
MetaEdit-

A Flexible Graphical Environment for Methodology Modelling 1

Karl Smolander
Kalle Lyydnen

Veli-Pekka Tahvanalnen
Pentti Marttiin

Project ~,~ti
Department of Computer Science

University of Jyv~iskyD
PL 35

SF-40351 JYV,~SKYLA
Finland

ABSTRACT

Existing CASE tools are often rigid and do not support the users' native methodologies.

To alleviate this, more flexible and customisable tools called CASE shells are emerging.

However, the customisation of those tools is still cumbersome and error-prone, and

demands several configuration files that follow a rigid syntax of some metamodelling

language(s). In order to make the eustomisation easier, we propose a graphical

metamodelling editor, MetaEdit, with which the conceptual structures of the user

methodology can be modelled easily using an easy-to-grasp graphical notation. With

MetaEdit, methodology models can be ¢onsmacted with less effort and the configuration

files for the CASE sheU can be created (semi)automatically. The tool is flexible i.e. its

symbols and metamodel are user-definable. In consequence it can be used as a simple

CASE shell. MetaEdit is based on the Object-Property-Role-Relationship (OPRR) data

model. The paper presents the principles on which the editor is built, describes its

operation, and discusses its relations to other research on metamodelling.

Keywords: Methodology, Computer Aided Software Engineering, Metamodelling, Methodology
Engineering, CASE-shells.

1This research was ill part funded by the Technology Development Center of Finland.

1. INTRODUCTION

169

Computer Aided Systems (Software) Engineering (CASE) has experienced a renaissance

during the last five years (Chikofsky 1988, Penedo and Riddle 1988, Lockemann and

Mayr 1986). New software products have been introduced (for surveys see e.g. Everest

and Alanis 1989) and several researchers have debated on the concept of CASE (Chen et

al. 1989; Lyytinen et al. 1989; Bubenko 1988). Also the impact of CASE on productivity,

work-place (LeQuesne 1988; Orlikowski 1988, 1989) and management strategies (Siltanen

1990) has received growing attention.

However, despite the close connection of CASE tools to systems development methods

and methodologies, much less has been examined how methods and CASE-tools can and

should be matched with one another in systems work (for earlier work see Teichroew et al.

1980; Welke 1983, 1988; Kumar and Welke 1988; Venable and Truex 1988). This

research issue opens up several challenging research problems such as:

(1) How should methods and tools interact with each other? Should the tools dictate

the methods, or should the methods dictate the tools?

(2)

(3)

If the methods should dictate the tools, how can one specify the tool environment

so that methods of different species can be supported?

If methods of varying sorts need to be supported in a tool environment how should

the methods be modelled and specified for a given tool environment? What

(meta)methods and (meta)tools are needed in this process?.

(4) What functionality and interfaces should such a (meta)tool environment offer?

Each of these questions has been discussed at some length in the literature.

Re 1) Bubenko (1988) suggests several generic approaches for matching tools and

methods (see also Lyytinen 1988), and Smolander et aL (1990) report how successfully

different approaches have been exploited in practice.

Re 2) The first generic tool environment that could support configured methods was SEM

(System Encyclopedia Manager) by Yamamoto and Teichroew (Teichroew et al. 1980, see

also ISDOS 1981). Since then similar approaches have been suggested by Sorenson et al.

(1988) in their Metaview and Nunamaker and Konsynski in their Metaplex (Chen and

Nunamaker 1989). All these approaches use a higher level (meta)language to define the

abstract syntax of the specification language associated with a method. These tool

environments focus on the storage and retrieval of linearised system descriptions i.e the

170

tool environments are heavily database oriented. RAMATIC (Bergsten et al. 1989) offers

another road, where the tool environment is built around graphical notations associated

with methods. Here the tool environment is constructed around a set of generic routines

which can be associated with various symbols to be drawn i.e. the environment can be

called interface oriented. A third, and a modest approach, has been to build extension kits

for available methods supported by the CASE tool. This is the approach followed in cus-

tomisers which are offered by several CASE distributors such as e.g. by Index Technology

(1987).

Re 3) Usually the method is described for a tool environment by some conventional data

model such as the E-R model (Teichroew et al. 1980). Due to the limited power of the E-

R model, several extensions such as is-part-of and is-kind-of hierarchies (Chen and

Nunamaker 1989), roles (WeRe 1988) and set-functions (Bergsten et al. 1989), have been

suggested to increase its semantic power. Another approach has been to develop

mathematical formalisms such as graph theoretical foundations for more formal descrip-

tions that can then be implemented (Harel 1988). However, little is known of the relative

merits and disadvantages of various formalisms.

Re 4) Currently, the interfaces of metatools are cumbersome and based on a linear syntax.

Oftentimes the specification involves an error prone and laborious manual compilation of

the method "schema" which can include a plethora of implementation detail. Therefore,

method development is a complex and difficult undertaking which requires high technical

skills and good knowledge of the method being modelled and the tool environment

currently a scarce resource.

In this paper we present goals, motivation and basic principles of a metatool environment

that tries to address some of the unresolved problems. The environment is called MetaEdit.

MetaEdit is a flexible, graphical environment for methodology modelling. It is aimed to

be a general metamodelling environment that can be interfaced with CASE shells 2 if

necessary bridges are provided. Thus, it can be populated with several (meta)modelling

approaches. It offers a platform to assess the strengths and weaknesses of various tool

environments and allows for comparison and experimentation of their usefulness. Finally,

it has a graphical interface to implement methodology modelling, and thereby it circum-

vents some of the weaknesses of the earlier environments.

