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Metadiffusers: Deep-subwavelength 
sound diffusers
Noé Jiménez  1, Trevor J. Cox2, Vicent Romero-García1 & Jean-Philippe Groby1

We present deep-subwavelength diffusing surfaces based on acoustic metamaterials, namely 
metadiffusers. These sound diffusers are rigidly backed slotted panels, with each slit being loaded by 
an array of Helmholtz resonators. Strong dispersion is produced in the slits and slow sound conditions 
are induced. Thus, the effective thickness of the panel is lengthened introducing its quarter wavelength 
resonance in the deep-subwavelength regime. By tuning the geometry of the metamaterial, the 
reflection coefficient of the panel can be tailored to obtain either a custom reflection phase, moderate 
or even perfect absorption. Using these concepts, we present ultra-thin diffusers where the geometry 
of the metadiffuser has been tuned to obtain surfaces with spatially dependent reflection coefficients 
having uniform magnitude Fourier transforms. Various designs are presented where, quadratic residue, 
primitive root and ternary sequence diffusers are mimicked by metadiffusers whose thickness are 1/46 
to 1/20 times the design wavelength, i.e., between about a twentieth and a tenth of the thickness 
of traditional designs. Finally, a broadband metadiffuser panel of 3 cm thick was designed using 
optimization methods for frequencies ranging from 250 Hz to 2 kHz.

�ere are many applications in physics and electrical engineering for objects and surfaces that disperse waves. To 
take a few examples, such scatterers can be applied to sonar and radar camou�age, electromagnetic reverberation 
chambers and reducing unwanted ultrasound re�ections from surgical equipment. To study how metamaterials 
might create scattering, this study has focussed on sound di�users applied in room acoustics. �is allows the 
work to build on a large body of knowledge concerning how such surfaces are measured, predicted and designed. 
Common wall treatments are made of �at panels, leading to specular sound re�ections. In critical environments 
such as auditoria, professional broadcast and recording control rooms, recording studios or conference rooms, 
such re�ections can decrease sound quality due to echoes or cause sound coloration1. Even when these specular 
re�ections are damped by absorption, the sound �eld inside a room may be non-di�use, a�ecting the quality of 
the listening. In these situations, di�users can o�en help by evenly spreading the acoustic energy in both space 
and time. Specialist di�users are panels whose scattering function is uniform, so the re�ected waves are dispersed 
in many di�erent directions.

�e far-�eld polar pressure distribution can characterize the performance of a di�user. For a �nite panel 
of side 2b, the far-�eld polar pressure distribution, ps(θ), of a locally-reacting re�ecting surface with a spatially 
dependent re�ection coe�cient, R(x), can be calculated using the Fraunhofer integral as ref. 2

∫θ = θ
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where θ is the polar angle and k0 is the wavenumber in air. Note the scattered pressure in the far-�eld is essentially 
a Fourier transform of the re�ected �eld along the surface. �erefore, structures whose re�ection coe�cient dis-
tributions present a uniform magnitude Fourier transform present good sound di�usion properties3.

�e generation of spatially dependent re�ective surfaces have been achieved in the past by using phase grating 
di�users, also known as Schroeder’s di�users a�er its �rst proposal3 using maximum length sequences. �e most 
used con�gurations are rigid-backed slotted panels where each well acts as a quarter wavelength resonator4, 5, as 
shown in Fig. 1(a). Due to the di�erent resonance frequency of each well, the phase of the re�ection coe�cient 
locally depends on the wavenumber and depth of each well. �us, one approach is to set the spatially-dependent 
re�ection coe�cient according to a number sequence that presents a uniform magnitude Fourier spectrum at the 
design frequency. In this case, a periodic array of the panel presents grating lobes with the same pressure magni-
tude in the far �eld at the design frequency.
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�e maximum phase shi� of the re�ection coe�cient achieved by a single well in a phase grating di�user 
occurs at its quarter wavelength resonance, i.e., =L c f/40  where f is the frequency, L is the depth of the well and 
c0 is the speed of sound in air. �erefore, a limitation of Schroeder di�users is that the depth becomes large for low 
design frequencies. This results in thick and heavy panels, limiting the use of phase grating diffusers for 
low-frequencies where the wavelength of sound in air is of the order of several meters. In the context of smart 
building design and sustainable building, leading-edge technologies can be applied to optimize space and design 
lightweight materials, improving the performance of the acoustic solutions using less resources.

