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Abstract

In this paper, we propose a conceptually simple and general framework called
MetaGAN for few-shot learning problems. Most state-of-the-art few-shot classifi-
cation models can be integrated with MetaGAN in a principled and straightforward
way. By introducing an adversarial generator conditioned on tasks, we augment
vanilla few-shot classification models with the ability to discriminate between real
and fake data. We argue that this GAN-based approach can help few-shot classi-
fiers to learn sharper decision boundary, which could generalize better. We show
that with our MetaGAN framework, we can extend supervised few-shot learning
models to naturally cope with unlabeled data. Different from previous work in
semi-supervised few-shot learning, our algorithms can deal with semi-supervision
at both sample-level and task-level. We give theoretical justifications of the strength
of MetaGAN, and validate the effectiveness of MetaGAN on challenging few-shot
image classification benchmarks.

1 INTRODUCTION

Deep neural networks have achieved great success in many artificial intelligence tasks. However, they
tend to struggle when data is scarce or when they need to adapt to new tasks within a few numbers of
steps. On the other hand, humans are able to learn new concepts quickly, given just a few examples.
The reason for this performance gap between human and artificial learners is usually explained as
that humans can effectively utilize prior experiences and knowledge when learning a new task, while
artificial learners usually seriously overfit without the necessary prior knowledge.

Meta-learning [Thrun, 1998, Hochreiter et al., 2001] addresses this problem by training a particular
adaptation strategy to a distribution of similar tasks, trying to extract transferable patterns useful
for many tasks. Recently, many different meta-learning or few-shot learning algorithms have been
proposed. These algorithms may take the forms of learning a shared metric [Sung et al., 2018, Snell
et al., 2017], a shared initialization of network parameters [Finn et al., 2017], shared optimization
algorithms [Ravi and Larochelle, 2017, Munkhdalai et al., 2017, Munkhdalai and Yu, 2017], or
generic inference networks [Santoro et al., 2016, Mishra et al., 2018] . In the context of few-shot
classification, these algorithms try to learn a good strategy to form a correct decision boundary
between different classes from only a few samples of data in each class.
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In this work we present MetaGAN as a general and flexible framework for few-shot learning. Most
state-of-the-art few-shot learning models can be integrated into MetaGAN seamlessly. While most
few-shot learning models consider how to effectively utilize few labeled data in a supervised learning
way, semi-supervised few-shot learning which is studied recently in [Ren et al., 2018] is proposed
when unlabeled data are available. In this paper, we show that both supervised few-shot learning and
semi-supervised few-shot learning can be unified naturally with our prpoposed MetaGAN framework.
We can further extend the sample-level semi-supervised learning proposed in [Ren et al., 2018] to
the task level. For sample-level semi-supervised few-shot learning, we allow some training samples
to be unlabeled within a task. These training samples can either come from the same classes as the
labeled samples, or come from different "distractor" classes. For task-level semi-supervised few-shot
learning, we also allow purely unsupervised tasks, in which both support and query samples are all
unlabeled. Task-level semi-supervised few-shot learning can be very natural in practice. For example,
we can have robots with cameras collecting data in different places. It is safe to assume that the data
collected by one robot in a short time range come from a specific distribution, so classifying these
images can be viewed as one task. But these tasks are completely unlabeled, both in the support and
in the query sets. The MetaGAN algorithm is able to learn to infer the shape and boundaries of data
manifolds of the task-specific data distribution from both labeled and unlabeled examples.

We provide both intuitive and formal theoretical justifications on the key idea behind MetaGAN. The
main difficulty in few-shot learning is how to form generalizable decision boundaries from a small
number of training samples. We argue that adversarial training can help few-shot learning models
by making it easier to learn better decision boundaries between different classes. Although training
data is usually very limited for each task, we show that how fake data generated by a non-perfect
generator in MetaGAN can help the classifier identify much tighter decision boundaries (real-fake
decision boundaries) and thus can help boost the performance of few-shot learning.