The paper is organised as follows. In section 2 we outline some principles of metamodel-

ling (methodology modelling) on which MetaEdit is built. In section 3 we introduce the

design principles of MetaEdit and discuss its general architecture. Section 4 illustrates the

2 By a CASE shell we mean a tool that can be customised by the users to support their own preferred
methodologies.

171

internal structure and data model of MetaEdit which is the Object-Property-Role-

Relationship model suggested by Welke (1988). Section 5 demonstrates how MetaEdit

can be used to model a simple method such as Structured Analysis (De Marco 1978) data

flow diagrams. The paper ends up with some comparisons to other work and outlines some

future improvements in MetaEdit.

2. Modelling principles underlying MetaEdit

2.1. Modelling in systems development

In order to understand what in methodology modelling involves, we need an understand-

ing of systems development process. We define information systems development as fol-

lows (Lyytinen et al. 1989, Lyytinen 1987, Welke 1983) :

Information systems development is a change process occurring over time taken with
respect to a set of object systems by a development group employing a collection of
methods collectively referred to as a methodology to alter one or more object systems to
realise or maintain one or more objectives.

The crucial concepts of the definition understanding are italicised. Hence, the definition

,°,* -....,..
/

[Concept "'"...

! S t ruc ture

• ,, ".., presents
• , ' ,

• ~ c:~ " m e s " ' ~ . C~

Language , .,,..£

'\, Procedures '"..,,

SyStem.

Figure 1. Object Systems in Systems Development

172

implies a set of other concepts as illustrated in figure 1. A development group's percep-

tion of object systems is enabled and constrained by a concept structure which determines

what object systems are perceived by the development group. The concept structure is

maintained and communicated by a language.

The language provides a means to convey the representations of object systems that are

filtered from the reality using some concept structure by the development group. Usually a

many to many relationship exists between the concept structures and languages. In the

information systems literature terms like "description language" or "specification

language" or just "notation" are usually used instead of our generic term "language".

The language used may be natural language, but in many cases it includes also some for-

mal language. The language is also graphical in many cases and deploys some diagram-

matic notation.

A method is now a set of steps and a set of rules that define how a representation of an

object system is derived/transformed using some concept structure and its language. A

method thus embodies a set of concepts that determine what is perceived, a set of linguis-

tic conventions and rules which govem how the perception is represented and communi-

cated, and a set of procedural guidelines which state in what order and how the representa-

tions are derived/transformed. Usually the term "technique" is used for the description of

the steps and associated derivation]transformation rules. The method may be well-defined

and written or it may just be an outcome of habitualisation and evolutionary learning.

A methodology can now be defined as an organised collection of methods (a set of

methods included in the methodology) and a set of roles which state by whom (roles), in

what order (stage structure), and in what way (organising principles, quality criteria) the

methods are used.

In methodology modelling we are interested in methodologies qua object systems that

need to be perceived, described and changed by a methodology development group. Usu-

ally such methodology modelling task is done in order to change the systems development

process in the organisation i.e. by trying to alter the set of methods, the set of roles, the set

of stages and steps, or the set of organising principles and quality criteria associated with

the development practices. One specific situation where such a task must be accomplished

is when computer aided tools that support some of the methods in a methodology are

introduced.

In this situation the methodology development group needs a concept structure and the

associated language (metalanguage) to derive representations of the methodology under

investigation. Such representations we call here metamodels or methodology

specifications (of. Brinkkemper 1990). Like in systems development the used

metalanguage may be natural language or some fomaM language, and it may apply a

graphical notation. Finally, this task of deriving methodology specifications can be com-

puter supported or not computer supported. If some type of CASE tool is used to support

173

development methodology, this necessitates also computer support in deriving methodol-

ogy specifications. Generally, this process is called Computer Aided Methodology

Engineering (CAME) (Kumar and Welke 1988).

2.2. Motivation and modelling levels in MetaEdit

Historically, the languages to describe and analyse methodologies have been natural

languages and the methodology specification process has been devoid of computer sup-

port. However, the introduction of computer supported tools has necessitated the applica-

tion of formal and semi-formal metalanguages (see e.g. CRIS 1988) in methodology

specification. Accordingly, these linguistic representations are used to guide the method

application in a computer supported development environment (see Lyytinen et al. 1989).

With the help of these languages one can clarify the concept structure underlying the

method, and specify how it is tied with various notations (recall that the relationship here

was many to many). In addition, one can specify the structural features of the method

application as espoused by the methodology such as when, by whom, and in which order

the methods are used. All this information can be then used to specify a methodology

specific CASE tool for a given situation.

The goal of the MetaEdit is to provide a linguistic environment to develop and analyse

methodology specifications, i.e. to produce a prototypical plattform for CAME. The

specific feature of MetaEdit is that it provides a multilingual (several metalanguages can

be used) environment in which methodology specifications can be developed, analysed

and maintained.

To clarify how this is achieved consider figure 2. On the right hand side we can see three

levels that are instrumental in delivering the functionality of a CASE shell. First, we have

the level on which the IS developers work while they derive various object system

representations about the IS under development. The syntax and the semantics of these

representations are defined by a collection of metamodels (methodology specifications)

that guide the use of the CASE tool. These metamodels in turn are founded on a model-

ling language and associated concept structure. This language/concept level is called here

a meta-metarnodel of the CASE shell. This level in fact offers the flexibility and extenda-

bility of the CASE shell environment.

Accordingly, these three levels are also present in MetaEdit as depicted on the left side in

figure 2. Hence, in MetaEdit we distinguish between the meta-metamodel, the metamodel,

and the model. However, these levels operate only one level "higher" than in the CASE

174

MetaEdit

Meto-meta
model

CASE-shell

Meto ~1, Equivedence ~ Meto-meta
model I model

Meta
Model model

~t4mlttna ..

