMSE = 31.07%) because in EECS objects remain
popular longer (see Figure 4), thus leading to a higher hit
rate in the cache. The IRM trace provides a slightly better
approximation because it was modeled after the original
workload (RMSE = 26.22%). The file popularity observed
in the Yahoo trace is heavy tailed (see Figure 1), so the IRM
trace does have some very popular objects; however, accesses
to unpopular objects appear randomly throughout the trace,
whereas in Mimesis accesses to unpopular objects tend to
appear close together, as given by the AOA distribution which
captures the temporal locality of the original trace. As the
cache size increases, the behavior of the IRM trace approaches
the real trace behavior as a cache with more entries is less

8The IRM assumes that object references are statistically independent.

sensitive to temporal locality. The best approximation of the
results is obtained with Mimesis, having RM SE = 5.82%.

Case 2: Consider a metadata cache in which each entry
of the cache uniquely identifies an object within a directory;
the request to access the file /a/path/to/a/file requires
one cache lookup for every element in the path. To evaluate
this cache, we need a trace that contains information about the
fully qualified path to each object (or a mechanism to associate
unique object IDs to fully qualified names).

We evaluate the cache miss rate using different traces:
Yahoo, Mimesis, and IRM + Mimesis namespace. Yahoo and
Mimesis correspond to the same traces described before.

The IRM + Mimesis namespace was generated as follows:
we first used Mimesis’ Namespace Creation Module to create a
namespace modeled after the original Yahoo namespace; this
is the same namespace used in the Mimesis trace. We then
created a random permutation of the objects in the namespace
to eliminate any bias in the order in which the Namespace
Creation Module outputs the list of objects in the namespace.
Next, we assigned a rank to each object, according to the
randomized order: the first object in the list was assigned
rank 1, the second object was assigned rank 2, etc. Finally,
we used the IRM model to sample objects according to the
(ranked) popularity distribution of objects in the Yahoo trace,
associating each rank in the sample with one file in the
namespace as given by the order of the random permutation.

This cache has a lower miss rate (see Figure 8, middle),
resulting from the hits to the directories at the lower depths in
the hierarchy tree. Mimesis outperforms the IRM + Mimesis
namespace approach (RMSE is 4.92% vs. 12.20%) because
it is able to capture the temporal locality of the original
workload, while the independent reference model does not.

Our results show that our model provides a good approxi-
mation to the real workload (RMSE < 6%). We are exploring
further improvements, like combining our model with explicit
file popularity information, which could help minimize the
MSE at the cost of increasing the complexity of the model
(and corresponding performance degradation of Mimesis) so
the current, simpler, model would be still valuable.

VI. DISCUSSION AND RELATED WORK

Release of petascale traces by industry would open research
opportunities in next-generation storage system design. The
first step is obtaining those traces. For some systems, like
HDFS, this may be simple since metadata accesses can be
logged for auditing purposes and namespace snapshots can be
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obtained using existing tools. For other systems, unobtrusive
mechanisms to obtain these traces may not be available, and
should thus be implemented before the traces can be recorded.

Once obtaining the traces is possible, industry can (a)
release anonymized traces, or (b) model the workloads of
their traces and release these models. To enable the latter, re-
searchers should come up with expressive metadata workload
models and tools to process the traces and obtain the models.
Workload generators or compilers can be built to take the
models as an input and generate realistic synthetic workloads
or configuration files in the languages of existing benchmark-
ing tools. While synthetic workloads will, by definition, differ
from the original ones, they are useful if they maintain the
characteristics of the original workload that the researcher is
interested in and, when used in evaluations, lead to results
within some small margin of those that would be obtained
with the original workload [19]. Selecting those features that
make a workload relevant is crucial to this process [8]. Our
model and tools constitute a step towards this goal.

Some tools provide a subset of the features of Mimesis.
mdtest generates metadata intensive scenarios; however, it does
not provide a way to fit the workload to real traces or realistic
namespaces. Impressions [4] generates realistic file system
images; however, it is not readily coupled with a workload
generator to easily reproduce workloads that operate on the
generated namespace. Furthermore, the generative model used
by Impressions to create the file system hierarchy is not able
to reproduce the distributions observed in our analysis.

Fsstats [9] runs through a file system namespace and
captures statistics on file attributes, capacity, directory size,
file name length and age, etc. The output of fsstats provides
empirical CDFs, but details on the shape of the hierarchy tree
are limited to the directory size histogram. LANL has released
fsstats reports of large namespaces (up to 0.5 PB)°.

MediSyn [17] captures the temporal locality of (media
server) request streams in a way similar to Mimesis; however,
it does not capture or reproduce the storage namespace.

ScalalOTrace [20] compresses traces so that they can easily
be shared, but preserves only minimal data access patterns.

FileBench'® shares some similarities with Mimesis; how-
ever, it lacks a method to extract the statistics from real
traces and the configurable statistical parameters on which
this tool currently operates does not capture the level of detail
captured by Mimesis. On the other hand, it has a mature replay
implementation suitable for networked file systems.

VII. CONCLUSIONS

We considered the case of evaluating namespace metadata
management schemes for next-generation file systems suit-
able for Big Data workloads, and showed why a common
evaluation approach—using old traces from traditional storage
systems—is not a good alternative. Big Data storage traces and
workload models should be used instead; specifically, a names-
pace metadata trace should contain information about both

9http://institutes.lanl.gov/data/fsstats-data/
10http://sourceforge.net/projects/filebench/
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the namespace and the storage workload atop that namespace.
We proposed a statistical model that can capture the relevant
properties of the namespace and workload, and developed
Mimesis, a system that uses this model to generate synthetic
traces that mimic the relevant statistical properties of the
original Big Data trace. Through a case study of a LRU names-
pace metadata cache we showed how the traces generated by
Mimesis produce accurate results (RMSE < 6%).
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