We demonstrate the effectiveness of MetaGAN on popular few-shot image classification benchmarks
in both supervised and semi-supervised settings. We choose two representative few-shot learning
models, MAML[Finn et al., 2017] representing models that learn to adapt using gradients, and
Relation Network[Sung et al., 2018] representing models that learn distance metrics, and combine
them with MetaGAN. 3 We show that MetaGAN can consistently improve the performance of popular
few-shot classifiers in all of these scenarios.

2 BACKGROUND

2.1 FEW-SHOT LEARNING

We formally define few-shot learning problems as following: Given a distribution of tasks P (T ), a
sample task T from P (T ) is given by a joint distribution P TX×Y (x, y), where the task is to predict
y given x. We have a set of training sample tasks {Ti}Ni=1. Each training sample task T is a tuple
T = (ST , QT ), where the support set is denoted as ST = SsT ∪ SuT , and the query set is denoted
as QT = QsT ∪ QuT . The supervised support set SsT = {(x1, y1), (x2, y2), · · · (xN×K , yN×K)}
contains K labeled samples from each of the N classes (this is usually known as K-shot N -way
classification). The optional unlabeled support set SuT = {x1,x2, · · ·xM} contains unlabeled
samples from the same set of N classes, which can also be empty in purely supervised cases.
QsT = {(x1, y1), (x2, y2), · · · (xT , yT )} is the supervised query dataset. QuT = {x1,x2, · · ·xP }
is the optional unlabeled query dataset. The objective of the model is to minimize the loss of its
predictions on a query set, given the support set as input.

2.2 ADVERSARIAL TRAINING

The generative adversarial networks [Goodfellow et al., 2014] framework is one of the most popular
approaches to generative modeling. It tries to adversarially train two neural networks, a generator
and a discriminator. Adversarial training has seen a vast range of applications in recent years, such
as semi-supervised learning [Dai et al., 2017, Salimans et al., 2016], unsupervised representation
learning [Chen et al., 2016], imitation learning [Ho and Ermon, 2016] etc. However, few works have
successfully combined adversarial training with few-shot learning. [Antoniou et al., 2018] proposed

3However, it is worth noticing that MetaGAN can also be easily combined with other models, such as
prototypical networks or SNAIL.
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to train a class conditioned GAN (DAGAN) to perform data augmentation. This is related to our
proposal but is different in two aspects. 1) Their GAN model is trained separately from the classifier,
only to provide additional data. 2) They treat generated data as real training data of the conditioned
class. There are two drawbacks of this approach. First, GANs still have trouble in generating realistic
samples in complex datasets such as ImageNet, so treating the generated images as real data in these
datasets is questionable. Second, DAGAN can very easily run into mode collapsing. In many cases it
is easy to collapse to an identity function — it just reconstruct the input image. Our approach does
not require the generator to be perfect. Conversely, similar to the semi-supervised learning case [Dai
et al., 2017], it can even benefit from an imperfect generator.

3 OUR APPROACH

MetaGAN is a conceptually simple and general framework for few-shot learning problems. Given
a decent K-shot N -way classifier, similar to [Salimans et al., 2016] we introduce a conditional
generative model with the objective to generate samples which are not distinguishable from true data
sampled from a specific task. We increase the dimension of the classifier output from N to N + 1, to
model the probability that input data is fake. We train the discriminator (classifier) and generator in
an adversarial setup.

The key idea behind MetaGAN is that imperfect generators in GAN models can provide fake data
between the manifolds of different real data classes, thus providing additional training signals to
the classifier as well as making the decision boundaries much sharper. We first describe our basic
model formally in section 3.1, then introduce details of different instances of MetaGAN in following
sections.