Field of

ph~no~er~a

Figure 2. Three levels from meta-metamodel to model

sheU 3. Thus, the model level in MetaEdit defines the structure and functionality of the

modelling language that will be used in representing models of IS i.e. the metamodel in

the CASE shell. The metamodel in the MetaEdit is the model that is used to specify the

methodology specification i.e. the meta-metamodel of the CASE shell. Multilingual

specification fuctionality for methodology specifications is achieved in MetaEdit by offer-

ing a third level model-the meta-metamodel. On this level we can define the syntax and

semantics of various metamodels that can be used to specify the methodology

specifications. This flexibility of MetaEdit allows us to define the metamodels in the

CASE shell in their "own language" if the meta-metamodel of the CASE shell has been

defined in the meta-metamodel of MetaEdit. Typical "base languages" on the metamo-

del level of MetaEdit would be a set-oriented data model offered in RAMATIC (Bergsten

et al. 1990), the E-R-model included into IBMs information repository concept, or the

relational data model included into the IRDS OSO 1989) proposal. This situation is dep-

icted by the equivalence arrow in figure 2 between these two levels. By doing this we

greatly simplify the subsequent automatic generation of the metamodel in MetaEdit that

will used to guide the operations of the CASE-shell. In most cases this can be accom-

plished just by generating a textstream from the stored model in MetaEdit and doing some

3 For this mason MetaEdit can also be used as a simple CASE shell.

Type

syntactic opeations on the way. No complicated compilation between two different

languages is needed.

Thus, MetaEdit is aimed to be used as a tool which offers a changeable methodology

modelling language (metalanguage). This is achieved by defining a fixed set of rules

included into MetaEdit's meta-metamodel. Next we shall illustrate how the three model-

ling'levels on the left hand side of figure 2 are implemented in MetaEdit.

3. Design principles of MetaEdit

In this section, we shall introduce the basic design principles of MetaEdit. We begin with

clarifying the concept structure and the associated language of a methodology model. Four

domains are identified in the methodology and the mappings between them are defined.

Next we explain the functions and architecture of MetaEdit and illustrate how this archi-

tecture reflects the selected metamodelling approach.

3.1. Four domains of model information

When specifying development methodologies, two aspects need to be separated: the con-

ceptual content of a methodology, and its representation form. Accordingly, we shall dis-

tinguish two dimensions in methodology specification in which the contents of a metamo-

del can be located. These dimensions are called type-instance dimension and conceptual-

representational dimension (see fig. 3).

In the type-instance dimension we a distinguish between the types that are included in the

metamodel and their instances which make up the "things" observed in the modelling tar-

get i.e. the methodology under study. The type level determines what is allowed and legal

Conceptual Representational
p -

instance

175

Figure 3. Four domains of model information in MetaEdit

176

in the instance level. The metamodel, with its generic representation definitions belong to

the type level and the "things" in the model of the modelling target i.e. the methodology

that user works with belong to the instance level. The same levelling principle is sug-

gested in the IRDS framework (ISO 1989).

On the type level two types of type definitions can be distinguished: first, the conceptual

type level items (meta level) specify the "things" (i.e. meta level types) possible in a

metamodel. These meta level specifications include the properties of meta level types and

their associations with other meta level types. In the second sort of type definition a meta

level type is mapped to a representation definition.

When a MetaEdit user is building a model, s/he is working at the target level, i.e. the

methodology level. The components of a conceptual model of the modelling target, the

target level "things", are instances of the defined types on the meta level. Everything on

the target level can be classified under the types on the meta level. Moreover, each concep-

tual target level "thing" may have multiple representations.

In the conceptual-representational dimension we observe the difference between con-

cepts and their representations. This division between a conceptual domain and a represen-

tation domain has been widely applied since the ANSI/SPARC proposal of a three-level

data base architecture (ANSI 1978). In MetaEdit, the types and their target level instances

belong to the conceptual domain i.e. they do not carry any information about the way they

are presented graphically. The graphical representation of a conceptual "thing" is defined

by a contextual mapping from conceptual type definitions to their representational

definitions.

Thus, for each type on the meta level, a representation definition is required. Representa-

tion definitions define the generic graphical behaviour of types. Consequentially, they

capture the generic shape of a type, its line type (e.g. solid or dashed), and the textual

labels included in the graphical symbol. For each target level instance we can suggest one

or more representations that conform to the meta level definitions. These representations

convey the place and size of the representation instance, and its connections to other

representations.

The arrows in figure 3 should be read as follows: the existence of a "thing" in the domain

where the arrow points to depends on the existence of "things" in the domain from which

the arrow originates. A representation definition makes thus only sense if there exists a

type on the meta level mapped to it. Correspondingly, a target level instance can exist

only if it is associated with a type on the meta level. For each representation there must be

a conceptual type on the target level and a representation definition. So, in principle there

is a two-way road from the most abstract (meta level) to the most concrete (representa-

tion). The data structure behind all the functions of MetaEdit is designed according to this

four-domain principle.

177

3.2. The functions and architecture of MetaEdit

In order to fully understand how metamodelling is carded out in MetaEdit, we shall

explain its basic functions and associated architectural principles in more detail. There-

fore, the general architecture of MetaEdit and associated user roles are briefly introduced

in this subsection. The architecture, the functions and the user roles are depicted in figure

4.

As there were two levels of model information, the type and the instance levels, there are

also two user roles associated with these levels: the tool manager and the methodology

engineer. The tool manager is responsible for the type level specification bases, the

metamodel base and the symbol base. S/he defines the modelling methodology to be used

in metamodelling. The methodology engineer is the real user. S/he uses MetaEdit in

specification work and is therefore responsible for the instance level specifications stored

in the methodology specification base.