Various approaches have been carried in the past to reduce the total thickness of the panels. As the wells 
of Schroeder di�users present di�erent lengths, well folding strategies have been proposed6–8 to minimize the 
unused space. At high frequencies the sound does not bend through the folded wells and so care in design is 
needed. Using well-folding the total thickness of a di�user can only be reduced to about half the depth of a 
standard Schroeder di�user. Other approaches include the use of single Helmholtz resonators instead of quarter 
wavelength resonators to construct the phase grating di�user. �is strategy was �rst reported by placing perfo-
rated sheets at the front of a Schroeder di�user9. �e added-mass e�ect reduces the resonance frequency of the 
well and consequently the thickness can be reduced. In this system losses are inevitably introduced and therefore, 
some of these devices were proposed as sound absorbers10. Using “T” shaped wells, 2 dimensional resonators can 
be designed and the full structure can be optimized to extend its low frequency response1. Flat panels have been 
also proposed using hybrid surfaces that combine patches of absorption and re�ection11, but their performance 
is limited because of weak edge di�raction. Other approaches include the use of active surfaces12, but their use 
is limited due to cost. Recently, sonic crystals (SC) were used to construct acoustic di�users13. A SC is a periodic 
arrangement of acoustic scatters, typically rigid bars embedded in air. �e periodicity leads to a modi�cation of 
the dispersion relations and propagation through these structures becomes strongly dispersive and anisotropic. 
�e di�usion was achieved at low frequencies of a bi-periodic SC mainly caused by the internal Fabri-Pérot res-
onances of the structure. �e main drawback of this promising approach is the lack of simple and/or analytical 
methods to design these complex structures. �erefore, optimization of these structures have been proposed14, 
but the lack of fast analytical models make the design tedious and, until now, the inherent thermo-viscous losses 
have not been accounted for in these designs.

Local resonances have also been exploited to introduce strong dispersion in acoustic metamaterials15. In these 
structures the phase speed can be strongly modi�ed and materials with exotic properties as either negative e�ec-
tive bulk modulus or negative mass density16, 17 can be designed. Metamaterials have been widely used to design 
acoustic absorbers as metaporous materials18–21, dead-end porosity materials22, 23 or absorbing resonant met-
amaterials composed by membrane-type resonators17, 24–26, quarter-wavelength resonators (QWRs)23, 27–29 and 
Helmholtz resonators (HRs)26, 30–32. �ese last types of metamaterials23, 27, 28, 31, 32 make use of strong dispersion 
giving rise to slow-sound propagation inside the material. Using slow sound results in a decrease of the cavity 
resonance frequency and, hence, the structure thickness can be drastically reduced to the deep-subwavelength 
regime31. Moreover, these structures can ful�l the critical coupling conditions26, having their impedance matched 
with the exterior medium and resulting in perfect absorption (PA), as recently demonstrated for panels using slow 
sound and QWRs28 or HRs31.

In this paper, we present deep-subwavelength di�users based on acoustic metamaterials to reduce the thick-
ness of Schroeder di�users. �e system works as follows: �rst, we consider a rigid panel of �nite length with a set 
of N slits. Second, we modify the dispersion relations inside each slit by loading one of their walls with a set of 
HRs, as shown in Fig. 1(b). �e sound propagation in each slit becomes strongly dispersive and the sound speed 
inside it, cp, can be drastically reduced. Each slit behaves e�ectively as a deep-subwavelength resonator and, there-
fore, the e�ective depth of the slits can be strongly reduced as =L c f/4p  holds. By tuning the geometry of the HRs 
and the thickness of the slits, the dispersion relations inside each slit can be modi�ed. As a result the phase of the 
re�ection coe�cient can be tailored, e.g., to those of an Schroeder phase grating di�user. Furthermore, by tuning 
the thermo-viscous losses, which are inherent in the HRs and in the narrow slits, the leakage of the structure can 

Figure 1. (a) Scheme of a QRD Schroeder di�user composed by N = 7 wells or quarter wavelength resonators. 
(b) Metadi�user composed of N = 7 sub-wavelength slits, each of them loaded by M = 3 Helmholtz resonators, 
with slightly di�erent geometry. (c) Detail of a slit of the metadi�user showing the geometrical parameters of 
the cavity of a HR (wc and lc) and its neck (wn and ln).
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be compensated by the intrinsic losses of the system and PA can be obtained. �us, the magnitude of the re�ec-
tion coe�cient can be also tuned, and the behaviour of the slits ranges from perfect re�ectors to perfect absorbers. 
Perfect absorbing slits allows the construct of ternary sequence di�users33 for low frequencies.

Results
Slow sound and dispersion relations in the slits. We consider a 2D �at panel composed of a periodic 
distribution of unit cells. As shown in Fig. 1(b,c), the unit cell is composed by N slits of width h separated a 
distance d and distributed in the x1 direction. Each slit is loaded by M HRs separated a distance a, each one com-
posed of a squared cross-section neck and a cavity with length and width dimensions ln and wn, lc and wc respec-
tively. �e propagation inside each slit was calculated using the transfer matrix method (TMM) and the �nite 
element method (FEM) including the thermoviscous losses by means of its e�ective parameters (see methods 
section). �e methods and unit cell used in this work are the same as in refs 31 and 32. In those works, the TMM 
and FEM using the e�ective parameters were accurately validated experimentally to model the thermoviscous 
losses of metamaterials using a set of N = 13 by M = 1 HRs31 and N = 3 by M = 10 HRs32.