3.1 BASIC ALGORITHM

We first introduce the basic formulation of MetaGAN here. For a few-shot N -way classification
problem P (T ) and dataset {Ti}Mi=1, assume we have one of the state-of-the-art few-shot classifiers
pD(x; T ) = (p1(x), p2(x), · · · pN (x)). Note that D is conditioned on a specific task T . In prac-
tice, this conditioning can be either via fast adaptation [Finn et al., 2017] or feeding the support
set as input [Snell et al., 2017, Mishra et al., 2018, Sung et al., 2018]. We augment the classi-
fier with an additional output, as done in semi-supervised learning with GANs [Salimans et al.,
2016]: pD(x; T ) = (p1(x), p2(x), · · · pN (x), pN+1(x)). We also train a task-conditioned generator
G(z, T ) with generating distribution pTG(x) that tries to generate data for the specific task T . Then
for the training episode of task T we maximize the following combination of theN -way classification
objective and the real/fake classification objective for the discriminator:

LTD = Lsupervised + Lunsupervised, (1)
Lsupervised = Ex,y∼Qs

T
log pD(y|x, y ≤ N) (2)

Lunsupervised = Ex∼Qu
T
log pD(y ≤ N |x) + Ex∼pTG log pD(N + 1|x) (3)

For the generator, we minimize the non-saturating generator loss

LTG(D) = −Ex∼pTG [log(pD(y ≤ N |x))]. (4)

Then the overall objective for training MetaGAN is

LD = max
D

ET ∼P (T )LTD (5)

LG = min
G

ET ∼P (T )LTG. (6)

3.2 DISCRIMINATOR

MetaGAN generally doesn’t impose restrictions on the design of discriminator. It can be adapted from
almost any state-of-the-art few-shot learners. We adopt two popular choices of few-shot classification
models as our disciminator, MAML[Finn et al., 2017] and Relation Networks [Sung et al., 2018],
representing learning to fast fine-tune based models and learning shared embedding and metric based
models respectively.
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3.2.1 METAGAN WITH MAML

MAML trains a transferable initialization that is able to quickly adapt to any specific task with one
step gradient descent. Formally the discriminator D(θd) is parametrized by parameters θd. For a
specific task T ∼ P (T ), we update the parameters to θ′d = θd−α∇θd`TD according to the loss eq. 7

`TD = −Ex,y∼Ss
T
log pD(y|x, y ≤ N)−Ex∼Su

T
log pD(y ≤ N |x)−Ex∼pTG log pD(N +1|x). (7)

Then we minimize the expected loss on query set with adapted discriminator D(θ′d) across tasks T to
train the discriminator’s initial parameters θd, and we train the generator using adapted discriminator
D(θ′d). Finally our whole model combinging MetaGAN with MAML can be trained using the loss
introduced in eq. 5 and eq. 6, as shown below:

LD = max
D

ET ∼P (T )LTD(θ′d)
(8)

LG = min
G

ET ∼P (T )LLG(D(θ′d)). (9)

We put the detailed algorithms for training MetaGAN with MAML model in the supplemental
material.

3.2.2 METAGAN WITH RELATION NETWORK

The Relation Network (RN) is a few-shot learning model aiming to do classification via learning
a deep distance metric between images. MetaGAN can integrate with RN in a principled and
straightforward way.

For a specific task T ∼ P (T ), following [Sung et al., 2018] let ri,j = gψ(C(fφ(xi), fφ(xj))),xi ∈
SsT ,xj ∈ QsT be the relevance score between query set image xj and support set image xi, where
gψ is the relation module, fφ is the feature embedding network and C is the concatenation operator.
Different from [Sung et al., 2018] we don’t restrict ri,j to be in range of 0 to 1, we rather use ri,j as
logits used in softmax classification

pD(y = k|xj) =
exp(rk,j)

1 +
∑N
i=1 exp(ri,j)

(10)

We adopt the simple trick proposed in [Salimans et al., 2016] by setting the logit of the fake class to
0, which is corresponding to the constant 1 appearing in denominator, to model pD(N + 1|x) which
is the probability that input data is fake. Thus we can train our model, MetaGAN with RN, directly
using loss eq. 5 and eq. 6.