The third user role depicted in figure 3 is really a collection of roles. The most important

of these is the role of a CASE tool implementor, who uses the output to customise the

CASE shell to support the methodology that was previously modelled with the MetaEdit.

The outputs of MetaEdit can also be useful to other people, e.g. the analysts (when a

methodology manual is produced) or the tool manager (showing what methodology

descriptions and metamodels are currently stored in MetaEdit).

1

Figure 4. The Structure of MetaEdit

178

MetaEdit consists of three major functional areas (see fig. 4):

(1) Main Window offers the file and specification management functions. From the

main window a methodology engineer can select the modeUing methodology

(from the metamodel base) when needed, and add, delete or change instance level

specifications from the methodology specification base (MSB) s/he is working

with. From the Main Window one can also call the other utilities of MetaEdit.

(2) Draw Window provides drawing functions to draw or edit specifications. It

serves to input and edit these instance level specifications. Created instance level

specifications are stored in the methodology specification base (MSB).

(3) Output Generator provides programmable utility functions that can create

reports, generate code or retrieve data from the specifications in the methodology

specification base. The tool manager (another user role) specifies the output

specifications that are then stored in the output specification base. In our current

work, the primary use of the output generator functions is to translate methodology

specifications to formats needed in CASE-shells. A unique feature of this function

is that it can also produce specifications to define MetaEdit's own metamodels.

The output generator need also produce output in human readable formats for

model validation and review.

The type level specifications belonging to the meta level are collected in the metamodel

base in which the definitions of known metamodelling methodologies are stored. All win-

dow functions and utilities use a metamodel which determines their possible and legal

actions in using a modelling methodology. When a methodology engineer starts MetaEdit,

it immediately loads the default metamodel from the metamodel base which determines

the default modelling methodology. If s/he wants to change the modelling methodology,

s/he can load another metamodel (if defined) instead of the default model (which is now

OPRR, see section 4). Tool manager defines the modelling methodologies that are stored

in the meta model base.

The methodology specification base covers the instance level i.e. the target level and

representations domains. The methodology specification base accumulates the target level

"things" and their representations that are entered from the Draw Window by the metho-

dology engineer.

The Draw Window uses the symbol base which defines how the meta level types behave

graphically. This information consists of the generic representation definitions of the meta

level types and they are made by the tool manager. It is possible to change the "look" of

the current modelling language by changing the representation definitions in the symbol

base. These changes to the symbol base do not affect the conceptual domains.

179

The key to the architecture of MetaEdit is the structure of metamodels in the metamodel

base that determine both the functions of MetaEdit and the structure of the methodology

specification base. In the following two sections we shall look closer to the generic struc-

ture of models in MetaEdit.

4. MetaEdit's meta-metamodel

In the design of MetaEdit we paid much attention to the flexibility of the tool. To obtain

the best results, we made the metamodels of the tool to a very large extent customisable.

A spin-off of this flexibility is that MetaEdit can be used for two somewhat different pur-

poses. First, MetaEdit can be used as a simple, generic CASE tool with a flexible

metamodel. Second, MetaEdit can be used as a methodology engineering tool (cf. Kumar

and Welke 1988) which supports the building of metamodels to be loaded to other CASE

shells. Now, two questions arise: 'what are the basic requirements of MetaEdit's meta-

metamodels?', and 'what kinds of metamodels can be created using MetaEdit?'. In this

section, the first question is dealt with. We shall introduce what kinds of "things" can be

modelled using MetaEdit. The latter question is addressed in section 5.

In the first subsection we explain the structure of the fixed data model in which metamo-

dels (methodology models) are defined. The contents of this data model are crucial in

understanding the functioning of MetaEdit. In the second subsection we show how a

specific metamodel is defined using OPRR as the methodology modelling approach.

4.1. The structure of the meta-metamodel

The choice of the meta-metamodel is critical in several ways. First, it defines what kinds

of types can be included in the metamodel and so focuses the metamodeller's attention to

certain constructs. Second, a meta-metamodel must have the sufficient semantic richness

so that economic and powerful modelling principles are possible. In other words, the

meta-metamodel must provide the sufficient semantic constructs to model a wide array of

metalanguages with varying properties. On the other hand, meta-metamodel must be rela-

tively simple, so that it can be learned and used easily.

In MetaEdit, the meta-metamodel is a fixed data structure based on the OPRR data model 4

(WeRe 1988). We have chosen to use OPRR as the meta-metamodel for the following

reasons:

4OPRR stands for Object, Property, Role, Relationship model.

180

(1) OPRR is a powerful data model. Several IS methodologies have been modelled

successfully using OPRR. The fact that OPRR is used as a meta-metamodel in

some commercial tools shows that (Meta Systems 1989).

(2) Although there are some restrictions (e.g. with decomposition), OPRR suits well to

most graphical modelling methodologies. This will be shown in chapter 5.

(3) Yet OPRR is simple - there are only four basic concepts (meta types) in OPRR.

Thereby it seems to satisfy most of the requirements for the meta-meta model. The fol-

lowing definitions define the four basic OPRR concepts:

Object is a " thing" which exists on its own. It is represented by its associated properties.

Property is a describing/qualifying characteristic associated with other meta types,

(object, relationship, or role).

Role is a link between an object and a relationship. A role may have properties that clarify

the way in which "things" participate in a certain part of a relationship. An object always

has a role in a relationship. This role defines what "par t" an object plays in a relationship.

Relationship is an association between two or more objects. It cannot exist without asso-

ciated objects. Relationships can have properties.

With the OPRR we adopt the following notation (cf. Welke 1988): an object type is

presented by a rectangle, a property type by an ellipse, a role type by a circle, and a rela-

tionship type by a diamond. The name of each object, property, role or relationship type is

written inside its symbol. The role type's connectivity restriction is also written inside its

symbol. (For an example, see fig. 8.)