Figure 2(a) shows the dispersion relations inside two different slits, n = 1 and n = 2, obtained by using 
M = 2 HR with the geometrical parameters listed in Table 1. First, above the resonance frequency of the HRs, fn, 
a band gap is generated. Below the resonance frequency of the HRs a dispersive band is observed and the wave-
number is increased with respect to the wavenumber in air. In this regime, slow sound conditions are produced, 
as shown in Fig. 2(b), i.e., the phase speed inside the slits is strongly reduced. �e phase of the re�ection coe�-
cient produced by each slit is shown in Fig. 2(c). We can see that for some frequencies the phase of the re�ection 
coe�cient of both slits (blue and red lines) is strongly modi�ed when compared to the re�ection phase of a slit 
without HRs (dashed line). At 2 kHz, the 1st slit (red curve) reacts inverting the phase of the incoming wave, while 
for the 2nd slit (blue curve) this occurs at 3.2 kHz. In this way, by tuning the geometry a speci�c phase pro�le can 
be tailored, while the total thickness of the panel can be greatly reduced when compared with a quarter wave-
length resonator of length L. By using these features, we show in this article that the phase pro�le of Schroeder 
and ternary sequence di�users can be mimicked by a sub-wavelength metadi�user in a given frequency band. 
�erefore by tuning the geometry of a metadi�user we can maximize sound di�usion in a broad frequency band 
for room acoustics applications using a deep sub-wavelength panel.

Quadratic residue metadiffusers. �e �rst numerical sequence mimicked is the one used in quadratic 
residue di�users (QRD). �e sequence is given by sn = n2 mod N, where mod is the least non-negative remainder 
of the prime number N. If the phase grating di�user is based on quarter wavelength resonators (wells), the depth 
of the wells is given by λ=L s N/2n n 0 , where λ0 is the design wavelength. Here, we use optimization methods, e.g., 
sequential quadratic programming34, to tune the geometry of the metamaterial so the spatially-dependent re�ec-
tion coe�cient matched between the QR-metadi�user and the QRD only at 2000 Hz. A QRD with N = 5 QRD, a 
total thickness of L = 27.4 cm and side Nd = 35 cm was designed for a frequency of 500 Hz. Due to the small lateral 
size of the panel, the response was evaluated at 2000 Hz considering 6 repetitions of the unit cell in order to clearly 
generate the characteristic N di�raction grating lobes of the QRD in the far-�eld. Figure 3(a,b) shows the phase 
and magnitude of the re�ection coe�cient along the surface the ideal QRD and a QR-metadi�user of L = 2 cm 
thickness and M = 2 HRs of same lateral dimensions. �e geometrical parameters for the metadi�user are listed 
in Table 1 and a scheme of the panel is shown in Fig. 3(c). Perfect agreement is found between the re�ection coef-
�cients of the QR-metadi�user and the target phase grating QRD. Figure 3(g) shows the far-�eld calculation at 

Figure 2. (a) Dispersion relation inside the (blue) �rst and (red) second slits of a metadi�user for the lossless 
case (continuous lines) and accounting for the thermo-viscous losses (dashed lines), and wavenumber in air 
(dashed-dotted). �e resonance frequencies of the HR are shown as f1 and f2. (b) Corresponding phase speed. 
(c) Phase of the re�ection coe�cient for each individual slit.

n sn h (mm) ln (mm) lc (mm) wn (mm) wc (mm)

1 1.0 14.7 13.0 16.4 6.2 9.0

2 4.0 30.9 9.1 4.3 3.5 9.0

3 4.0 30.9 9.1 4.3 3.5 9.0

4 1.0 15.7 13.3 17.0 6.3 9.0

5 0.0 20.3 18.0 20.7 3.2 9.0

Table 1. Geometrical parameters of the QR-metadi�user.
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2000 Hz using Eq. (1) for both structures. Excellent agreement is obtained between the polar responses using the 
TMM. To validate the design a full-wave numerical solution using the �nite element method (FEM) and account-
ing for the thermo-viscous losses is also provided. �e FEM numerical solution agrees with the theoretical pre-
diction, although small discrepancies can be observed. �ey are caused �rst because the radiation corrections 
used in the TMM are only approximate, and, second, because the evanescent coupling between near slits in the 
TMM is not considered while it is implicitly included in the FEM simulations. �e near �eld pressure distribu-
tions are shown in Fig. 3(d–f) for the QR-metadi�user, the QRD and a reference �at surface of the same width, 
respectively. Excellent agreement is observed between both di�users, where it is clear how the �eld is scattered in 
other directions rather than specular. �e presented QR-metadi�user is 17.1 times thinner than the QRD (34 
times smaller than the QRD design wavelength (500 Hz) and 8.5 times smaller than the evaluation wavelength 
(2000 Hz).