3.3 GENERATOR

We use a conditional generative model to generate fake data that is close to the real data manifold in
one specific task T . To do so, we first compress the information in the task’s support dataset with
a dataset encoder E into vector hT , which contains sufficient statistics for the data distribution of
task T . Then hT is concatenated with random noise input z to be provided as input to the generator
network. Inspired by the statistic network proposed in [Edwards and Storkey, 2017], our dataset
encoder is composed of two modules:

Instance-Encoder Module The Instance-Encoder is a neural network that learns a feature represen-
tation for each individual data example in the dataset SsT . It maps each data example xi ∈ SsT to
feature space ei = Instance-Encoder(xi).

Feature-Aggregation Module The Feature-Aggregation module takes each embedded feature vector
ei as input and produce the representation vector hT for the whole task training set. Feasible
aggregation methods include average pooling, max pooling and other element-wise aggregation
operators. We use average pooling following [Edwards and Storkey, 2017] in our MetaGAN model.

By integrating an Instance-Encoder module and a Feature-Aggregation Module, the instance-encoder
is encouraged to learn a representation such that averaging different samples in the learned feature
space makes sense. Also, feature-aggregation makes it harder for the generator to simply reconstruct
its inputs, which can lead to mode dropping [Che et al., 2017].
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3.4 LEARNING SETTINGS

In this section we show that both supervised few-shot learning and semi-supervised few-shot learning
can be unified in the MetaGAN framework.

Supervised Few-Shot Learning Supervised learning is the most common learning setting of few-
shot classification models. For a task T ∼ P (T ), since an unlabeled set SuT and QuT is not available,
we use the labeled set SsT and QsT to replace them respectively in loss eq. 1 and eq. 7.

Sample-Level Semi-Supervised Few-Shot Learning Sample-level semi-supervised learning fol-
lows the same setup as [Ren et al., 2018], where unlabeled data examples are available in each task.
While our model is flexible enough to deal with different sets of unlabeled examples in the support set
and the query set, for a task T ∼ P (T ) we only use a single unlabeled set of examples UT to follow
the same training scheme in [Ren et al., 2018], for a better comparison with our baseline models.

Specifically, for MetaGAN with MAML, we set SuT = SsT and QuT = UT . For MetaGAN with RN,
we set SuT = ∅ and QuT = UT in loss eq. 1 and eq. 7.

Task-Level Semi-Supervised Few-Shot Learning For Task-level semi-supervised learning, the
training dataset {Ti}Mi=1 consisting of labeled tasks and unlabeled tasks. For labeled tasks we simply
follow the supervised learning setting described above. For unlabeled tasks, we omit the supervised
loss term by setting QsT = ∅ and SsT = ∅ in loss eq. 1 and eq. 7.

As proposed in [Salimans et al., 2016] we adopt the "feature matching loss" as the generator loss LG
in both sample-level and task-level semi-supervised few-shot learning.

4 WHY DOES METAGAN WORK?

In this section, we introduce intuition as well as theoretical justifications of MetaGAN, which motivate
various improvements we made on the model.

In a few-shot classification problem, the model tries to optimize a decision boundary for each task
with just a few samples in each class. Obviously this problem is impossible if no information can
be learned from other tasks, as there are so many possible decision boundaries to separate the few
samples apart and most of them will not generalize. Meta-learning tries to learn a shared strategy
across different tasks to form decision boundaries from few samples, in the hope that this strategy is
able to generalize to new tasks.

Although this is reasonable, there can be some problems. For example, some objects look more
similar than others. It may be easier to form a decision boundary between a cat and a car than between
a cat and a dog. If the training data does not contain tasks that try to separate a cat and a dog, it may
feels difficult to extract the correct features to separate these two classes of objects. However, on
the other hand, the expectation to have all kinds of class combinations during training leads to the
combinatorial explosion problem.