We have extended the OPRR model in MetaEdit by defining how OPRR concepts are

mapped to their representations and how they are instantiated. Table 1 depicts these map-

pings.

An object type has always a symbol defimtion, and its instance is always represented by a

symbol. A symbol is a graphical object that has one or more visible or invisible shape

features to which connectors (i.e. lines) can be connected. A symbol may link to textual

labels representing the properties of the object instance. Examples of symbols can be seen

in figure 5. In MetaEdit, each target level object instance is presented by one or more

symbols The graphical behaviour of the symbols is defined in the meta level presentation

181

OPRR

concepts

Mete level

Object type

Property type

Relationship type

Role type

definitions.

OPRR type

representations

Representation
definitions

Symbol definition

Data type

Line type

Symbol definition

Concept

instances

Target level

Object instance

Property value

Relationship instance

Role instance

Representation

of instances

Representations
I '1 II

Symbol

Data field

Connector

Terminal

Table 1. Mappings between domains

A property value is presented in a data field. A data field is a slot into which users can
enter data. A data field's form and its acceptable values are defined by a data type. A pro-

perty may also be shown in the symbol's label.

A relationship instance is always presented by a line that is called a connector. A con n ec -

tor is a straight or jointed line between two objects. For each relationship type, its line

type is defined. The attributes of a line type are e.g. thickness, colour, and solidity.

A role is also presented by a symbol. We shall call that symbol a terminator. A termina-

tor is a symbol attached to a connector line and to another symbol representing an object

instance so that the line ends at the terminator (e.g. an arrowhead). Terminators differ from

object representations in that terminators do not have any "places" in which we can attach

other connectors. A terminator is always placed to a connector's end. A terminator may

also contain labels that convey the values of the role's properties. Terminators can also be

left undefined, in which case the connector lines attach directly to the symbols. Examples

of terminators are shown in figure 6.

/Cost / ~Accounting
~~2nerate 1 //Analysis//
~eports ~ @Employee

Figure 5. Examples of symbols

182

M

Figure 6. Examples of terminators

4.2. Defining OPRR in metalanguage

The next question is: how can we define and implement the meta-metamodel i.e. the fixed

data model behind all the functions? To facilitate implementation, one solution is to

develop still a higher level model and define a meta metalanguage to represent OPRR. In

this work we can e.g. employ the Entity Relationship Attribute model. An EAR model of

OPRR is depicted in figure 7. The figure follows the traditional roles of EAR-modelling

(Chen, 1976): an entity is depicted by a rectangle, an attribute by an ellipse, and a rela-

tionship by a diamond. Cardinality constraints are shown beside the lines connecting the

diamond to the rectangles.

The EAR model of the meta-metamodel of MetaEdit can be interpreted as follows. Enti-

ties are the "things" that exist on their own. Relationships can be interpreted as the syn-

tax rules in the metalanguage: if two metatypes take part in the same relationship then

Figure 7. The meta-metamodel of MetaEdit represented in EAR

183

instances of these two metatypes (i.e. types) may have a link between them 5. Attributes

are variables that must be given values.

An 0bj ect, Role or Relationship type may be linked to several Property

types and vice versa. An Object type must also be linked to one Property

type through which its instances can be identified. An 0bj ect type may be linked to

several R o l e t y p e s and vice versa. The only cardinality restriction in this model is that

a R e l a t i o n s h i p t y p e may be linked to only two R o l e t y p e s . This means that

all R e l a t i o n s h i p t y p e s in MetaEdit's metamodels are binary. Because mete level

R e l a t i o n s h i p t y p e s are represented as lines on the instance level (see chapter 5), it

is difficult to graphically represent n-ary relationships consistently on the instance level.

In the meta-metamodel, every type is identified by a variable Name (attribute in figure).

The values of Name must be unique. Also, each type has one variable that defines its gen-

eric representation. 0bj ect type and Role type have the variable Symbol, that

includes the name of a generic symbol definition. A R e l a t i o n s h i p t y p e has the

variable Line type that defines the generic line type of its instances. Also Property

t y p e has the variable D a t a t y p e that defines the data type of the value of a property

instance in target level. Each entity in the model has also additional variables. For each

O b j e c t t y p e , Dupl a l l ? defines if a target level object instance can have multiple

representational instances. Property type's Identifier? defines if all the

values of P r o p e r t y t y p e ' s instances in target level must be unique. For a R e l a -

t i o n s h i p type, the variable Directed? defines if the Relationship type is

directed. If it is directed, the target level objects in its roles must be given in the order of

direction that is defined in R o l e t y p e ' s O r d e r # . Otherwise the order is free.

R o l e t y p e ' s C o n n e c t i v i t y defines how many role instances of a given type an

object instance can have.

This meta-metamodel is the basis for all definitions in MetaEdit. Depending on its instan-

tiation, MetaEdit can be applied in different types of modelling approaches. Target level

instances and their possible associations are fully determined by the definitions in the

metamodel that can be changed on the user's request at any time.

4.3. OPRR presentation of OPRR

As mentioned in section 3, MetaEdit is used primarily to define modelling languages for

other CASE tools and even for itself. To accomplish this, a metalanguage must be chosen

5 And forward: if two types have a rink between them, there may be two instances of the types in the

target level that have a link between them.

184

and defined. When a modelling language is defined in a form of a metamodel, it is possi-

ble to use MetaEdit as a modelling tool to support the modelling methodology associated

with that language.

If we want to use MetaEdit as a OPRR modelling tool, we must define the OPRR metamo-

del. Because the meta-metamodel of MetaEdit is also based on OPRR, we are obliged to

represent OPRR by itself, i.e. we must develop an OPRR presentation of OPRR.