Primitive root metadiffusers. The second numerical sequence presented here is the primitive root 
sequence, given by sn = rn mod P, where P is a prime number and r is the primitive root of P. �e primitive root 
sequence have N = P − 1 di�erent values. A primitive root di�user (PRD) is constructed using a set of N wells 
with depths λ=L s N/2n n 0 . �e scattered �eld by these di�users presents a notch at specular directions at multi-
ples of the design frequency4. Figure 4(a,b) show both the phase and magnitude of the spatially-dependent re�ec-
tion coe�cient of a P = 7 phase grating PRD of thickness L = 17.1 cm with d = 7 cm, and for a PR-metadi�user of 
L = 3.5 cm and M = 1 HR with the same lateral dimensions. Excellent agreement is found between both responses. 
�e corresponding geometrical parameters of the PR-metadi�user are listed in Table 2, while a scaled scheme is 
drawn in Fig. 4(c). Figure 4(d–f) show the near �eld corresponding to the PR-metadi�user, the PRD, and the 
reference plane surface. �e characteristic notch is observed at normal re�ection angle, i.e., θ = 0. Note, because 
the structures are not symmetric, neither is the �eld. �e far-�eld is presented in Fig. 4(g), where good agreement 
is found between the theory and the full-wave numerical solutions. Both panels produce the same scattering, but 
the thickness of the PR-metadi�user is around 10 times thinner than the phase grating PRD (20 times smaller 
than the design wavelength).

Absorption in QR- and PR-metadiffusers. �ese metamaterials show high �exibility to tailor their re�ec-
tion response to a speci�c spatial function. However, the presented QR- and PR-metadi�users are tuned to �t the 
desired phase response only at a single frequency. In order to quantify the frequency dependent performance of 
a di�using panel, the normalized di�usion coe�cient, δn, can be evaluated from the far-�eld polar responses (see 
methods section). �is parameter measures the uniformity of the scattering pattern, i.e., a high value indicates 
that there is no privileged re�ection direction, zero indicates that the energy is re�ected only in one direction. 
�e frequency dependent di�usion coe�cient is shown in Fig. 5(a,b) for the QR- and PR- metadi�users respec-
tively. Although the phase of the re�ection coe�cient of the metadi�users does not follow the QRD and PRD 

Figure 3. (a) Phase and (b) magnitude of the spatially-dependent re�ection coe�cient of a QRD (black line) 
and the QR-metadi�user (red doted). (c) Scaled scheme of the QR-metadi�user with N = 5 and M = 2. (d) 
Near �eld pressure distribution at 2 kHz of QR-metadi�user with thickness L = 2 cm (e) phase grating QRD of 
thickness L = 27.4 cm and (f) �at plane re�ector. (g) Far-�eld polar distribution of the QR-metadi�user obtained 
by TMM (continuous blue) and FEM (dotted black), the reference QRD (dashed-grey), and a plane re�ector 
with same width of the di�users (continuous red).
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design for all frequencies, the surface impedance still varies spatially and creates dispersion. Note, the magnitude 
of the re�ection coe�cient is strongly spatially dependent. Compared with the corresponding Schroeder’s dif-
fusers, the magnitude of the di�usion coe�cient is of the same order at the design frequency. In the case of the 
QR-metadi�user a broadband di�usion is observed when compared with the PR-metadi�user. �is broadband 
di�usion is mainly achieved by the multiple collective modes of the HRs32 produced by a higher M value.

In all the previous results, thermo-viscous losses were accounted for in the ducts that comprise the meta-
material. �e acoustic absorption due to these thermo-viscous losses is shown in Fig. 5(c,d) for the QR- and 
PR-metadi�users respectively. It can be observed that for some frequencies, peaks of absorption are generated 
(blue curves in Fig. 5(c,d)). Moreover, if the absorption of each individual slit is calculated, very sharp peaks of 
absorption appear at selected frequencies, as those marked by the arrows (grey curves in Fig. 5(c,d)). For the case 
of the QR-metadi�user, at f = 2270 Hz the re�ection coe�cient vanishes at the n = 1 slit because it is impedance 
matched with the exterior air and the critical coupling condition ful�ls. �e complex frequency plane representa-
tion of the eigenvalues of the scattering matrix, i.e., the re�ection coe�cient, is shown in the insets for the slits 
n = 5 and n = 1. �e di�erent resonances can be identi�ed with zero-pole pairs in the complex frequency plane. 
In the case of n = 5, the zeros of the eigenvalue of the scattering matrix are close to the real frequency axis and, 
therefore, it produces a peak of absorption. In the case of n = 1 slit, we can observe that the eigenvalues of the 
scattering matrix present a zero which is exactly located on the real frequency axis. �erefore, at this particular 
frequency perfect absorption is achieved. It is worth noting here that these structures were �rst proposed as per-
fect acoustic absorbers31. A similar behaviour is observed for the case of the PRD di�user at f = 1510 Hz, but in 
this case, imperfect absorption is achieved as also shown in the inset of Fig. 5(d) where the zero of the eigenvalues 
of the scattering matrix is not exactly on the real frequency axis. �us, in this case, the critical coupling conditions 
are not ful�lled.