This is where our proposed MetaGAN formulation helps. Just as for the case of doing semi-supervised
learning with GANs, we don’t expect our generator to generate data that is exactly on the true data
manifold. Instead, it is better that the generator is able to generate data a bit off the data manifold
of each class, cf. fig. 1. This forces our discriminator to learn a much sharper decision boundary.
Instead of only learning to separate cats and dogs, the discriminator of MetaGAN is forced to learn
not only what are real cats or dogs, but also what are fake data generated from where is a bit off the
cat and dog manifold. The discriminator thus has to extract features strong enough to decide the
boundary of the real data manifold, which helps to separate different classes apart. Moreover, the
separation between real/fake classes is independent of the class combinations selected during the
few-shot learning process.

Following the ideas behind the theoretical justifications studied in the semi-supervised learning
setting, we provide similar justifications in the few-shot learning problem. We include the formal
statement of the assumptions in the supplemental material.

First, as in [Dai et al., 2017], for a specific task T , we assume that the classifier relies on a feature
extractor fT to perform classification. We also make the assumption that G(·; T ) is a "separating
complement generator" (which we define in the supplemental material) for each task T . Intuitively
this means that the generator G(z; T ) satisfies two conditions: 1) the generator distribution pTG has a
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Figure 1: Left: decision boundary without metaGAN. Right: decision boundary with metaGAN. We
use red curves to denote the decision boundary. Blue area in figure represents class A, green area
represents class B, and gray area represents fake class. We use + to denote real samples and − to
denote fake samples generated.

high density region that is disjoint with the data manifold of all classes; 2) This high density region
of pTG can separate manifolds of different classes.

Then by following arguments similar to those in [Dai et al., 2017], we can prove the following:

Theorem 1 Let GT be a separating complement generator in each task T sampled from P (T ).
Denote ST the support set and FT the generated fake dataset. We assume our learned meta-learner
is able to learn a classifier DT which obtains a strong correct decision boundary on the augmented
support set(ST , FT ). Then if |FT | → +∞, then DT can almost surely correctly classify all real
samples from the data distribution pT (x) of the task.

The theorem is saying that if we have a generator that is neither too good nor too bad, but can generate
data around the the real class manifold and have a high density region that can help separating
different classes apart, then the generated data together with a few real data can help us determine the
correct decision boundary.

5 EXPERIMENTS

5.1 DATASETS

Omniglot is a dataset consisting of handwritten character images from 50 languages. There are 1623
classes of characters with 20 examples within each class. Following prior training and the evaluation
protocol used in [Vinyals et al., 2016], we downsampled all images to 28× 28 and randomly split
the dataset into 1200 classes for traininig and 432 classes for testing. The same data augmentation
techniques proposed by [Santoro et al., 2016] are utilized, randomly rotating each image by a multiple
of 90 degrees to form new classes.

Mini-Imagenet is a modified subset of the well-known ILSVRC-12 dataset, consisting of 84× 84
colored images from 100 classes with 600 random samples in each class. We follow the same class
split as in [Ravi and Larochelle, 2017], that takes 64 classes for training, 16 classes for validation and
20 classes for testing.

5.2 SUPERVISED FEW-SHOT LEARNING

On the Omniglot dataset, MetaGAN with MAML shares the same discriminator network architecture
and most model hyper-parameters setup with vanilla convolutional MAML[Finn et al., 2017]. We set
the meta batch-size to 16 for 5-way classification and 8 for 20-way classification to fit the memory
limit of the GPU. For MetaGAN with RN, we batch 15 query images for each class for both 1-shot
5-way and 5-shot 5-way classification, and we batch 5 query images for each class for 1-shot 20-way
and 5-shot 20-way task. We set the meta batch-size of MetaGAN with RN model to 1 in our all
experiments.

On Mini-Imagenet dataset, we train our MetaGAN with the MAML model using the first-order
approximation method with 1 gradient step as proposed in [Finn et al., 2017], due to the consideration
of computational cost.