The OPRR presentation of OPRR is given in figure 8. The dashed rectangles in fig. 8 con-

nect to every type a list of all the variables and values (properties), including their respec-

tive symbol definitions. These variables will not be explicitly shown in the representation

of the object in MetaEdit. 6

: Ldentilylng:.NO i

: Idontffyino:-NO i s~/ff, i..~i;~i~'~
i.~.~:..~...~ .p~.~?.'.~.s..~ i

i .S.~.bol: nil ! i Line tYPe: Solid ! "
i Directed'/: NO ! .S..ynl.bol: nil i

i p.=s t~.e. : .~.Q .~..i !o.u.pj.~L?...~.s.

', S~..b~l: nil :

.

i Identifying: NO

i.Qltac1.O~.NO..:~t'in'etyp'e~'~idi ~ a s ~ : "atq'~9~''n't''''~

: Identifying: .YI~.S / ""! Une type: Solid
i Data type: Stnng.i " !..D!re~.e.d. ?.:. NQ.. i

: q >
L ~ ' , n L . . i ~

__~ i ~ ~ !---i...s~-~k..i

i ldenl i fy ing: NO i

~ Ident i fy ing:N .0
.O..a.t 9 type ~r~.n.g.!

7
.°,

""'/" ; i Dupl Jig?: NO
' ~ ~mbol Diamond

! l~el~l ; IR~em i iuata tyxoe: String:

Figure 8. OPRR presentation of OPRR

185

The meta level object types are Object, Property, Role, and Relationship.

In target level models, an object instance of type Object, Role, or Relationship

can be connected as a Nonproperty to an object instance of a type Property (in a

role Property part) through a relationship property of. An Obj ect instance

can be connected to a Role through a relationship instance in Role, and a Role

instance to a Relationship instance by a relationship rel has. There are no sym-

bols defined for roles because relationship lines between objects in our notation for OPRR

are plain lines without any terminators.

The specification of OPRR in OPRR can be easily translated to a textual form. The result-

ing textual specification can then be read into MetaEdit and used as an entry in the

metamodel base. When the metamodel for OPRR has been created, descriptions that are

based on it can be read back to MetaEdit. In the same manner it is possible to model other

methodologies and use them with MetaEdit, for example ERA-model would be easy to

model in the same way.

5. How to derive methodology specifications in MetaEdit

Suggested approaches to methodology modelling deal primarily with specifying notations

(e.g. Hekmatpour and Woodman 1987). Here, a methodology engineer is interested in

notational problems: how to create and edit syntactically correct textual and graphical

notations.

We believe that the notational focus is insufficient. When modelling information require-

ments of an organisation, analyst's attention is not focused on notation and its quality.

Instead s/he is interested in the conceptual contentof the requirements w i.e. in identify-

ing objects and their relationships in the Universe of Discourse. When s/he has identified

and named those objects of interest, s]he visualises them using a notation s/he is accus-

tomed to. The visualised model may show that the analyst's thinking has been inconsistent

or incomplete, and so serve as a means for validity and correctness checking. The notation

is an aid, not the main focus in modelling. In the same vein, the primary interest in

metamodelling should be in observing, deciding, and validating what kind of "things"

and "facts" there are to be observed in systems development. Therefore the conceptual

structure of the methodology should first be delineated.

6 When working with MetaEdit, the properties will be entered and shown in a separate window
associated to every object.

186

In this section we clarify how methodologies can be specified using MetaEdit and the

developed OPRR metamodel. We shall begin with a conceptual specification by showing

how to analyse and represent the conceptual structure underlying a methodology. Then we

continue by specifying the generic representation of a method (specification language).

This is exemplified by using a part of the structured analysis (SA) method (De Marco

1978) as the target method.

5.1. Conceptual specification of a methodology

Conceptual specification starts with resolving what kind of objects the methodology recog-

nises, and what are the possible roles and relationships of these objects. Only after this

problem has been settled, it is time to formulate the notation for the methodology.

Suppose we want to use some kind of data flow diagramming method in a CASE tool. In

this method species, an information system is observed as consisting of interconnected

processes (subsystems) that receive and send data. A process may receive data from other

processes, from external sources, or from intemal data stores, and send data to extemal

entities ("sinks") to other processes or to internal data stores. Moreover, an external

entity and an internal data store can not be in a send-receive connection i.e. an external

2

c - - r e . .

_/ l 1=,
cuslme r O~er~ cuslmer

Product file
~ cmda / P ~ 3 L-ie

Figure 9. A da~ flow d i a g ~

187

entity can not retrieve or manipulate internal data stores directly. So, we can distinguish

three types of objects: processes, external entities, and data stores.

An example of a data flow diagram is shown in figure 9. The diagram consists of four

processes ("Maintain customer records", "Verify order", "Process invoice payments",

and "Check credit"), three data stores ("Product file", "Customer", and "Accounts

receivable") and an external entity that is represented twice ("Customer") .

In figure 10, the associated conceptual structure underlying the data-flow diagramming

method is presented. The OPRR representation consists of three object types, Process,

S t o r e , and E x t e r n a l , that are linked to each other by two relationship types FFP and

F l o w s . Accordingly, a P r o c e s s can be in the role type From p a r t in the relation-

ship type FFP (FlowsFrom Process). This relationship type specifies a data-flow which

begins from a P r o c e s s and ends either to a P r o c e s s , a S t o r e , or an E x t e r n a l

(To p a r t of the FFP relationship type). Thus, the role type To p a r t defines

instances of a generalisation in the sense that three different object types can be instan-

tiated at this end of the relationship.