Figure 4. (a) Phase and (b) magnitude of the spatially-dependent re�ection coe�cient of a PRD (black line) 
and the PR-metadi�user (red doted). (c) Scaled scheme of the metadi�user using N = 6 and M = 1. (d) Near 
�eld pressure distribution at 1 kHz of a PR-metadi�user with prime number P = 7 and thickness L = 3.5 cm (e) 
phase grating QRD of thickness L = 17.1 cm and (f) reference �at plane re�ector. (g) Far-�eld polar distribution 
of the PR-metadi�user obtained by TMM (continuous blue) and FEM (dotted black), the reference PRD 
(dashed-grey), and a plane re�ector with same width of the di�users (continuous red).

n sn h (mm) ln (mm) lc (mm) wn (mm) wc (mm)

1 1.5 0.5 26.1 23.4 19.4 34.0

2 1.0 14.4 16.7 26.0 14.7 34.0

3 3.0 1.1 5.7 26.2 7.3 34.0

4 2.0 22.0 14.3 19.1 13.9 34.0

5 2.5 14.6 18.6 24.7 14.7 34.0

6 0.5 22.4 14.9 19.9 18.3 34.0

Table 2. Geometrical parameters of the PR-metadi�user.



www.nature.com/scientificreports/

6Scientific RepoRts | 7: 5389  | DOI:10.1038/s41598-017-05710-5

Hybrid metadiffusers. �e induced absorption can be used to obtain di�usion. Perfect absorption is man-
datory to design di�users based on index35, ternary or quadriphase33 sequences. �e family of ternary sequence 
di�users33 are based on numerical sequences composed by 3 possible states, [−1, 0, 1], organized in such a way 
that the magnitude of its Fourier spectrum is uniform. Schroeder’s di�users based on these sequences use phase 
gratings (quarter wavelength resonators) to obtain the inverted phase re�ection, [−1] state, �at surfaces for the 
in-phase re�ection, [1] state, and high absorptive materials for the zeros of the sequence, [0] state. �is can be 
achieved by �lling a well with porous absorbent such as mineral wool. Even when these devices are constructed 
with long wells, the main limitation is that the re�ection does not vanish at low and medium frequencies, due to 
the poor impedance matching of the rigidly-backed porous material with the air: the porous material enters in the 
viscous frequency regime and inside it a di�usion-dominated wave equation is satis�ed.

�e use of metadi�users o�ers the possibility of accurately creating both the inverted phase and the zeros 
of ternary sequences: the geometry of the system can be tuned to obtain sub-wavelength wells with inverted 
phase and perfect absorbers (PA)31. In addition, the optimization process is simpli�ed because only 2 di�er-
ent sub-wavelength wells are required with independence of the length of the sequence. A PA-metadi�user was 
designed using N = 8 and M = 1. �e phase inverted and perfect absorbers have been obtained by tuning the 
geometry of the metamaterial using optimization methods with the constraint of L < 3 cm, i.e., a panel thickness 
23 times smaller than the wavelength at f = 500 Hz. �e retrieved parameters are listed in Table 3 and a scaled 
scheme of the metadi�user is shown in Fig. 6(c). Figure 6(a,b) show the sequence, sn, used to design a ternary 
sequence di�users and the corresponding phase and magnitude of the re�ection coe�cient. Small discrepancies 
can be observed between the ideal and the calculated spatially dependent re�ection coe�cient, mainly caused 
by the inherent absorption of the phase-inverter slits. When the metadi�user becomes deep-subwavelength, the 
small ducts that compose the metamaterial lead to unavoidable thermoviscous losses, mainly localized at the 
neck of the HRs. In contrast, the perfect absorbing slits are accurately obtained. Figure 6(d) shows the frequency 
dependent absorption of each slit and the total absorption produced by the metadi�user. �e eigenvalues of the 
scattering matrix in the complex frequency plane are shown in the inset for the PA slit. It can be observed that 
the eigenvalues of the scattering matrix present a zero that is located exactly on the real frequency axis. Under 
these conditions the material is critically coupled to the exterior medium and at this particular frequency sound 
is perfectly absorbed. Figure 6(f) shows the far-�eld pressure distribution of an ideal ternary sequence di�user, a 
PA-metadi�user using TMM and its corresponding FEM simulation accounting for the thermo-viscous losses. 
�e characteristic notch in the polar response at the specular direction is obtained because the magnitude of 
the �rst component of the Fourier spectrum of the used ternary sequence is zero. Only small discrepancies are 
observed caused by the non-perfect phase inverting slits due to the thermo-viscous losses that appear in this 