For the conditional generator we adopt a ResNet-like architecture inspired by [Gulrajani et al., 2017]
in both models; see more details of the architecture of the generator in supplemental material.
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5-way Acc. 20-way Acc.
Model 1-shot 5-shot 1-shot 5-shot

Neural Statistician 98.1 99.5 93.2 98.1
Prototypical Nets 98.8 99.7 96.0 98.9

MAML 98.7 ± 0.4 99.9 ± 0.1 95.8 ± 0.3 98.9 ± 0.2
Ours: MetaGAN + MAML 99.1 ± 0.3 99.7 ± 0.21 96.4 ± 0.27 98.9 ± 0.18

Relation Net 99.6 ± 0.2 99.8 ± 0.1 97.6 ± 0.2 99.1 ± 0.1
Ours: MetaGAN + RN 99.67 ± 0.18 99.86 ± 0.11 97.64 ± 0.17 99.21 ± 0.1

Table 1: Few-shot classification results on Omniglot.

5-way Acc.
Model 1-shot 5-shot

Prototypical Nets 49.42 ± 0.78 68.20 ± 0.66

MAML(5 gradient steps) 48.70 ± 1.84 63.11 ± 0.92
MAML(5 gradient steps, first order) 48.07 ± 1.75 63.15 ± 0.91
MAML(1 gradient step, first order) 43.64 ± 1.91 58.72 ± 1.20
Ours: MetaGAN + MAML(1 step, first order) 46.13 ± 1.78 60.71 ± 0.89

Relation Net 50.44 ± 0.82 65.32 ± 0.7
Ours: MetaGAN + RN 52.71 ± 0.64 68.63 ± 0.67

Table 2: Few-shot classification results on Mini-Imagenet.

We use the Adam [Kingma and Ba, 2014] optimizer with initial learning rate as 0.001, β1 = 0.5
and β2 = 0.9 to train both generator and discriminator networks. For Omniglot we decay the
learning rate starting from 10K batch updates, and cut it in half for every 10K following updates.
For Mini-Imagenet we decay the learning rate starting from 30K batch updates, and cut it in half for
every 10K updates.

We present our results of 5-way and 20-way few-shot classification for Omniglot dataset in table
1, and show results of Mini-Imagenet dataset in table 2. We see that our proposed MetaGAN
consistently improves over baseline classifiers, and achieves comparable or outperforms state-of-the-
art performance on the challenging Mini-Imagenet benchmark.

5.3 SAMPLE-LEVEL SEMI-SUPERVISED FEW-SHOT LEARNING

As introduced in section 3.4, we evaluate the effectiveness of our proposed MetaGAN in the sample-
level semi-supervised few-shot learning setting, following a similar training and evaluation scheme
without "distractors" to that proposed in [Ren et al., 2018] (We will point out the differences in the
scheme later on). For the Omniglot dataset we sample 10% of the images of each class to form the
labeled set, and take all remaining data as the unlabeled set. For Mini-Imagenet we sample 40%
images of each class as the labeled set, and sample 5 images of each class for each training episode.

Note that our model only leverages unlabeled samples during the training phase, while the refining
model proposed in [Ren et al., 2018] uses unlabeled samples in both training (5 samples for each
class) and evaluation phases (20 samples for each class). This makes our model acquire strictly
less information during evaluation, compared to [Ren et al., 2018]. The classifier trained with
our proposed MetaGAN formulation is encouraged to form better decision boundaries by utilizing
unlabeled and fake data, and is free from the demands of unlabeled samples during testing, different
from the kmeans-based refining model [Ren et al., 2018] which strongly relies on the unlabeled data
for testing.
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Omniglot Mini-Imagenet
Model 1-shot 5-way 1-shot 5-way 5-shot 5-way