The second relationship type, Flows, represents a data-flow that begins from a Store

or an External (From part of Flows). The only admitted destination of this

data-flow is a Process (To part), because an external entity can not modify internal

data stores.

=)

Figure 10. A OPRR specification of the data flow diagramming method

188

All the object types have the properties Name and C o d e . Name is a textual identifier

of an object, and Code is an ordinal number associated with the object. Also the rela-

tionship types FFP and F l o w s have these properties. Other attributes could be defined

if need be. For example, we could define the number of copies sent to the process, store or

extemal in the FFP relationship.

5.2. Representation specification

The representation specification of a methodology should be consistent with conceptual

specification. To avoid confusion and ambiguities, there should be a straightforward map-

ping from conceptual to representational specifications. For each object, property, relation-

ship, and role type we should provide an unambiguous graphical definition.

We can thus extend the specification of the data flow diagramming method with its

representation specification. In the following, one way of defining the generic representa-

tion of types is explained.

The representation of the object types is defined according to De Marco (1978).

Process is represented by a symbol, circle, which has two textual labels, one in the

upper region, and one in the middle of the symbol. The labels are associated to values

of propertytypes Name and Code.

• Store is represented by two parallel lines that have two textual labels between them.

The labels are associated with properties Name and Code.

• External is represented by a rectangle that has also the same labels as the other object

types.

The relationship types FFP and F l o w s are represented by a thin, solid line between

associated symbols. The To p a r t of both relationship types is represented by an arrow-

head in the end of the relationship line (connector), whereas the representation of the

From p a r t is left undefined (no explicit graphical representation).

The data type of both Name and Code property types is String.

After formulating the representation specifications we have specified the data-flow

diagramming method both conceptually and representationally.

189

6. Conclusions

In this paper we have introduced a metatool environment called MetaEdit which offers a

flexible, graphical environment for methodology modelling. The environment is based on

sound modelling and design principles that are based on the four domains of model infor-

mation. Using these principles the OPRR-based fixed meta-metamodel was developed and

the general architecture of MetaEdit was illustrated. Moreover, we showed how the meta-

metamodel can be mapped onto the four domains. The applicability of MetaEdit was

exemplified by using it as an OPRR modelling tool by which an OPRR presentation of

OPRR was developed. Metaedit's use in methodology specification was demonstrated by

deriving a simple methodology model of the data flow diagramming method.

Although MetaEdit embodies some new ideas, such as a graphical interface and an

changeable metamodel, it has been influenced by several earlier research projects. The use

of an extendible metamodel comes from the SEM environment (Teichroew et al. 1980) in

which methodologies could be defined using a simple entity-relationship model. Another

inspiration for the development of MetaEdit was Welke's extensions into ERA (1988), in

which roles and their attributes were added to the metamodel definition. In the Metaview

system (Sorenson et al. 1988) roles are also included in the metamodel definition. How-

ever, we are not aware of any approach in which the mapping between the conceptual

metamodel and the graphical representation is so neat as in MetaEdit, i.e. none of the

approaches above has considered the generic graphical representation of the meta types.

MetaEdit is now used to study methodology modelling. For example, we are currently

defining RAMATIC's metamodel in MetaEdit, which will allow a graphical definition of

RAMATIC's metamodels and the subsequent automatic generation of a large part of

RAMATIC's methodology specifications. The definable metamodel also gives MetaEdit

certain CASE tool characteristics and makes it usable for other kinds of data modelling

purposes. For example, most of the prevailing data modelling methodologies could be

metamodelled with in MetaEdit. The programmable output generator of MetaEdit can

furthermore generate several types of output: methodology specifications, data base sche-

mata, data definitions, etc.

Presently, the user interface of MetaEdit has been implemented in a prototype fashion.

Current work is devoted to enhancing the functionality of MetaEdit by adding model

storage and output generation functions to the tool. In the future, we shall pursue two

goals: enhance MetaEdit's methodology modelling capabilities and add characteristics that

give MetaEdit a customisable CASE tool functionality.

190

Acknowledgements

An earlier version of this report was presented in the first workshop on the Next Genera-

tion of CASE Tools. We are grateful for all comments that greatly benefited to improve

the contents and form of the paper. Also prof. Welke's constructive comments have been

helpful to arrive at the current version.

References

ANSI,, "The ANSI/X3/SPARC DBMS Framework Report of the Study Group on

Database Management Systems," Information Systems 3pp. 173-191 Pergamon

Press, (1978).

Bergsten, Per and Bubenko jr., Janis, Dahl, Roland, Gustafsson, Mats R., and Johans-

son, Lars-Ake, RAMATIC - a CASE shell for implementation of specific CASE tools,

SISU, Stockholm (1989). First draft of a contribution to section 4.4 of the TEM-

PORA T6.1 report

Bdnl&emper, Sjaak, Formalisation of Information Systems Modelling, Thesis Pub-

fishers, Catholic University of Nijmegen, Nijmegen (1990). Ph.D. Dissertation

Bubenko, jr., Janis A., Selecting a strategy for computer-aided software engineering

(CASE), SYSLAB University of Stockholm, Stockholm (June 1988).

Chen, Minder, Nunamakerjr., Jay F., and Weber, E. Sue, "Computer-Aided Software

Engineering: Present Status and Future Directions," Data Base 20(1)pp. 7-13

(Spring 1989).

Chen, Minder and Nunamaker, jr., Jay F., "MetaPlex: an Integrated Environment for

Organization and Information Systems Development," pp. 141-151 in Procs. of the

Tenth International Conference on Information Systems, ed. Janice I. DeGross, John

C. Henderson and Benn R. Konsynski,, Boston, MA (December 4-6, 1989).

Chen, Peter Pin-Shan, "The entity-relationship model - toward a unified view of

data," ACM Transactions on Database Systems 1(1)pp. 9-36 (March 1976).