Figure 5. (a) Di�usion coe�cient of the QR-metadi�user (blue) optimized at 2000 Hz (marker) and a reference 
QRD (red). (b) Di�usion coe�cient of the PR-metadi�user (blue) optimized at 2000 Hz (marker) and a 
reference PRD (red). (c) Corresponding absorption for the QRD case, where the grey lines shows the absorption 
of individual slits n = 1 and n = 5. For these slits, the insets show the complex frequency representation26 of the 
re�ection coe�cient (log|R(fr, fi)|2), where fr = Re(f) and fi = Im(f). (e) Corresponding absorption for the PRD 
where the complex frequency representation of the re�ection coe�cient is shown for the individual slit n = 1 in 
the inset.

sn h (mm) ln (mm) lc (mm) wn (mm) wc (mm)

1 0 — — — —

−1 8.5 1.8 88.7 8.4 29.0

0 10.0 69.4 10.2 2.4 29.0

Table 3. Geometrical parameters of the PA-metadifuser.
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deep-subwavelength thickness structure. �e frequency dependent di�usion coe�cient is shown in Fig. 6(e). Due 
to the fact that the metamaterial only present PA at the design frequency, the di�usion coe�cient presents a high 
value only in a narrow frequency band. Note the corresponding correlation scattering coe�cient1 is almost one, 
reaching a value of σc = 0.996, indicating that specular re�ection almost vanishes. Using PA other sequences with 
�at Fourier spectrum can also be mimicked, including binary maximum length sequences3 or complex Legendre 
sequences based on the index function35.

Broadband optimal metadiffusers. To design a metadi�user useful for room acoustics, its di�usion must 
be broad in frequency. �us, we extended the bandwidth of the optimization procedure, where the cost function 

to minimize was ∫ε δ= − df1
f

f

n
low

high . In particular, we look for deep-subwavelength thickness metadi�users that 

present maximum normalized di�usion coe�cient in the frequency range from flow = 250 Hz to fhigh = 2000 Hz. 
Here, we used a set of N = 11 slits separated by d = 12 cm, and constrained the thickness of the panel to L = 3 cm. 
�e obtained geometrical parameters are listed in Table 4. Here we used square cross-section HRs. Figure 7(a) 
shows the scheme of the metadi�user with the retrieved geometry. First, the polar responses at two frequencies, 
300 and 2000 Hz are shown in Fig. 7(b,c). �e maximization of the di�usion coe�cient implies that the polar 
responses are uniform. In addition, we show the angular dependence of the near �eld at shorter distances, e.g., at 
1 and 5 m. Due to the lateral dimension of the structure is 1.32 m, Eq. (1) is not accurate at distances much shorter 
than the Rayleigh distance. However, although the near �eld does not exactly follow the polar distribution given 
by Eq. (1), the structure scatters the waves uniformly in broad range of angles when compared with a �at plane of 

Figure 6. (a) Phase and (b) magnitude of the spatially dependent re�ection coe�cient for an ideal ternary 
sequence di�user (black) and a PA-metadi�user (blue dots). �e ternary sequence used, sn, is shown on top. 
(c) Scaled scheme of the geometry of the hybrid PA-metadi�user. (d) Frequency dependent absorption for 
the total structure (blue curve) and individual slits (black curves). �e inset shows the complex frequency 
plane representation of the re�ection coe�cient for the perfect absorber slits, sn = 0. (e) Frequency dependent 
di�usion for the PA-metadi�user of L = 3 cm (blue), a ternary sequence di�user using phase gratings of 
L = 17 cm (dashed red) and ternary sequence di�user using phase gratings of L = 3 cm (black). (f) Far �eld polar 
response at 500 Hz of a ternary sequence with N = 8 wells (dashed-grey), the PA-metadi�user obtained by TMM 
(continuous black) and FEM (dotted black), and a plane re�ector of the same width as the di�users (red line).

n 1 2 3 4 5 6 7 8 9 10 11

h (mm) 5.7 4.9 7.7 82.9 48.4 74.9 20.0 6.6 76.2 29.5 7.6

ln (mm) 16.3 7.3 37.1 0.0 35.3 22.1 14.7 0.1 0.0 0.1 4.8

lc (mm) 97.1 106.8 74.2 36.0 35.3 22.1 84.3 112.2 42.7 89.4 106.5

wn (mm) 6.7 6.5 10.0 29.0 29.0 29.0 14.0 9.5 29.0 27.6 6.2

wc (mm) 29.0 29.0 29.0 29.0 29.0 29.0 29.0 29.0 29.0 29.0 29.0

Table 4. Geometrical parameters used for the broadband metadi�user using N di�erent slits.
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same dimensions. See Supplementary material for details about the near field produced by this structure. 
Figure 7(d–g) show the frequency dependent polar responses in the far �eld for a reference �at plane with the 
same width than the metadi�user, a thick QRD with a design frequency of 250 Hz (LQRD = 56 cm), a thin QRD 
with the same thickness of the metadi�user LQRD,thin = 3 cm, and the optimized metadi�user, respectively. Here, 
we calculated the polar responses using 6 repetitions of the panel to clearly observe the di�raction grating lobes. 
First, the scattering of the thin QRD, Fig. 7(e), is almost the same as a �at plane, Fig. 7(d). It only starts to scatter 
waves at di�erent angles above 2 kHz. Second, the deep wells that compose the thick QRD, Fig. 7(f), resonate near 
their quarter-wavelength resonances at lower frequencies and, therefore, the re�ection coe�cient follows the QR 
sequence and the panel scatters sound waves into oblique angles. Finally, the optimized metadi�user, Fig. 7(g), 
also shows strong grating lobes, but, in addition, at medium and high frequencies energy is spread in other direc-
tions at low frequencies, e.g., between 250 and 500 Hz.