Prototypical Nets(Supervised) 94.62 ± 0.09 43.61 ± 0.27 59.08 ± 0.22
Semi-Supervised Inference(PN) 97.45 ± 0.05 48.98 ± 0.34 63.77 ± 0.20
Soft k-Means 97.25 ± 0.10 50.09 ± 0.45 64.59 ± 0.28
Soft k-Means+Cluster 97.68 ± 0.07 49.03 ± 0.24 63.08 ± 0.18
Masked Soft k-Means 97.52 ± 0.07 50.41 ± 0.31 64.39 ± 0.24

Ours: Relation Nets(Supervised) 94.81 ± 0.08 44.24 ± 0.24 58.72 ± 0.31
Ours: MetaGAN + RN 97.58 ± 0.07 50.35 ± 0.23 64.43 ± 0.27

Table 3: Sample-level Semi-Supervised Few-shot classification results on Omniglot and Mini-
Imagenet.

Omniglot Mini-Imagenet
Model 1-shot 5-way 1-shot 5-way

Prototypical Net(Supervised) 93.66 ± 0.09 42.28 ± 0.32
Relation Net(Supervised) 93.82 ± 0.07 43.87 ± 0.20

Ours: MetaGAN + RN 97.12 ± 0.08 47.43 ± 0.27

Table 4: Task-level Semi-Supervised 1-shot classification results on Omniglot and Mini-Imagenet.

We display the results of sample-level semi-supervised few-shot classification results on Omniglot
and Mini-Imagenet in table 3. Though our model cannot be compared with the kmeans refining
model directly as discussed above, we obtain comparable state-of-the-art results on both 1-shot and
5-shot tasks, while significantly improving the purely supervised baseline models.

5.4 TASK-LEVEL SEMI-SUPERVISED FEW-SHOT LEARNING

We proposed a new learning setting for the few-shot learning problem in section 3.4: task-level
semi-supervised few-shot learning. In this learning setting, existing few-shot learning models[Ravi
and Larochelle, 2017, Sung et al., 2018, Ren et al., 2018] are unable to effectively leverage purely
unsupervised tasks, which consist of only unlabeled samples in both support set and query set.

To demonstrate that our proposed MetaGAN model can successfully learn from unsupervised tasks,
we create new splits of Omniglot and Mini-Imagenet datasets. For the Omniglot dataset we randomly
sample 10% of classes from the training set as a labeled set of classes, and the remaining 90%
classes as an unlabeled set of classes. For Mini-Imagenet dataset we randomly sample 40% as
labeled classes and the remaining 60% are unlabeled. The validation set and test set of each dataset
remains unchanged, using all classes to evaluate the performance of models. During training time, we
sample supervised tasks only from the labeled set of classes, and sample unsupervised tasks from the
unlabeled set of classes. We alternate between sampled supervised tasks and sampled unsupervised
tasks for training the MetaGAN model, while we only use sampled supervised tasks to train the
baseline model.

We show the results of task-level semi-supervised few-shot classification results on Omniglot and
Mini-Imagenet in table 4. By integrating the baseline model into the MetaGAN framework, the
model effectively learned to utilize the unsupervised tasks for helping the classification task, showing
that MetaGAN can learn transferable knowledge from totally unsupervised tasks.

6 CONCLUSION

We propose MetaGAN, a simple and generic framework to boost the performance of few-shot learning
models. Our approach is based on the idea that fake samples produced by the generator can help
classifiers learn a sharper decision boundary between different classes from a few samples.
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We make an analogy between few-shot learning and semi-supervised learning- both of them have
only a few labeled data and both can benefit from an imperfect generator. Then we modified the
techniques used for semi-supervised learning with GANs to work in the few-shot learning scenario.
We give intuitive as well as theoretical justifications of the proposed approach.

We demonstrated the strength of our algorithm on a series of few-shot learning and semi-supervised
few-shot learning tasks. For future work, we plan to extend MetaGAN to the few-shot imitation
learning setting.
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