Chikofsky, Elliot J., "Software Technology People Can Really Use," IEEE Software,

pp. 8-10 (March 1988).

191

CRIS88,, Computerized Assistance During the Information Systems Life Cycle,

North-Holland, Amsterdam (1988). Proceedings of the IFIP WG 8.1 Working
Conference on Computerized Assistance during the Information Systems Life Cycle

CRIS 88

De Marco, Tom, Structured Analysis and System Specification, Yourdon Press, New

York (1978).

Everest, Gordon C. and Alanis, Macedonio, Selecting Computer-Aided Software
Engineering Tools, Dept. of Information and Decision Sciences, University of Min-

nesota (1989). An unpublished (?) research paper

Harel, David, "On visual formalisms," Communications of the ACM 31(5)pp.

514-530 (May 1988).

Hekmatpour, S. and Woodman, M., "Formal specification of graphical notations and
graphical software tools," pp. 297-305 in ESEC '87: Proceedings of the 1st European
Software Engineering Conference, Strasbourg, France, Sep 9.11, 1987 (Lecture Notes
in Computer Science), ed. H. Nichols and D. Simpson,Springer-Verlag, Berlin

(1987).

Index Technology,, Customizer Reference Guide, Index Technology Corporation,

Cambridge, Ma (1987).

ISDOS,, An Introduction to the System Encyclopedia Manager, ISDOS Project,
Deparia,ent of Industrial and Operations Engineering, The University of Michigan,

Ann Arbor, Michigan (September 1981). ISDOS Ref# 81 SEM-0338-1

ISO,, Information processing systems - Information Resource Dictionary System

(IRDS) Framework, ISO (1989). Draft International Standard

Kumar, Kuldeep and WeRe, Richard J., "Methodology Engineering: A Proposal for
Situation Spesific Methodology Construction," in Proceedings of CASE Studies 1988,
Meta Systems, Ann Arbor (1988). Meta Ref. #C8811

LeQuesne, P. N., "Individual and Organisational Factors and the Design of IPSEs,"

The Computer Journal 31 (5) pp. 391-397 (1988).

Lockemann, Peter C. and Mayr, Heinrich C., "Information System Design: Tech-

niques and Software Support," pp. 617-634 in Information Processing 86, ed. H.-J.

Kugler, North-HoUand, Amsterdam (1986).

192

Lyytinen, KaUe, "A Taxonomic Perspective of Information Systems Development:

Thoretical Constructs and recommendations," pp. 3-41 in Critical Issues in Informa-

tion Systems Research, ed. R. J. Boland Jr. and R. A. HirschheimJohn Wiley & Sons

Ltd. (1987).

Lyytinen, KaUe, SYTI-Project: Research Plan, University of Jyv~iskyl[[, Department

of Computer Science, Jyv~kyl~, Finland (Spring 1988).

Lyytinen, Kalle, Smolander, Kari, and Tahvanainen, Veli-Pekka, "Modelling CASE

environments in Systems Development," in Procs. of CASE89 The first Nordic

Conference on Advanced Systems Engineering, , Stockholm (1989).

Meta Systems,, QuickSpec Language Guide version 1.0, Meta Systems, Ltd., Ann

Arbor (January 1989).

Orlikowski, W. J., "CASE Tools and the IS Workplace: Some Findings from Empiri-
cal Research," in Procs. of the 1988 ACM SIGCPR Conference on the Management

of Information Systems Personnel, (April 7-8, 1988).

Orlikowski, Wanda J., "Division among the Ranks: The Social Implications of CASE

Tools for System Developers," pp. 199-210 in Procs. of the Tenth International

Conference on Information Systems, ed. Janice I. DeGross, John C. Henderson and
Benn R. Konsynski,, Boston, MA (December 4-6, 1989).

Penedo, Maria H. and Riddle, William E., "Software Engineering Environment

Architectures," IEEE Transactions on Software Engineering 14(6) pp. 689-696 (June

1988).

Siltanen, Aila, "The Impact of CASE Tools on IS Management," pp. 181-195 in

CASE on Trial, ed. Kathy Spurr and Paul LayzeU,John Wiley & Sons Ltd, Chichester

(1990).

Smolander, Kari, Tahvanainen, Veli-Pekka, and Lyytinen, Kalle, "How to Combine
Tools and Methods in Practice - a field study," pp. 195-214 in Advanced Information

Systems Engineering, ed. B.Steinholz, A.Solvberg, L.Bergman,Springer-Verlag, Ber-

lin (1990).

Sorenson, Paul G., Tremblay, Jean-Paul, and McAUister, Andrew J., "The Metaview

System for Many Specification Environments," IEEE Software, pp. 30-38 (March

1988).

193

Teichroew, Daniel, Macasovic, Petar, Hershey,m, Ernest A., and Yamamoto, Yuzo,
"Application of the entity-relationship approach to information processing systems

modeling," pp. 15-38 in Entity-Relationship Approach to Systems Analysis and

Design, ed. P. P. Chen,North-HoUand (1980).

Venable, John R. and Tmex,lIl, Duane P., "An Approach for Tool Integration in a

CASE Environment," in Proceedings of CASE Studies 1988, Meta Systems, Ann
Arbor (1988). Meta Ref. #C8812

WeRe, Richard J., "IS~SS: DBMS support for information systems development,"

pp. 195-250 in Data Base Management: Theory and Applications, ed. C.W. Holsapple
and A.B. Whinston,D. Reidel Publishing Company (1983).

WeRe, Richard J., The CASE Repository: More than another database application,

Meta Systems, Ltd., Ann Arbor (1988).