�e normalized di�usion coe�cient shown in Fig. 7(h) quanti�es this behaviour. It is observed that over the 
optimized range the di�usion coe�cient of the metadi�user takes values with a mean value of about δn = 0.65, 
with peaks of δn = 0.9. When compared to the thick QRD, its frequency band is extended to one octave below. 
�e corresponding absorption is shown in Fig. 7(f). Here, the wide slits that form the QRD produce almost no 
losses, while the thermo-viscous losses produced in the narrow ducts that comprise the ultra-�at metamaterial 
lead to some peaks of absorption at the resonance of the cavities. �ese losses can be reduced if the thickness of 
the panel is increased, but here we presented a structure whose thickness is 46 times smaller than the wavelength. 
It is worth noting here that the size of some of neck of the resonators is almost the same as their cavities, as can 
be observed in Fig. 7(a). In these cases the resonator acts as a coiled QWR and the losses in these wide ducts are 
decreased. �e resonance frequency of these QWR is higher than the corresponding HRs, contributing to the 
high frequency di�usion, while, in contrast, the HRs introduce spatial changes on the re�ection coe�cient at low 
frequencies. Moreover, the position of the low frequency absorption peaks can be engineered to solve other typi-
cal problems in room acoustics, as placing them at the resonant modes of small control rooms to produce a �atter 
spectral response, or reduce sound coloration in the reverberation. �is can be achieved using multi-objective 
optimization techniques.

Discussion
Metadi�users, a novel design of locally reacting surfaces with tailored acoustic scattering was presented. �ese 
new structures are based on metamaterials comprising a slotted panel, with the slits loaded by a set of Helmholtz 
resonators. �e propagation inside the metamaterial presents strong dispersion and the sound speed can be sig-
ni�cantly reduced so that each slit e�ectively behaves as a deep-subwavelength resonator. �us, by tuning the 
material geometry, the dispersion of acoustic waves in the slits is modi�ed and the spatially-dependent re�ection 

Figure 7. Far �eld polar response as a function of the frequency for (a) reference �at plane, (b) N = 11 QRD 
panel with a total thickness of 3 cm, (c) QRD panel with total thickness of 56 cm and (d) optimized metadi�user 
thickness of 3 cm. (e) Normalized di�usion coe�cient or the 3 cm QRD (dashed black), 32 cm QRD (dashed-
dotted red) and optimized metadi�user using TMM (blue) integrated in third of octaves. �e third octave 
integration is shown in thick lines according to ISO 17497-2:201243. (f) Corresponding absorption.
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coe�cient can be tailored to speci�c functions with uniform magnitude Fourier transform. In these conditions, 
the grating lobes produced by a periodic arrangement of the panel all have the same energy. �e acoustic energy 
can be scattered in other directions than specular. Di�erent designs were presented based on number-theoretical 
sequences as quadratic residue and primary root sequences (QR and PR-metadi�users). Moreover, using the con-
cept of critical coupling, sub-wavelength perfect absorbers were introduced to accurately model ternary sequence 
metadi�users (PA-metadi�users). Finally, it was shown that the structures can be optimized to work in a broad 
frequency range covering 3 octaves. In particular, we presented a di�user of 3 cm thickness working from 250 
to 2000 Hz, demonstrating the potential of the metadi�users to be used in critical listening environments due to 
their deep-subwavelength nature: the thickness of the panels was 1/46 to 1/20 times the design wavelength, i.e., 
between about a twentieth and a tenth of the thickness of traditional designs. In the context of smart building 
design and sustainability, metadi�users can be used to save space and to produce lightweight materials, improv-
ing the performance of the acoustic solutions using less resources. Moreover, the proposed designs have the 
potential to meet the aesthetic requirements that are mandatory for modern auditoria design.

While the focus of the study has been sound di�users for rooms, dispersed, broadband re�ections are of 
interest beyond architectural acoustics. Example of structures creating di�use re�ections are found in nature, for 
example Cyphochilus and Lepidiota stigma beetles have chitin networks that achieve an exceptionally bright white 
colour from all observation angles36. A second example would be the use of acoustic camou�age by insects to 
avoid predation by bats. �e latest research suggests that insects look for rough surfaces, ones that create disper-
sion, to reduce the chances of being detected via echolocation37. We would anticipate applications for deliberately 
designed dispersive surfaces: in underwater acoustics; in airborne acoustics and for other wave types (e.g. light, 
seismic waves). As in nature, applications might involve signalling, reducing interference from unwanted re�ec-
tions and acoustic camou�age.

Methods
Transfer matrix method. �e system described before has been theoretically modelled by using the trans-
fer matrix method. Under the assumption of plane waves travelling inside the metamaterial, either the transfer 
matrix or the scattering matrix can be obtained, providing directly the re�ection of the metamaterial, as well as 
its e�ective parameters.

�e transfer matrix is used to relate the sound pressures and normal acoustic particle velocities at the begin-
ning and at the end of each slit. �e transfer matrix of the n-th slit, Tn, of length L, extending from y = 0 to y = L 
is written as
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density and ∆l nslit the proper end correction that will be described later.
Finally, the re�ection coe�cient of the rigidly backed slit can be directly calculated from the elements of the 

matrix Tn as
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with ρ=Z c S/0 0 0 0, and �nally the absorption as α = − R1n n 2. �e e�ective parameters of each slit can be 
obtained from the transfer matrix elements as follows
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In the case of di�erent HRs, the total transfer matrix of the whole system can be obtained by the product of the 
transfer matrices of each layer of the material. �us, the total transfer matrix method of the system is given by
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HR
,  is calculated for each m resonator in each n slit.

Visco-thermal losses model. �e visco-thermal losses in the system are considered both in the HRs and 
in the slits by using its e�ective complex and frequency dependent parameters. Considering only plane waves 
propagate inside the metamaterial, the e�ective parameters of the ducts that conform 2D resonators and the slits 
of width 2r are given by ref. 38:
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, and where γ is the speci�c heat ratio of air, P0 is the atmospheric pres-
sure, Pr is the Prandtl number, η the dynamic viscosity, ρ0 the air density and κ0 = γP0 the air bulk modulus. �e 
effective parameters of the n-th main slit, ρn

s
 and κ n

s
, are obtained by setting r = hn/2 in Eqs (8 and 9). The 

visco-thermal losses inside the 2-dimensional resonator’s neck and cavity are modelled in the same way by these 
e�ective parameters, ρn m

n

, , κ n m
n

,  and ρn m
c

, , κ n m
c

,  respectively, by setting =r w /2n m
n

,  and =r w /2n m
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,  for the m-th 
resonator located at the n-th slit.

Resonator impedance and end corrections. Using the e�ective parameters for the neck and cavity ele-
ments given by Eqs (8 and 9), the impedance of a Helmholtz resonator, including a length correction due to the 
radiation can be written as ref. 39:
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�e �rst length correction, ∆l n m
1
, , is due to pressure radiation at the discontinuity from the neck duct to the cavity 

of the Helmholtz resonator40, while the second ∆l n m
2
,  comes from the radiation at the discontinuity from the neck 

to the principal waveguide41. �is correction only depends on the radius of the waveguides, so it becomes impor-
tant when the duct length is comparable to the radius, i.e., for small neck lengths and for frequencies where 

k w 1n m n m
n n

, , .
Another important end correction comes from the radiation from the slits to the free air. �e radiation correc-

tion for a periodic distribution of slits can be expressed as ref. 42:

∑
π

π

∆ = σ
σ

σ
.

=

∞

l h
n

n

sin ( )

( ) (13)

n n n

n

n

nslit
1

2

3

with σn = hn/d. Note for 0.1 ≤ σn ≤ 0.7 this expression reduces to π π∆ ≈ − σl 2 ln[sin( /2)]/n n
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Diffusion coefficient. �e di�usion coe�cient43, dφ, is estimated from a polar response as
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where Is(θ) is the polar scattering intensity for a wave with incident angle φ. �is coe�cient is normalized to that 
of a plane re�ector, δ�at, to eliminate the e�ect of the �nite size of the structure as δ δ δ δ= − −φ( )/(1 )n flat flat .

Finite element simulations. In order to validate the results we use a numerical approach based on the 
Finite Element Method (FEM) using COMSOL Multiphysics 5.2™. �e thermo-viscous losses were accounted 
for using the e�ective parameters (complex phase speed and complex density) given by Eqs (8 and 9) for each 
domain. Rigid boundary conditions were considered at the external sides of the panel and viscous losses were 
neglected here. �is is justi�ed because the losses are mainly produced at the narrow slits that conform the met-
amaterial and the contribution of other sources is minor. Absorbing boundary conditions (a perfectly matched 
layer) with a thickness of λ0, were placed at the boundaries of the numerical domain. �e unstructured grid was 
designed ensuring a maximum element size of λ0/20. As usual, to obtain the scattering of the panel a background 
pressure �eld was set as initial condition in the main domain and the scattered �eld was computed. By measuring 
the scattered �eld over a closed contour the far-�eld can be obtained1.
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